Show simple item record

How Might Recharge Change Under Projected Climate Change in the Western U.S.?

dc.contributor.authorNiraula, R.
dc.contributor.authorMeixner, T.
dc.contributor.authorDominguez, F.
dc.contributor.authorBhattarai, N.
dc.contributor.authorRodell, M.
dc.contributor.authorAjami, H.
dc.contributor.authorGochis, D.
dc.contributor.authorCastro, C.
dc.date.accessioned2017-12-15T16:46:42Z
dc.date.available2018-12-03T15:34:03Zen
dc.date.issued2017-10-28
dc.identifier.citationNiraula, R.; Meixner, T.; Dominguez, F.; Bhattarai, N.; Rodell, M.; Ajami, H.; Gochis, D.; Castro, C. (2017). "How Might Recharge Change Under Projected Climate Change in the Western U.S.?." Geophysical Research Letters 44(20): 10,407-10,418.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/139906
dc.description.abstractAlthough groundwater is a major water resource in the western U.S., little research has been done on the impacts of climate change on groundwater storage and recharge in the West. Here we assess the impact of projected changes in climate on groundwater recharge in the near (2021–2050) and far (2071–2100) future across the western U.S. Variable Infiltration Capacity model was run with RCP 6.0 forcing from 11 global climate models and “subsurface runoff” output was considered as recharge. Recharge is expected to decrease in the West (−5.8 ± 14.3%) and Southwest (−4.0 ± 6.7%) regions in the near future and in the South region (−9.5 ± 24.3%) in the far future. The Northern Rockies region is expected to get more recharge in the near (+5.3 ± 9.2%) and far (+11.8 ± 12.3%) future. Overall, southern portions of the western U.S. are expected to get less recharge in the future and northern portions will get more. Climate change interacts with land surface properties to affect the amount of recharge that occurs in the future. Effects on recharge due to change in vegetation response from projected changes in climate and CO2 concentration, though important, are not considered in this study.Key PointsClimate change interacts with land surface properties to affect the amount of recharge that occurs in the futureSouthern portions of the western U.S. are expected to get less and northern portions more recharge in the futureThe large variability in projected recharge across the GCMs is associated with variability in projected precipitation
dc.publisherIPCC Secretariat
dc.publisherWiley Periodicals, Inc.
dc.subject.othergroundwater recharge
dc.subject.otherwestern U.S
dc.subject.otherclimate change
dc.titleHow Might Recharge Change Under Projected Climate Change in the Western U.S.?
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139906/1/grl56569.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139906/2/grl56569_am.pdf
dc.identifier.doi10.1002/2017GL075421
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceNiraula, R., Meixner, T., Ajami, H., Rodell, M., Gochis, D., & Castro, C. ( 2016 ). Comparing potential recharge estimates from three land surface models across the western US. Journal of Hydrology, 545, 410 – 423.
dc.identifier.citedreferenceMiller, D. A., & White, R. A. ( 1998 ). A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interactions, 2 ( 2 ), 1 – 26. https://doi.org/10.1175/1087-3562(1998)002%3C0001:ACUSMS%3E2.3.CO;2
dc.identifier.citedreferenceMitchell, K., Houser, P., Wood, E., Schaake, J., Tarpley, D., Lettenmaier, D., … Vinnikov, K. ( 1999 ). The GCIP land data assimilation (LDAS) project—Now underway. GEWEX News, 9 ( 4 ), 3 – 6.
dc.identifier.citedreferenceMorison, J. I. L. ( 1987 ). Intercellular CO 2 concentration and stomatal response to CO 2. In E. Zeiger, G. D. Farquhar, & I. R. Cowan (Eds.), Stomatal Function (pp. 229 – 252 ). Stanford, CA: Stanford University.
dc.identifier.citedreferenceMunoz‐Arriola, F., Avissar, R., Zhu, C., & Lettenmaier, D. P. ( 2009 ). Sensitivity of the water resources of Rio Yaqui Basin, Mexico to agriculture extensification under multi‐scale climate conditions. Water Resources Research, 45, W00A20. https://doi.org/10.1029/2007WR006783
dc.identifier.citedreferenceNijssen, B., Lettenmaier, D. P., Liang, X., Wetzel, S. W., & Wood, E. F. ( 1997 ). Streamflow simulation for continental‐Scale River basins. Water Resources Research, 33 ( 4 ), 711 – 724. https://doi.org/10.1029/96WR03517
dc.identifier.citedreferenceNijssen, B., O’Donnell, G. M., Hamlet, A. F., & Lettenmaier, D. P. ( 2001 ). Hydrologic vulnerability of global rivers to climate change. Climatic Change, 50 ( 1/2 ), 143 – 175. https://doi.org/10.1023/A:1010616428763
dc.identifier.citedreferenceOverpeck, J., & Udall, B. ( 2010 ). Dry times ahead. Science, 328 ( 5986 ), 1642 – 1643. https://doi.org/10.1126/science.1186591
dc.identifier.citedreferenceParr, D., Wang, G., & Ahmed, K. F. ( 2015 ). Hydrological changes in the U.S. northeast using the Connecticut River basin as a case study: Part 2. Projections of the future. Global and Planetary Change, 133, 167 – 175. https://doi.org/10.1016/j.gloplacha.2015.08.011
dc.identifier.citedreferenceRasmussen, R., Ikeda, K., Liu, C., Gochis, D., Clark, M., Dai, A., Gutmann, E., … Zhang, G. ( 2014 ). Climate change impacts on the water balance of the Colorado headwaters: High‐resolution regional climate model simulations. Journal of Hydrometeorology, 15, 1091 – 1116. https://doi.org/10.1175/JHM-D-13-0118.1
dc.identifier.citedreferenceRasmussen, R., Liu, C., Ikeda, K., Gochis, D., Yates, D., Chen, F., … Gutmann, E. ( 2011 ). High‐resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. Journal of Climate, 24, 3015 – 3048. https://doi.org/10.1175/2010JCLI3985.1
dc.identifier.citedreferenceReclamation ( 2013 ). Downscaled CMIP3 and CMIP5 climate projection: Release of downscaled CMIP5 climate projections, Comparison with preceding information, and summary of user needs, U.S. Department of the Interior, Bureau of Reclamation, 104 p. Retrieved from http://gdo‐dcp.ucllnl.org/downscaled_cmip_projections/ techmemo/downscaled_climate.pdf
dc.identifier.citedreferenceReclamation ( 2014 ). Downscaled CMIP3 and CMIP5 hydrology projections—Release of hydrology projections, comparison with preceding information and summary of user needs, U.S. Department of the Interior, Bureau of Reclamation, 110 p. Retrieved from http://gdo‐dcp.ucllnl.org/downscaled_cmip_projections/techmemo/ BCSD5HydrologyMemo.pdf
dc.identifier.citedreferenceScanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M., McGuire, V. L., & McMahon, P. B. ( 2012 ). Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proceedings of the National Academy of Sciences of the United States of America, 109 ( 24 ), 9320 – 9325. https://doi.org/10.1073/pnas.1200311109
dc.identifier.citedreferenceScanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E., & Dennehy, K. F. ( 2005 ). Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 11, 1577 – 1593. https://doi.org/10.1111/j.1365-2486.2005.01026.x
dc.identifier.citedreferenceSeager, R., Ting, M., Li, C., Naik, N., Cook, B., Nakamura, J., & Liu, H. ( 2013 ). Projections of declining surface‐water availability for the southwestern United States. Nature Climate Change, 3 ( 5 ), 482 – 486.
dc.identifier.citedreferenceSerrat‐Capdevila, A., Valdés, J. B., Pérez, J. G., Baird, K., Mata, L. J., & Maddock, T. III ( 2007 ). Modeling climate change impacts—and uncertainty—on the hydrology of a riparian system: The San Pedro Basin (Arizona/Sonora). Journal of Hydrology, 347 ( 1‐2 ), 48 – 66. https://doi.org/10.1016/j.jhydrol.2007.08.028
dc.identifier.citedreferenceSleeter, B. M., Wilson, T. S., & Acevedo, W. ( 2012 ). Status and trends of land change in the Western United States—1973 to 2000, U.S. Geological Survey Professional Paper, 1794–A, 324. Retrieved from http://pubs.usgs.gov/pp/1794/a/
dc.identifier.citedreferenceSteward, D. R., Bruss, P. J., Yang, X., Staggenborg, S. A., Welch, S. M., & Apley, M. D. ( 2013 ). Tapping unsustainable groundwater stores for agricultural production in the High Plains aquifer of Kansas, projections to 2110. Proceedings of the National Academy of Sciences, 110 ( 37 ), E3477 – E3486. https://doi.org/10.1073/pnas.1220351110
dc.identifier.citedreferenceStonestrom, D. A., Constantz, J., Ferré, T. P. A., & Leake, S. A. ( 2007 ). Groundwater recharge in the arid and semiarid southwestern United States, U.S. Geological Survey Professional Paper, 1703, 414 pp., Reston, VA.
dc.identifier.citedreferenceTaylor, R. G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., … Holman, I. ( 2013 ). Groundwater and climate change. Nature Climate Change, 3 ( 4 ), 322 – 329.
dc.identifier.citedreferenceVaccaro, J. J. ( 1992 ). Sensitivity of groundwater recharge estimates to climate variability and change, Columbia plateau, Washington. Journal of Geophysical Research, 97 ( D3 ), 2821 – 2833. https://doi.org/10.1029/91JD01788
dc.identifier.citedreferenceVano, J. A., Udall, B., Cayan, D. R., Overpeck, J. T., Brekke, L. D., Das, T., … Lettenmaier, D. P. ( 2014 ). Understanding uncertainties in future Colorado River Streamflow. Bulletin of the American Meteorological Society, 95 ( 1 ), 59 – 78. https://doi.org/10.1175/BAMS-D-12-00228.1
dc.identifier.citedreferenceWidmann, M., & Bretherton, C. S. ( 2000 ). Validation of mesoscale precipitation in the NCEP reanalysis using a new gridcell dataset for the northwestern United States. Journal of Climate, 13 ( 11 ), 1936 – 1950. https://doi.org/10.1175/1520-0442(2000)013%3C1936:VOMPIT%3E2.0.CO;2
dc.identifier.citedreferenceWood, A. W., Maurer, E. P., Kumar, A., & Lettenmaier, D. P. ( 2002 ). Long range experimental hydrologic forecasting for the eastern U.S. Journal of Geophysical Research, 107 ( D20 ), 4429.
dc.identifier.citedreferenceAguilera, H., & Murillo, J. M. ( 2009 ). The effect of possible climate change on natural groundwater recharge based on a simple model: A study of four karstic aquifers in SE Spain. Environmental Geology, 57 ( 5 ), 963 – 974. https://doi.org/10.1007/s00254-008-1381-2
dc.identifier.citedreferenceAjami, H., Meixner, T., Dominguez, F., Hogan, J., & Maddock, T. ( 2012 ). Seasonalizing Mountain system recharge in semi‐arid basins‐climate change impacts. Groundwater, 50 ( 4 ), 585 – 597. https://doi.org/10.1111/j.1745-6584.2011.00881.x
dc.identifier.citedreferenceAnderson, M. T., & Woosley, L. H. ( 2005 ). Water availability for the western United States—Key scientific challenges. U.S. Geological Survey Circular, 1261, 85.
dc.identifier.citedreferenceAnderson, T. W., Freethey, G. W., & Tucci, P. ( 1992 ). Geohydrology and water resources of alluvial basins in South Central Arizona and parts of adjacent states, U.S. Geological Survey Professional Paper, 1406‐B, Washington, DC: United States Government Printing Office.
dc.identifier.citedreferenceBates, B. C., Kundzewicz, Z. W., Wu, S., & Palutikof, J. P. (Eds.) ( 2008 ). Climate change and water technical paper of the Intergovernmental Panel on Climate Change (p. 210 ). Geneva: IPCC Secretariat.
dc.identifier.citedreferenceBeyene, T., Lettenmaier, D. P., & Kabat, P. ( 2009 ). Hydrologic impacts of climate change on the Nile River basin: Implications of the 2007 IPCC climate scenarios. Climatic Change, 100 ( 3‐4 ), 433 – 461. https://doi.org/10.1007/s10584-009-9693-0
dc.identifier.citedreferenceCastle, S. L., Thomas, B. F., Reager, J. T., Rodell, M., Swenson, S. C., & Famiglietti, J. S. ( 2014 ). Groundwater depletion during drought threatens future water security of the Colorado River basin. Geophysical Research Letters, 41, 5904 – 5911. https://doi.org/10.1002/2014GL061055
dc.identifier.citedreferenceCastro, C. L., Chang, H., Dominguez, F., Carrillo, C., Kyung‐Schemm, J., & Juang, H. H.‐M. ( 2012 ). Can a regional climate model improve warm season forecasts in North America? Journal of Climate, 25 ( 23 ), 8212 – 8237. https://doi.org/10.1175/JCLI-D-11-00441.1
dc.identifier.citedreferenceCook, B. I., & Seager, R. ( 2013 ). The response of the north American monsoon to increased greenhouse gas forcing. Journal of Geophysical Research: Atmospheres, 118, 1690 – 1699. https://doi.org/10.1002/jgrd.50111
dc.identifier.citedreferenceCramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., … Young‐Molling, C. ( 2001 ). Global response of terrestrial ecosystem structure and function to CO 2 and climate change: Results from six dynamic global vegetation models. Global Change Biology, 7 ( 4 ), 357 – 373. https://doi.org/10.1046/j.1365-2486.2001.00383.x
dc.identifier.citedreferenceCrosbie, R. S., Dawes, W. R., Charles, S. P., Mpelasoka, F. S., Aryal, S., Barron, O., & Summerell, G. K. ( 2011 ). Differences in future recharge estimates due to GCMs, downscaling methods and hydrological models. Geophysical Research Letters, 38, L11406. https://doi.org/10.1029/2011GL047657
dc.identifier.citedreferenceCrosbie, R., Pickett, T., Mpelasoka, F. S., Hodgson, G., Charles, S. P., & Barron, O. V. ( 2012 ). An assessment of climate change impacts on groundwater recharge at a continental scale using a probabilistic approach with an ensemble of GCMs. Climatic Change, 117 ( 1‐2 ), 41 – 53. https://doi.org/10.1007/s10584-012-0558-6
dc.identifier.citedreferenceCrosbie, R. S., Scanlon, B. R., Mpelasoka, F. S., Reedy, R. C., Gates, J. B., & Zhang, L. ( 2013 ). Potential climate change effects on groundwater recharge in the High Plains aquifer, USA. Water Resources Research, 49, 3936 – 3951. https://doi.org/10.1002/wrcr.20292
dc.identifier.citedreferenceCuo, L., Lettenmaier, D. P., Alberti, M., & Richey, J. E. ( 2009 ). Effects of a century of land cover and climate change on the hydrology of Puget sound basin. Hydrological Processes, 23 ( 6 ), 907 – 933. https://doi.org/10.1002/hyp.7228
dc.identifier.citedreferenceDettinger, M. D., & Earman, S. ( 2007 ). Western groundwater and climate change—Pivotal to supply sustainability or vulnerable in its own right? Association of Ground Water Scientists and Engineers Newsletter, 4 ( 1 ), 4 – 5. Westerville, OH.
dc.identifier.citedreferenceDöll, P. ( 2009 ). Vulnerability to the impact of climate change on renewable groundwater resources: A global‐scale assessment. Environmental Research Letters, 4 ( 3 ), 035006. https://doi.org/10.1088/1748‐9326/4/3/035006
dc.identifier.citedreferenceDöll, P., & Fiedler, K. ( 2008 ). Global‐scale modeling of groundwater recharge. Hydrology and Earth System Sciences, 12, 863 – 885.
dc.identifier.citedreferenceDominguez, F., Rivera, E., Lettenmaier, D. P., & Castro, C. L. ( 2012 ). Changes in winter precipitation extremes for the western United States under a warmer climate as simulated by regional climate models. Geophysical Research Letters, 39, L05803. https://doi.org/10.1029/2011GL050762
dc.identifier.citedreferenceFaunt, C. C. ( 2009 ). Groundwater availability of the Central Valley aquifer, California, U.S. Geological Survey Professional Paper, 1766, 225.
dc.identifier.citedreferenceFlint, L. E., & Flint, A. L. ( 2014 ). California basin characterization model: A dataset of historical and future hydrologic response to climate change, U.S. Geological Survey. https://doi.org/10.5066/F7BV7DNG
dc.identifier.citedreferenceGao, H., Tang, Q., Shi, X., Zhu, C., Bohn, T. J., Su, F., … Wood, E. F. ( 2010 ). Water budget record from variable infiltration capacity (VIC) model. In Algorithm theoretical basis document version 1.2. Computational Hydrology Group, Seattle, University of Washington.
dc.identifier.citedreferenceGorelick, S. M., & Zheng, C. ( 2015 ). Global change and the groundwater management challenge. Water Resources Research, 51, 3031 – 3051. https://doi.org/10.1002/2014WR016825
dc.identifier.citedreferenceGreen, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., … Aureli, A. ( 2011 ). Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405 ( 3‐4 ), 532 – 560. https://doi.org/10.1016/j.jhydrol.2011.05.002
dc.identifier.citedreferenceGurdak, J. J., & Roe, C. D. ( 2010 ). Review: Recharge rates and chemistry beneath playas of the High Plains aquifer, USA. Hydrogeology Journal, 18 ( 8 ), 1747 – 1772. https://doi.org/10.1007/s10040-010-0672-3
dc.identifier.citedreferenceHamlet, A. F., & Lettenmaier, D. P. ( 1999 ). Effects of climate change on hydrology and water resources in the Columbia river basin. Journal of the American Water Resources Association, 35 ( 6 ), 1597 – 1623.
dc.identifier.citedreferenceHansen, M. C., DeFries, R. S., Townshend, J. R. G., & Sohlberg, R. ( 2000 ). Global land cover classification at 1 km spatial resolution using a classification tree approach. International Journal of Remote Sensing, 21 ( 6‐7 ), 1331 – 1364. https://doi.org/10.1080/014311600210209
dc.identifier.citedreferenceHanson, R. T., Flint, L. E., Flint, A. L., Dettinger, M. D., Faunt, C. C., Cayan, D., & Schmid, W. ( 2012 ). A method for physically based model analysis of conjunctive use in response to potential climate changes. Water Resources Research, 48, W00L08. https://doi.org/ 10.1029/2011WR010774
dc.identifier.citedreferenceHerrera‐Pantoja, M., & Hiscock, K. ( 2008 ). The effects of climate change on potential groundwater recharge in great Britain. Hydrological Processes, 22 ( 1 ), 73 – 86.
dc.identifier.citedreferenceIntergovernmental Panel on Climate Change (IPCC) ( 2014 ). Summary for policymakers. In C. B. Field, et al. (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1 – 32 ). Cambridge, UK and New York: Cambridge University Press.
dc.identifier.citedreferenceJyrkama, M. I., & Sykes, J. F. ( 2007 ). The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario). Journal of Hydrology, 338 ( 3‐4 ), 237 – 250. https://doi.org/10.1016/j.jhydrol.2007.02.036
dc.identifier.citedreferenceKonikow, L. F. ( 2013 ). Groundwater depletion in the United States (1900–2008), U.S. Geological Survey Scientific Investigations Report 2013‐5079, 63.
dc.identifier.citedreferenceKundzewicz, Z. W., Mata, L. J., Arnell, N., Döll, P., Kabat, P., Jiménez, B., … Shiklomanov, I. ( 2007 ). Freshwater resources and their management. In M. L. Parry, et al. (Eds.), Climate change 2007: Impacts, adaptation and vulnerability, contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 173 – 210 ). UK: Cambridge University Press.
dc.identifier.citedreferenceLee, S.‐Y., Ryan, M. E., Hamlet, A. F., Palen, W. J., Lawler, J. J., & Halabisky, M. ( 2015 ). Projecting the hydrologic impacts of climate change on montane wetlands. PLoS One, 10 ( 9 ), e0136385. https://doi.org/10.1371/journal.pone.0136385
dc.identifier.citedreferenceLeng, G., Tang, Q., Huang, S., Zhang, X., & Cao, J. ( 2015 ). Assessments of joint hydrological extreme risks in a warming climate in China. International Journal of Climatology, 36 ( 4 ), 1632 – 1642. https://doi.org/10.1002/joc.4447
dc.identifier.citedreferenceLi, B., Rodell, M., & Famiglietti, J. S. ( 2015 ). Groundwater variability across temporal and spatial scales in the central and northeastern U.S. Journal of Hydrology, 525, 769 – 780. https://doi.org/10.1016/j.jhydrol.2015.04.033
dc.identifier.citedreferenceLiang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. ( 1994 ). A simple hydrologically based model of land surface water and energy fluxes for GSMs. Journal of Geophysical Research, 99, 14,415 – 14,428. https://doi.org/10.1029/94JD00483
dc.identifier.citedreferenceLiang, X., Xie, Z., & Huang, M. ( 2003 ). A new parameterization for surface and groundwater interactions and its impact on water budgets with the variable infiltration capacity (VIC) land surface model. Journal of Geophysical Research, 108 ( D16 ), 8613. https://doi.org/10.1029/2002JD003090
dc.identifier.citedreferenceMaupin, C. R., Partin, J. W., Shen, C.‐C., Quinn, T. M., Lin, K., Taylor, F. W., … Sinclair, D. J. ( 2014 ). Persistent decadal‐scale rainfall variability in the tropical South Pacific convergence zone through the past six centuries. Climate of the Past, 10 ( 4 ), 1319 – 1332. https://doi.org/10.5194/cp‐10‐1319‐2014
dc.identifier.citedreferenceMaurer, E. P., O’Donnell, G. M., Lettenmaier, D. P., & Roads, J. O. ( 2001 ). Evaluation of the land surface water budget in NCEP/NCAR and NCEP/DOE reanalyses using an off‐line hydrologic model. Journal of Geophysical Research, 106, 17,841 – 17,862.
dc.identifier.citedreferenceMaurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., & Nijssen, B. ( 2002 ). A long‐term Hydrologically‐based data set of land surface fluxes and states for the conterminous United States. Journal of Climate, 15 ( 22 ), 3237 – 3251. https://doi.org/10.1175/1520-0442(2002)015%3C3237:ALTHBD%3E2.0.CO;2
dc.identifier.citedreferenceMcMahon, P. B., Dennehy, K. F., Bruce, B. W., Böhlke, J. K., Michel, R. L., Gurdak, J. J., & Hurlbut, D. B. ( 2006 ). Storage and transit time of chemicals in thick unsaturated zones under rangeland and irrigated cropland, High Plains, United States. Water Resources Research, 42, W03413. https://doi.org/10.1029/2005WR004417
dc.identifier.citedreferenceMeixner, T., Manning, A. H., Stonestrom, D. A., Allen, D. M., Ajami, H., Blasch, K. W., … Walvoord, M. A. ( 2016 ). Implications of projected climate change for groundwater recharge in the western United States. Journal of Hydrology, 534 ( 2016 ), 124 – 138. https://doi.org/10.1016/j.jhydrol.2015.12.027
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.