Show simple item record

Trials and tribulations of designing multitasking catalysts for olefin/thiophene block copolymerizations

dc.contributor.authorSouther, Kendra D.
dc.contributor.authorLeone, Amanda K.
dc.contributor.authorVitek, Andrew K.
dc.contributor.authorPalermo, Edmund F.
dc.contributor.authorLaPointe, Anne M.
dc.contributor.authorCoates, Geoffrey W.
dc.contributor.authorZimmerman, Paul M.
dc.contributor.authorMcNeil, Anne J.
dc.date.accessioned2017-12-15T16:46:57Z
dc.date.available2019-03-01T21:00:17Zen
dc.date.issued2018-01-01
dc.identifier.citationSouther, Kendra D.; Leone, Amanda K.; Vitek, Andrew K.; Palermo, Edmund F.; LaPointe, Anne M.; Coates, Geoffrey W.; Zimmerman, Paul M.; McNeil, Anne J. (2018). "Trials and tribulations of designing multitasking catalysts for olefin/thiophene block copolymerizations." Journal of Polymer Science Part A: Polymer Chemistry 56(1): 132-137.
dc.identifier.issn0887-624X
dc.identifier.issn1099-0518
dc.identifier.urihttps://hdl.handle.net/2027.42/139919
dc.description.abstractBlock copolymers containing both insulating and conducting segments have been shown to exhibit improved charge transport properties and air stability. Nevertheless, their syntheses are challenging, relying on multiple post‐polymerization functionalization reactions and purifications. A simpler approach would be to synthesize the block copolymer in one pot using the same catalyst to enchain both monomers via distinct mechanisms. Such multitasking polymerization catalysts are rare, however, due to the challenges of finding a single catalyst that can mediate living, chain‐growth polymerizations for each monomer under similar conditions. Herein, a diimine‐ligated Ni catalyst is evaluated and optimized to produce block copolymer containing both 1‐pentene and 3‐hexylthiophene. The reaction mixture also contains both homopolymers, suggesting catalyst dissociation during and/or after the switch in mechanisms. Experimental and theoretical studies reveal a high energy switching step coupled with infrequent catalyst dissociation as the culprits for the low yield of copolymer. Combined, these studies highlight the challenges of identifying multitasking catalysts, and suggest that further tuning the reaction conditions (e.g., ancillary ligand structure and/or metal) is warranted for this specific copolymerization. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 132–137Block copolymers containing insulating segments (derived from 1‐pentene) and conducting segments (derived from 3‐hexylthiophene) are synthesized in one pot using a single multitasking catalyst. Notably, this process requires different enchainment mechanisms (coordination/insertion vs. cross‐coupling) mediated by the same precatalyst. Nevertheless, the block copolymer is the minor product due to a slow switching step between the mechanisms coupled with catalyst dissociation from the polymer chain.
dc.publisherWiley Periodicals, Inc.
dc.subject.othercatalysis
dc.subject.othernickel
dc.subject.otherpoly(3‐hexylthiophene)
dc.subject.otherpoly(olefin)
dc.subject.otherdiimine
dc.titleTrials and tribulations of designing multitasking catalysts for olefin/thiophene block copolymerizations
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139919/1/pola28885_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139919/2/pola28885.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139919/3/pola28885-sup-0001-suppinfo.pdf
dc.identifier.doi10.1002/pola.28885
dc.identifier.sourceJournal of Polymer Science Part A: Polymer Chemistry
dc.identifier.citedreferenceT. H. Dunning Jr., J. Chem. Phys. 1989, 90, 1007.
dc.identifier.citedreferenceA. A. Pollit, N. K. Obhi, A. J. Lough, D. S. Seferos, Polym. Chem. 2017, 8, 4108.
dc.identifier.citedreferenceC. R. Bridges, H. Yan, A. A. Pollit, D. S. Seferos, ACS Macro Lett. 2014, 3, 671.
dc.identifier.citedreferenceC. R. Bridges, T. M. McCormick, G. L. Gibson, J. Hollinger, D. S. Seferos, J. Am. Chem. Soc. 2013, 135, 13212.
dc.identifier.citedreferenceA. A. Pollit, C. R. Bridges, D. S. Seferos, Macromol. Rapid Commun. 2015, 36, 65.
dc.identifier.citedreferenceB. E. Love, E. G. Jones, J. Org. Chem. 1999, 64, 3755.
dc.identifier.citedreferenceP. M. Zimmerman, J. Chem. Phys. 2013, 138, 184102.
dc.identifier.citedreferenceP. M. Zimmerman, J. Chem. Theory Comput. 2013, 9, 3043.
dc.identifier.citedreferenceP. M. Zimmerman, J. Comput. Chem. 2015, 36, 601.
dc.identifier.citedreferenceJ. D. Chai, M. Head‐Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.
dc.identifier.citedreferenceA. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
dc.identifier.citedreferenceA. E. Cherian, J. M. Rose, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 2005, 127, 13770.
dc.identifier.citedreferenceJ. M. Rose, A. E. Cherian, G. W. Coates, J. Am. Chem. Soc. 2006, 128, 4186.
dc.identifier.citedreferenceJ. M. Rose, F. Deplace, N. A. Lynd, Z. Wang, A. Hotta, E. B. Lobkovsky, E. J. Kramer, G. W. Coates, Macromolecules 2008, 41, 9548.
dc.identifier.citedreferenceC. Ruiz‐Orta, J. P. Fernandez‐Blazquez, A. M. Anderson‐Wile, G. W. Coates, R. G. Alamo, Macromolecules 2011, 44, 3436.
dc.identifier.citedreferenceThe racemic (RS, SR) ligand generates a C 2 ‐symmetric Ni catalyst that predominantly gives ω,2‐enchainment with 1‐hexene, resulting in amorphous ethylene‐propylene copolymers.
dc.identifier.citedreferencePrecatalyst geometries not specified in Chart 1. Precatalyst C1 is tetrahedral (as evidenced by a single‐crystal X‐ray structure, see ref. 39). Precatalyst C2 is expected to be square planar based on a related diimineNi(CH 2 TMS) 2 crystal structure (for ref, see: T. Schleis, T. P. Spaniol, J. Okuda, J. Heinemann, R. Mülhaupt, J. Organomet. Chem. 1998, 569, 159 ). Moreover, the 1 H NMR spectrum of precatalyst C1 displays peak shape/positions consistent with a paramagnetic complex (Fig. S3), while precatalyst C2 displays peak shape/positions consistent with a diamagnetic complex (Fig. S4).
dc.identifier.citedreferenceA. K. Leone, K. D. Souther, A. K. Vitek, A. M. LaPointe, G. W. Coates, P. M. Zimmerman, A. J. McNeil, unpublished.
dc.identifier.citedreferenceO. Michel, C. Meermann, K. W. Törnroos, R. Anwander, Organometallics 2009, 28, 4783.
dc.identifier.citedreferenceAn alternative explanation is that a mixed aggregate undergoes 1,2‐addition into the diimine, altering catalyst reactivity. For ref, see: O. Michel, K. Yamamoto, H. Tsurugi, C. Maichle‐Mössmer, K. W. Törnroos, K. Mashima, R. Anwander, Organometallics 2011, 30, 3818.
dc.identifier.citedreferenceE. Y.‐X. Chen, T. J. Marks, Chem. Rev. 2000, 100, 1391.
dc.identifier.citedreferenceFor select examples of Ni(0) olefin complexes, see: (a) C. A. Tolman, J. Am. Chem. Soc. 1974, 96, 2780; (b) M. A. Bennett, T. W. Hambley, N. K. Roberts, G. B. Robertson, Organometallics 1985, 4, 1992; (c) I. Bach, K.‐R. Pörschke, R. Goddard, C. Kopiske, C. Krüger, A. Rufińska, K. Seevogel, Organometallics 1996, 15, 4959; (d) I. Bach, R. Goddard, C. Kopiske, K. Seevogel, K.‐R. Pörschke, Organometallics 1999, 18, 10; (e) S. G. Rull, R. J. Rama, E. Álvarez, M. R. Fructos, T. R. Belderrain, M. C. Nicasio, Dalton Trans. 2017, 46, 7603.
dc.identifier.citedreferenceM. Jeffries‐EL, G. Sauvé, R. D. McCullough, Macromolecules 2005, 38, 10346.
dc.identifier.citedreferenceM. Jeffries‐EL, G. Sauvé, R. D. McCullough, Adv. Mater. 2004, 16, 1017.
dc.identifier.citedreferenceW. M. Kochemba, S. M. Kilbey II, D. L. Pickel, J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 2762.
dc.identifier.citedreferenceThe same number‐average molecular weights were obtained regardless of the monomer/catalyst ratio. A similar saturation in molecular weights was observed with precatalyst C2 /B(C 6 F 5 ) 3. This “saturation” effect may be due to chain–chain aggregation, which hinders catalyst propagation and/or accelerates chain‐transfer.
dc.identifier.citedreferenceF. H. Schacher, P. A. Rupar, I. Manners, Angew. Chem. Int. Ed. 2012, 51, 7898.
dc.identifier.citedreferenceY. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969.
dc.identifier.citedreferenceD. Kipp, R. Verduzco, V. Ganesan, Mol. Syst. Des. Eng. 2016, 1, 353.
dc.identifier.citedreferenceM. Zhu, H. Kim, Y. J. Jang, S. Park, D. Y. Ryu, K. Kim, P. Tang, F. Qiu, D. H. Kim, J. Peng, J. Mater. Chem. A 2016, 4, 18432.
dc.identifier.citedreferenceJ. U. Lee, J. W. Jung, T. Emrick, T. P. Russell, W. H. Jo, Nanotechnology 2010, 21, 105201.
dc.identifier.citedreferenceK. Sivula, Z. T. Ball, N. Watanabe, J. M. J. Fréchet, Adv. Mater. 2006, 18, 206.
dc.identifier.citedreferenceA. J. Teator, D. N. Lastovickova, C. W. Bielawski, Chem. Rev. 2016, 116, 1969.
dc.identifier.citedreferenceT. J. Deming, B. M. Novak, Macromolecules 1991, 24, 5478.
dc.identifier.citedreferenceT. J. Deming, B. M. Novak, J. W. Ziller, J. Am. Chem. Soc. 1994, 116, 2366.
dc.identifier.citedreferenceI. Tomita, M. Taguchi, K. Takagi, T. Endo, J. Polym. Sci. Part A: Polym. Chem. 1997, 35, 431.
dc.identifier.citedreferenceM. Taguchi, I. Tomita, Y. Yoshida, T. Endo, J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 3916.
dc.identifier.citedreferenceY.‐Y. Zhu, T.‐T. Yin, J. Yin, N. Liu, Z.‐P. Yu, Y.‐W. Zhu, Y.‐S. Ding, J. Yin, Z.‐Q. Wu, RSC Adv. 2014, 4, 40241.
dc.identifier.citedreferenceR. J. Ono, A. D. Todd, Z. Hu, D. H. Vanden Bout, C. W. Bielawski, Macromol. Rapid Commun. 2014, 35, 204.
dc.identifier.citedreferenceZ.‐Q. Wu, C.‐G. Qi, N. Liu, Y. Wang, Y. Jin, Y.‐Y. Zhu, L.‐Z. Qiu, H.‐B. Lu, J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 2939.
dc.identifier.citedreferenceZ.‐Q. Wu, D.‐F. Liu, Y. Wang, N. Liu, J. Yin, Y.‐Y. Zhu, L.‐Z. Qiu, Y.‐S. Ding, Polym. Chem. 2013, 4, 4588.
dc.identifier.citedreferenceN. Liu, C.‐G. Qi, Y. Wang, D.‐F. Liu, J. Yin, Y.‐Y. Zhu, Z.‐Q. Wu, Macromolecules 2013, 46, 7753.
dc.identifier.citedreferenceZ.‐Q. Wu, J. D. Radcliffe, R. J. Ono, Z. Chen, Z. Li, C. W. Bielawski, Polym. Chem. 2012, 3, 874.
dc.identifier.citedreferenceZ.‐Q. Wu, R. J. Ono, Z. Chen, C. W. Bielawski, J. Am. Chem. Soc. 2010, 132, 14000.
dc.identifier.citedreferenceZ.‐Q. Wu, Y. Chen, Y. Wang, X.‐Y. He, Y.‐S. Ding, N. Liu, Chem. Commun. 2013, 49, 8069.
dc.identifier.citedreferenceFor examples, see: (a) H. C. Moon, A. Anthonysamy, Y. Lee, J. K. Kim, Macromolecules 2010, 43, 1747; (b) C. P. Radano, O. A. Scherman, N. Stingelin‐Stutzmann, C. Muller, D. W. Breiby, P. Smith, R. A. J. Janssen, E. W. Meijer, J. Am. Chem. Soc. 2005, 127, 12502.
dc.identifier.citedreferenceC. Müller, S. Goffri, D. W. Breiby, J. W. Andreasen, H. D. Chanzy, R. A. J. Janssen, M. M. Nielsen, C. P. Radano, H. Sirringhaus, P. Smith, N. Stingelin‐Stutzmann, Adv. Funct. Mater. 2007, 17, 2674.
dc.identifier.citedreferenceC.‐T. Lo, C.‐J. Lin, J.‐Y. Lee, S.‐H. Tung, J.‐C. Tsai, W.‐C. Chen, RSC Adv. 2014, 4, 23002.
dc.identifier.citedreferenceA. K. Leone, A. J. McNeil, Acc. Chem. Res. 2016, 49, 2822.
dc.identifier.citedreferenceZ. Guan, C. S. Popeney, Top. Organomet. Chem. 2009, 26, 179.
dc.identifier.citedreferenceM. C. Baier, M. A. Zuideveld, S. Mecking, Angew. Chem. Int. Ed. 2014, 53, 9722.
dc.identifier.citedreferenceL. Guo, S. Dai, X. Sui, C. Chen, ACS Catal. 2016, 6, 428.
dc.identifier.citedreferenceH. D. Magurudeniya, P. Sista, J. K. Westbrook, T. E. Ourso, K. Nguyen, M. C. Maher, M. G. Alemseghed, M. C. Biewer, M. C. Stefan, Macromol. Rapid Commun. 2011, 32, 1748.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.