Show simple item record

A single center phase II study of ixazomib in patients with relapsed or refractory cutaneous or peripheral T‐cell lymphomas

dc.contributor.authorBoonstra, Philip S.
dc.contributor.authorPolk, Avery
dc.contributor.authorBrown, Noah
dc.contributor.authorHristov, Alexandra C.
dc.contributor.authorBailey, Nathanael G.
dc.contributor.authorKaminski, Mark S.
dc.contributor.authorPhillips, Tycel
dc.contributor.authorDevata, Sumana
dc.contributor.authorMayer, Tera
dc.contributor.authorWilcox, Ryan A.
dc.date.accessioned2017-12-15T16:46:58Z
dc.date.available2019-02-01T19:56:25Zen
dc.date.issued2017-12
dc.identifier.citationBoonstra, Philip S.; Polk, Avery; Brown, Noah; Hristov, Alexandra C.; Bailey, Nathanael G.; Kaminski, Mark S.; Phillips, Tycel; Devata, Sumana; Mayer, Tera; Wilcox, Ryan A. (2017). "A single center phase II study of ixazomib in patients with relapsed or refractory cutaneous or peripheral T‐cell lymphomas." American Journal of Hematology 92(12): 1287-1294.
dc.identifier.issn0361-8609
dc.identifier.issn1096-8652
dc.identifier.urihttps://hdl.handle.net/2027.42/139920
dc.description.abstractThe transcription factor GATA‐3, highly expressed in many cutaneous T‐cell lymphoma (CTCL) and peripheral T‐cell lymphomas (PTCL), confers resistance to chemotherapy in a cell‐autonomous manner. As GATA‐3 is transcriptionally regulated by NF‐κB, we sought to determine the extent to which proteasomal inhibition impairs NF‐κB activation and GATA‐3 expression and cell viability in malignant T cells. Proteasome inhibition, NF‐κB activity, GATA‐3 expression, and cell viability were examined in patient‐derived cell lines and primary T‐cell lymphoma specimens ex vivo treated with the oral proteasome inhibitor ixazomib. Significant reductions in cell viability, NF‐κB activation, and GATA‐3 expression were observed preclinically in ixazomib‐treated cells. Therefore, an investigator‐initiated, single‐center, phase II study with this agent in patients with relapsed/refractory CTCL/PTCL was conducted. Concordant with our preclinical observations, a significant reduction in NF‐κB activation and GATA‐3 expression was observed in an exceptional responder following one month of treatment with ixazomib. While ixazomib had limited activity in this small and heterogeneous cohort of patients, inhibition of the NF‐κB/GATA‐3 axis in a single exceptional responder suggests that ixazomib may have utility in appropriately selected patients or in combination with other agents.
dc.publisherWiley Periodicals, Inc.
dc.titleA single center phase II study of ixazomib in patients with relapsed or refractory cutaneous or peripheral T‐cell lymphomas
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelOncology and Hematology
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139920/1/ajh24895.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139920/2/ajh24895_am.pdf
dc.identifier.doi10.1002/ajh.24895
dc.identifier.sourceAmerican Journal of Hematology
dc.identifier.citedreferenceDuvic M, Tetzlaff MT, Gangar P, et al. Results of a phase II trial of brentuximab vedotin for CD30 + cutaneous T‐cell lymphoma and lymphomatoid papulosis. J Clin Oncol. 2015; 33: 3759 – 3765.
dc.identifier.citedreferenceOlsen E, Vonderheid E, Pimpinelli N, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood. 2007; 110: 1713 – 1722.
dc.identifier.citedreferenceCheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007; 25: 579 – 586.
dc.identifier.citedreferenceOlsen EA, Whittaker S, Kim YH, et al. Clinical end points and response criteria in mycosis fungoides and Sezary syndrome: a consensus statement of the International Society for Cutaneous Lymphomas, the United States Cutaneous Lymphoma Consortium, and the Cutaneous Lymphoma Task Force of the European Organisation for Research and Treatment of Cancer. J Clin Oncol. 2011; 29: 2598 – 2607.
dc.identifier.citedreferenceSimon R. Optimal two‐stage designs for phase II clinical trials. Controlled Clin Trials. 1989; 10: 1 – 10.
dc.identifier.citedreferenceIqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T‐cell lymphoma. Blood. 2014; 123: 2915 – 2923.
dc.identifier.citedreferenceShinnakasu R, Yamashita M, Kuwahara M, et al. Gfi1‐mediated stabilization of GATA3 protein is required for Th2 cell differentiation. J Biol Chem. 2008; 283: 28216 – 28225.
dc.identifier.citedreferenceCoiffier B, Pro B, Prince HM, et al. Results from a pivotal, open‐label, phase II study of romidepsin in relapsed or refractory peripheral T‐cell lymphoma after prior systemic therapy. J Clin Oncol. 2012; 30: 631 – 636.
dc.identifier.citedreferenceO’Connor OA, Horwitz S, Masszi T, et al. Belinostat in patients with relapsed or refractory peripheral T‐cell lymphoma: results of the pivotal phase II BELIEF (CLN‐19) study. J Clin Oncol. 2015; 33: 2492 – 2499.
dc.identifier.citedreferenceCoiffier B, Pro B, Prince HM, et al. Romidepsin for the treatment of relapsed/refractory peripheral T‐cell lymphoma: pivotal study update demonstrates durable responses. J Hematol Oncol. 2014; 7: 11
dc.identifier.citedreferenceO’Connor OA, Pro B, Pinter‐Brown L, et al. Pralatrexate in patients with relapsed or refractory peripheral T‐cell lymphoma: results from the pivotal PROPEL study. J Clin Oncol. 2011; 29: 1182 – 1189.
dc.identifier.citedreferenceHorwitz SM, Kim YH, Foss F, et al. Identification of an active, well‐tolerated dose of pralatrexate in patients with relapsed or refractory cutaneous T‐cell lymphoma. Blood. 2012; 119: 4115 – 4122.
dc.identifier.citedreferenceKim YH, Tavallaee M, Sundram U, et al. Phase II investigator‐initiated study of brentuximab vedotin in mycosis fungoides and sezary syndrome with variable CD30 expression level: A multi‐institution collaborative project. J Clin Oncol. 2015; 33: 3750 – 3758.
dc.identifier.citedreferencePro B, Advani R, Brice P, et al. Brentuximab vedotin (SGN‐35) in patients with relapsed or refractory systemic anaplastic large‐cell lymphoma: results of a phase II study. J Clin Oncol. 2012; 30: 2190 – 2196.
dc.identifier.citedreferenceHorwitz SM, Advani RH, Bartlett NL, et al. Objective responses in relapsed T‐cell lymphomas with single‐agent brentuximab vedotin. Blood. 2014; 123: 3095 – 3100.
dc.identifier.citedreferenceWang Y, Su MA, Wan YY. An essential role of the transcription factor GATA‐3 for the function of regulatory T cells. Immunity. 2011; 35: 337 – 348.
dc.identifier.citedreferenceZheng W, Flavell RA. The transcription factor GATA‐3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell. 1997; 89: 587 – 596.
dc.identifier.citedreferenceWohlfert EA, Grainger JR, Bouladoux N, et al. GATA3 controls Foxp3(+) regulatory T cell fate during inflammation in mice. J Clin Invest. 2011; 121: 4503 – 4515.
dc.identifier.citedreferenceZhang W, Wang Z, Luo Y, et al. GATA3 expression correlates with poor prognosis and tumor‐associated macrophage infiltration in peripheral T cell lymphoma. Oncotarget. 2016; 7: 65284 – 65294.
dc.identifier.citedreferenceManso R, Bellas C, Martin‐Acosta P, et al. C‐MYC is related to GATA3 expression and associated with poor prognosis in nodal peripheral T‐cell lymphomas. Haematologica. 2016; 101: e336 – e338.
dc.identifier.citedreferenceLee EC, Fitzgerald M, Bannerman B, et al. Antitumor activity of the investigational proteasome inhibitor MLN9708 in mouse models of B‐cell and plasma cell malignancies. Clin Cancer Res. 2011; 17: 7313 – 7323.
dc.identifier.citedreferenceAssouline SE, Chang J, Cheson BD, et al. Phase 1 dose‐escalation study of IV ixazomib, an investigational proteasome inhibitor, in patients with relapsed/refractory lymphoma. Blood Cancer J. 2014; 4: e251
dc.identifier.citedreferenceGupta N, Hanley MJ, Venkatakrishnan K, et al. The effect of a high‐fat meal on the pharmacokinetics of ixazomib, an oral proteasome inhibitor, in patients with advanced solid tumors or lymphoma. J Clin Pharmacol. 2016; 56: 1288 – 1295.
dc.identifier.citedreferenceHeider U, Rademacher J, Lamottke B, et al. Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in cutaneous T cell lymphoma. Eur J Haematol. 2009; 82: 440 – 449.
dc.identifier.citedreferenceRavi D, Beheshti A, Abermil N, et al. Proteasomal inhibition by ixazomib induces CHK1 and MYC‐dependent cell death in T‐cell and Hodgkin lymphoma. Cancer Res. 2016; 76: 3319 – 3331.
dc.identifier.citedreferenceWilcox RA. Cutaneous T‐cell lymphoma: 2011 update on diagnosis, risk‐stratification, and management. Am J Hematol. 2011; 86: 928 – 948.
dc.identifier.citedreferenceHughes CF, Khot A, McCormack C, et al. Lack of durable disease control with chemotherapy for mycosis fungoides and Sezary syndrome: a comparative study of systemic therapy. Blood. 2015; 125: 71 – 81.
dc.identifier.citedreferenceHanel W, Briski R, Ross CW, et al. A retrospective comparative outcome analysis following systemic therapy in Mycosis Fungoides and Sezary Syndrome. Am J Hematol. 2016; 91: E491 – E495.
dc.identifier.citedreferenceBriski R, Feldman AL, Bailey NG, et al. The role of front‐line anthracycline‐containing chemotherapy regimens in peripheral T‐cell lymphomas. Blood Cancer J. 2014; 4: e214
dc.identifier.citedreferenceMak V, Hamm J, Chhanabhai M, et al. Survival of patients with peripheral T‐cell lymphoma after first relapse or progression: spectrum of disease and rare long‐term survivors. J Clin Oncol. 2013; 31: 1970 – 1976.
dc.identifier.citedreferenceBriski R, Feldman AL, Bailey NG, et al. Survival in patients with limited‐stage peripheral T‐cell lymphomas. Leukemia Lymphoma. 2014; 56: 1 – 17.
dc.identifier.citedreferenceVaque JP, Gomez‐Lopez G, Monsalvez V, et al. PLCG1 mutations in cutaneous T‐cell lymphomas. Blood. 2014; 123: 2034 – 2043.
dc.identifier.citedreferenceUngewickell A, Bhaduri A, Rios E, et al. Genomic analysis of mycosis fungoides and Sezary syndrome identifies recurrent alterations in TNFR2. Nat Genet. 2015; 47: 1056 – 1060.
dc.identifier.citedreferenceElenitoba‐Johnson KS, Wilcox R. A new molecular paradigm in mycosis fungoides and Sezary syndrome. Semin Diagn Pathol. 2016; 34: 15 – 21.
dc.identifier.citedreferenceJillella AP, Murren JR, Hamid KK, et al. P‐glycoprotein expression and multidrug resistance in cutaneous T‐cell lymphoma. Cancer Invest. 2000; 18: 609 – 613.
dc.identifier.citedreferenceWilcox RA, Wada DA, Ziesmer SC, et al. Monocytes promote tumor cell survival in T‐cell lymphoproliferative disorders and are impaired in their ability to differentiate into mature dendritic cells. Blood. 2009; 114: 2936 – 2944.
dc.identifier.citedreferenceWilcox RA. A three‐signal model of T‐cell lymphoma pathogenesis. Am J Hematol. 2016; 91: 113 – 122.
dc.identifier.citedreferenceSors A, Jean‐Louis F, Begue E, et al. Inhibition of IkappaB kinase subunit 2 in cutaneous T‐cell lymphoma down‐regulates nuclear factor‐kappaB constitutive activation, induces cell death, and potentiates the apoptotic response to antineoplastic chemotherapeutic agents. Clin Cancer Res. 2008; 14: 901 – 911.
dc.identifier.citedreferenceSors A, Jean‐Louis F, Pellet C, et al. Down‐regulating constitutive activation of the NF‐kappaB canonical pathway overcomes the resistance of cutaneous T‐cell lymphoma to apoptosis. Blood. 2006; 107: 2354 – 2363.
dc.identifier.citedreferenceIzban KF, Ergin M, Qin JZ, et al. Constitutive expression of NF‐kappa B is a characteristic feature of mycosis fungoides: implications for apoptosis resistance and pathogenesis. Hum Pathol. 2000; 31: 1482 – 1490.
dc.identifier.citedreferenceWang T, Lu Y, Polk A, et al. T‐cell receptor signaling activates an ITK/NF‐kappaB/GATA‐3 axis in T‐cell lymphomas facilitating resistance to chemotherapy. Clin Cancer Res. 2017; 23: 2506 – 2515.
dc.identifier.citedreferenceWei G, Abraham BJ, Yagi R, et al. Genome‐wide analyses of transcription factor GATA3‐mediated gene regulation in distinct T cell types. Immunity. 2011; 35: 299 – 311.
dc.identifier.citedreferenceWang Y, Misumi I, Gu AD, et al. GATA‐3 controls the maintenance and proliferation of T cells downstream of TCR and cytokine signaling. Nat Immunol. 2013; 14: 714 – 722.
dc.identifier.citedreferenceWang T, Feldman AL, Wada DA, et al. GATA‐3 expression identifies a high‐risk subset of PTCL, NOS with distinct molecular and clinical features. Blood. 2014; 123: 3007 – 3015.
dc.identifier.citedreferenceIqbal J, Weisenburger DD, Greiner TC, et al. Molecular signatures to improve diagnosis in peripheral T‐cell lymphoma and prognostication in angioimmunoblastic T‐cell lymphoma. Blood. 2010; 115: 1026 – 1036.
dc.identifier.citedreferenceIqbal J, Wilcox R, Naushad H, et al. Genomic signatures in T‐cell lymphoma: How can these improve precision in diagnosis and inform prognosis? Blood Rev. 2016; 30: 89 – 100.
dc.identifier.citedreferenceGeskin LJ, Viragova S, Stolz DB, et al. Interleukin‐13 is overexpressed in cutaneous T‐cell lymphoma cells and regulates their proliferation. Blood. 2015; 125: 2798 – 2805.
dc.identifier.citedreferenceZinzani PL, Musuraca G, Tani M, et al. Phase II trial of proteasome inhibitor bortezomib in patients with relapsed or refractory cutaneous T‐cell lymphoma. J Clin Oncol.. 2007; 25: 4293 – 4297.
dc.identifier.citedreferenceFotheringham S, Epping MT, Stimson L, et al. Genome‐wide loss‐of‐function screen reveals an important role for the proteasome in HDAC inhibitor‐induced apoptosis. Cancer Cell. 2009; 15: 57 – 66.
dc.identifier.citedreferenceAn J, Fujiwara H, Suemori K, et al. Activation of T‐cell receptor signaling in peripheral T‐cell lymphoma cells plays an important role in the development of lymphoma‐associated hemophagocytosis. Int J Hematol. 2011; 93: 176 – 185.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.