Show simple item record

Note on the Rate and Energy Efficiency Limits for Additive Manufacturing

dc.contributor.authorGutowski, Timothy
dc.contributor.authorJiang, Sheng
dc.contributor.authorCooper, Daniel
dc.contributor.authorCorman, Gero
dc.contributor.authorHausmann, Michael
dc.contributor.authorManson, Jan‐anders
dc.contributor.authorSchudeleit, Timo
dc.contributor.authorWegener, Konrad
dc.contributor.authorSabelle, Matias
dc.contributor.authorRamos‐grez, Jorge
dc.contributor.authorSekulic, Dusan P.
dc.date.accessioned2017-12-15T16:46:32Z
dc.date.available2019-01-07T18:34:35Zen
dc.date.issued2017-11
dc.identifier.citationGutowski, Timothy; Jiang, Sheng; Cooper, Daniel; Corman, Gero; Hausmann, Michael; Manson, Jan‐anders ; Schudeleit, Timo; Wegener, Konrad; Sabelle, Matias; Ramos‐grez, Jorge ; Sekulic, Dusan P. (2017). "Note on the Rate and Energy Efficiency Limits for Additive Manufacturing." Journal of Industrial Ecology 21(S1): S69-S79.
dc.identifier.issn1088-1980
dc.identifier.issn1530-9290
dc.identifier.urihttps://hdl.handle.net/2027.42/139897
dc.publisherWiley Periodicals, Inc.
dc.publisherAcademic
dc.subject.otherproduction rate
dc.subject.otherindustrial ecology
dc.subject.otherenergy efficiency
dc.subject.otheradditive manufacturing
dc.subject.other3D printing
dc.subject.othermanufacturing
dc.titleNote on the Rate and Energy Efficiency Limits for Additive Manufacturing
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139897/1/jiec12664_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139897/2/jiec12664-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139897/3/jiec12664.pdf
dc.identifier.doi10.1111/jiec.12664
dc.identifier.sourceJournal of Industrial Ecology
dc.identifier.citedreferenceKruth, J. P., B. Vandenbroucke, J. van Vaerenbergh, and P. Mercelis. 2005. Benchmaking of different SLS/SLM processes as Rapid Manufacturing techniques. Presented at the Proceedings of the PMI, paper 525, 20â 23 April, Gent, Belgium.
dc.identifier.citedreferenceGestel, C. V. 2015. Study of physical phenomena of selective laser melting towards increased productivity. Thesis, EPFL. Ã cublens, Vaud, Switzerland.
dc.identifier.citedreferenceGo, J., S. N. Schiffres, A. G. Stevens, and A. J. Hart. 2017. Rate limits of additive manufacturing by fused filament fabrication and guidelines for highâ throughput system design. Additive Manufacturing 16: 1 â 11.
dc.identifier.citedreferenceGutowski, T. G., M. S. Branham, J. D. Dahmus, A. J. Jones, A. Thiriez, and D. P. Sekulic. 2009. Thermodynamic analysis of resources used in manufacturing processes. Environmental Science & Technology 43 ( 5 ): 1584 â 1590.
dc.identifier.citedreferenceGutowski, T. G. and D. P. Sekulic. 2011. Thermodynamic analysis of resources used in manufacturing processes. In Thermodynamics and the destruction of resources, edited by B. R. Bakshi et al. New York: Cambridge University Press.
dc.identifier.citedreferenceHuang, R., M. Riddle, D. Graziano, J. Warren, S. Das, S. Nimbalkar, J. Cresko and E. Masanet. 2015. Energy and emissions saving potential of additive manufacturing: The case of lightweight aircraft components. Journal of Cleaner Production 135: 1559 â 1570.
dc.identifier.citedreferenceJiang, S. 2017. Processing rate and energy consumption analysis for additive manufacturing processes: Material extrusion and powder bed fusion. MS thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
dc.identifier.citedreferenceJunk, S. and Côté, S. 2012. A practical approach to comparing energy effectiveness of rapid prototyping technologies, in AEPR’12, 17th European Forum on Rapid prototyping and manufacturing, Paris, France.
dc.identifier.citedreferenceKamath, C., B. Elâ dasher, G. F. Gallegos, W. E. King, and A. Sisto. 2014. Density of additivelyâ manufactured, 316L SS parts using laser powerâ bed fusion at powers up to 400 W. The International Journal of Advanced Manufacturing Technolog y 74(1): 65 â 78.
dc.identifier.citedreferenceKannateyâ Asibu, Jr., E. 2009. Principles of laser materials processing. Hoboken, NJ, USA: Wiley.
dc.identifier.citedreferenceKalpakjian, S. and S. Schmid. 2014. Manufacturing engineering and technology, 7th ed. Upper Saddle River, NJ, USA: Pearson.
dc.identifier.citedreferenceKellens, K., E. Yasa, R. Renaldi, W. Dewulf, J.â P. Kruth, and J. Duflou. 2011. Energy and resource efficiency of SLS/SLM processes. https://lirias.kuleuven.be/handle/123456789/314470. Accessed 28 October 2014.
dc.identifier.citedreferenceKellens, K., R. Renaldi, W. Dewulf, J. Kruth and J. R. Duflou. 2014. Environmental impact modeling of selective laser sintering processes. Rapid Prototyping Journal 20 ( 6 ): 459 â 470.
dc.identifier.citedreferenceKellens, K., M. Baumers, T. Gutowski, W. Flanagan, R. Lifset, and J. Duflou. 2017. Environmental dimensions of additive manufacturing: Mapping application domains and their environmental implications. Journal of Industrial Ecology 21 ( S1 ): S49 â S68.
dc.identifier.citedreferenceKempen, K., L. Thijs, J. Van Humbeeck and J.â P. Kruth. 2012. Mechanical properties of AlSi10Mg produced by selective laser melting. Physics Procedia 39: 439 â 446.
dc.identifier.citedreferenceKruth, J. P., L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers. 2004. Selective laser melting of ironâ based powder. Journal of Materials Processing Technology 149 ( 1â 3 ): 616 â 622.
dc.identifier.citedreferenceKruth, J.â P, M. Badrossamay, E. Yasa, J. Deckers, L. Thijs and J. V. Humbeeck. 2010. Part and material properties in selective laser melting of metals. In Proceedings of the 16th International Symposium on Electromachining ISEM XVI, 19â 23 April, Shanghai, China.
dc.identifier.citedreferenceKruth, Jeanâ Pierre, J. Deckers, E. Yasa, and R. Wauthle. 2012. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture 226 ( B6 ): 980 â 991.
dc.identifier.citedreferenceLaohaprapanon, A., P. Jeamwatthanachai, M. Wongcumchang, K. Chantarapanich, S. Chantaweroad, K. Sitthiseripratip, and S. Wisutmethangoon. 2012. Optimal scanning condition of selective laser melting processing with stainless steel 316L powde r. Advanced Materials Research 341â 342: 816 â 820.
dc.identifier.citedreferenceLiu, B., R. Wildman, C. Tuck, I. Ashcroft, and R. Hague. 2011. Investigation the effect of particle size distribution on processing parameters optimization in selective laser melting process. In International Solid Freeform Fabrication Symposium: An Additive Manufacturing Conference, 6â 8 August, University of Texas at Austin, Austin, TX, USA, 227 â 238.
dc.identifier.citedreferenceSchleifenbaum, H., A. Diatlov, C. Hinke, J. Bultmann, and H. Voswinckel. 2011. Direct photonic production: Towards high speed additive manufacturing of individualized goods. Production Engineeringâ Research and Development 5 ( 4 ): 359 â 371.
dc.identifier.citedreferenceSteen, W. and J. Manzumder. 2010. Laser material processing, 4th ed. London, UK: Springer.
dc.identifier.citedreferenceSun, Z., X. Tan, S. B. Tor, and W. Y. Yeong. 2016. Selective laser melting of stainless steel 316L with low porosity and high build rates. Materials & Design 104: 197 â 204.
dc.identifier.citedreferenceTadmor, Z. and C. Gogos. 2006. Principles of polymer processing, 2nd ed. Hoboken, NJ: Wiley.
dc.identifier.citedreferenceTolochko, N.K., Y. V. Khlopkov, S. E. Mozzharov, M. B. Ignatiev, T. Laoui, and V. I. Titov. 2000. Absorptance of powder materials suitable for laser sintering. Rapid Prototyping Journal 6 ( 3 ): 155 â 161.
dc.identifier.citedreferenceTouloukian, Y. S., R. W. Powell, C. Y. Ho, and P. G. Klemens. 1970. Thermophysical properties of matter â the TPRC data series. Volume 1. Thermal conductivity â metallic elements and alloys.
dc.identifier.citedreferenceWalachowicz, F., I. Bernsdorf, U. Papenfuss, C. Zeller, A. Graichen, V. Navrotsky, N. Rajvanshi, and C. Kiener. 2017. Comparative energy, resource and recycling lifecycle analysis of the industrial repair process of gas turbine burners using conventional machining and additive manufacturing. Journal of Industrial Ecology 21 ( S1 ): S203 â S215.
dc.identifier.citedreferenceWiesner, A. and D. Schwarze. 2014. Multiâ laser selective laser melting. Industrial paper. In 8th International Conference on Photonic Technologies LANE 2014, 8â 11 September, Fürth, Germany.
dc.identifier.citedreferenceYadroitsev, I., A. Gusarov, I. Yadroitsava, and I. Smurov. 2010. Single track formation in selective laser melting of metal powders. Journal of Materials Processing Technology 210 ( 12 ): 1624 â 631.
dc.identifier.citedreferenceYasa, E., J. Deckers, J.â P. Kruth, M. Rombouta, and J. Luyten. 2010. Investigation of sectoral scanning in selective laser melting. 695 â 703.
dc.identifier.citedreferenceAnderson, Jr., J. D. 1976. Gasdynamic lasers: An introduction. In Quantum electronics series, principles and applications. New York: Academic.
dc.identifier.citedreferenceBaumers, M., C. Tuck, R. Hague, I. Ashcroft, and R. Wildman. 2010. A comparative study of metallic additive manufacturing power consumption. In Solid Freeform Fabrication Symposium, 9â 11 August, University of Texas at Austin, Austin, TX, USA, 278 â 288.
dc.identifier.citedreferenceBaumers, M., C. Tuck, D.L. Bourell, R. Sreenivasan, and R. Hague. 2011a. Sustainability of additive manufacturing measuring the energy consumption of the laser sintering process. Proceedings of the Institution of Mechanical Engineers Part B â Journal of Engineering Manufacture 225 ( 12 ): 2228 â 2239.
dc.identifier.citedreferenceBaumers, M., C. Tuck, R. Wildman, I. Ashcroft and R. Hague. 2011b. Energy inputs to additive manufacturing. Does capacity utilization matter? In Proceedings of the Solid Freeform Fabrication (SFF) Symposium, 8â 10 August, University of Texas at Austin, Austin, TX, USA.
dc.identifier.citedreferenceBaumers, M., C. Tuck, R. Wildman, I. Ashcroft, E. Rosamond, and R. Hague. 2012. Combined buildâ time, energy consumption and cost estimation for direct metal laser sintering. In Solid Freeform Fabrication Symposium, 6â 8 August, Austin, TX, USA, 932 â 944.
dc.identifier.citedreferenceBaumers, M., C. Tuck, R. Wildman, I. Ashcroft, and R. Hague. 2017. Shape complexity and process energy consumption in electronâ beam melting. Journal of Industrial Ecology 21 ( S1 ): S157 â S167.
dc.identifier.citedreferenceBreman, S., W. Meiners and A. Diatlov, 2012. Selective laser meltingâ A manufacturing technology for the future? Rapid Manufacuring 9 ( 2 ): 33 â 38.
dc.identifier.citedreferenceBuchbinder, D., H. Schleifenbaum, S. Heidrich, W. Meiners, and J. Bultmann, 2011. High power selective laser melting (HP SLM) of aluminum parts. Physics Procedia 12 ( pt A ): 271 â 278.
dc.identifier.citedreferenceCook, N. 1966. Manufacturing analysis. Reading, MA: Addison Wesley.
dc.identifier.citedreferenceCorman, J. C. 2014. Energy and resource efficiency of additive manufacturing technologies. Master’s thesis, WZL RWTH Aachen, Germany and MIT, Cambridge, MA.
dc.identifier.citedreferenceDalquist, S. and T. Gutowski. 2004a. Life cycle analysis of conventional manufacturing techniques: Die casting. December. LMP Working Paper LMPâ MITâ TGGâ 03â 12â 19â 2004.
dc.identifier.citedreferenceDalquist, S. and T. Gutowski. 2004b. Life cycle analysis of conventional manufacturing techniques: Sand casting. In Proceedings of the ASME International Mechanical Engineering Congress and RD&D Exposition, 13â 19 November, Anaheim, CA, USA. Internal report from Laboratory for Manufacturing and Productivity at Massachusetts Institute of Technology, Cambridge, MA.
dc.identifier.citedreferenceEPRI (Electric Power Research Institute). 2014. Beyond 3D printing. https://smartmanufacturingcoalition.org/sites/default/files/beyond_3d_printing_â _new_demand_on_electric_fnl.pdf. Accessed January 2016.
dc.identifier.citedreferenceFaludi, J., M. Baumers, R. Hague, and I. Maskery. 2017. Environmental impacts of selective laser melting: Do printer, powder, or power dominate? Journal of Industrial Ecology 21 ( S1 ): S144 â S156.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.