Show simple item record

The Martian Photoelectron Boundary as Seen by MAVEN

dc.contributor.authorGarnier, P.
dc.contributor.authorSteckiewicz, M.
dc.contributor.authorMazelle, C.
dc.contributor.authorXu, S.
dc.contributor.authorMitchell, D.
dc.contributor.authorHolmberg, M. K. G.
dc.contributor.authorHalekas, J. S.
dc.contributor.authorAndersson, L.
dc.contributor.authorBrain, D. A.
dc.contributor.authorConnerney, J. E. P.
dc.contributor.authorEspley, J. R.
dc.contributor.authorLillis, R. J.
dc.contributor.authorLuhmann, J. G.
dc.contributor.authorSauvaud, J.‐a.
dc.contributor.authorJakosky, B. M.
dc.date.accessioned2017-12-15T16:47:25Z
dc.date.available2018-12-03T15:34:03Zen
dc.date.issued2017-10
dc.identifier.citationGarnier, P.; Steckiewicz, M.; Mazelle, C.; Xu, S.; Mitchell, D.; Holmberg, M. K. G.; Halekas, J. S.; Andersson, L.; Brain, D. A.; Connerney, J. E. P.; Espley, J. R.; Lillis, R. J.; Luhmann, J. G.; Sauvaud, J.‐a. ; Jakosky, B. M. (2017). "The Martian Photoelectron Boundary as Seen by MAVEN." Journal of Geophysical Research: Space Physics 122(10): 10,472-10,485.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/139944
dc.description.abstractPhotoelectron peaks in the 20â 30 eV energy range are commonly observed in the planetary atmospheres, produced by the intense photoionization from solar 30.4 nm photons. At Mars, these photoelectrons are known to escape the planet down its tail, making them tracers for the atmospheric escape. Furthermore, their presence or absence allow to define the soâ called photoelectron boundary (PEB), which separates the photoelectron dominated ionosphere from the external environment. We provide here a detailed statistical analysis of the location and properties of the PEB based on the Mars Atmosphere and Volatile EvolutioN (MAVEN) electron and magnetic field data obtained from September 2014 to May 2016 (including 1696 PEB crossings). The PEB appears as mostly sensitive to the solar wind dynamic and crustal fields pressures. Its variable altitude thus leads to a variable wake cross section for escape (up to â ¼+50%), which is important for deriving escape rates. The PEB is not always sharp and is characterized on average by the following: a magnetic field topology typical for the end of magnetic pileup region above it, more fieldâ aligned fluxes above than below, and a clear change of the altitude slopes of both electron fluxes and total density (that appears different from the ionopause). The PEB thus appears as a transition region between two plasma and fields configurations determined by the draping topology of the interplanetary magnetic field around Mars and much influenced by the crustal field sources below, whose dynamics also impacts the estimated escape rate of ionospheric plasma.Key PointsWe determined the influence of the main driving parameters on the altitude of the photoelectron boundary (PEB)We identified clear plasma and magnetic field characteristics of the PEB and discuss its nature with respect to the ionopauseWe show how the PEB dynamics modifies the tail cross section used for estimating the photoelectrons (and associated ions) escape rate
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge Planetary Science, Cambridge University Press
dc.subject.otherplasma boundary
dc.subject.otherplasma escape
dc.subject.otherionosphere
dc.subject.otherMars
dc.subject.othersolar wind interaction
dc.titleThe Martian Photoelectron Boundary as Seen by MAVEN
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139944/1/jgra53813_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139944/2/jgra53813.pdf
dc.identifier.doi10.1002/2017JA024497
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRiedler, W., Schwingenschuh, K., Moehlmann, D., Oraevskii, V. N, Eroshenko, E., & Slavin, J. ( 1989 ). Magnetic fields near Marsâ First results. Nature, 341, 604 â 607. https://doi.org/10.1038/341604a0
dc.identifier.citedreferenceConnerney, J. E. P., Espley, J., Lawton, P., Murphy, S., Odom, J., Oliversen, R., & Sheppard, D. ( 2015 ). The MAVEN magnetic field investigation. Space Science Reviews, 195, 257 â 291. https://doi.org/10.1007/s11214-015-0169-4
dc.identifier.citedreferenceCrider, D. H., Vignes, D., Krymskii, A. M., Breus, T. K., Ness, N. F., Mitchell, D. L.,⠦ Acuña, M. H. ( 2003 ). A proxy for determining solar wind dynamic pressure at Mars using Mars Global Surveyor data. Journal of Geophysical Research, 108, 1461. https://doi.org/10.1029/2003JA009875
dc.identifier.citedreferenceDubinin, E., Fränz, M., Woch, J., Roussos, E., Barabash, S., Lundin, R.,â ¦ Acuña, M. ( 2006 ). Plasma morphology at Mars. Asperaâ 3 observations. Space Science Reviews, 126, 209 â 238. https://doi.org/10.1007/s11214-006-9039-4
dc.identifier.citedreferenceEdberg, N. J. T., Lester, M., Cowley, S. W. H., & Eriksson, A. I. ( 2008 ). Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields. Journal of Geophysical Research, 113, A08206. https://doi.org/10.1029/2008JA013096
dc.identifier.citedreferenceFrahm, R. A., Sharber, J. R., Winningham, J. D., Link, R., Liemohn, M. W., Kozyra, J. U.,â ¦ Fedorov, A. ( 2010 ). Estimation of the escape of photoelectrons from Mars in 2004 liberated by the ionization of carbon dioxide and atomic oxygen. Icarus, 206, 50 â 63. https://doi.org/10.1016/j.icarus.2009.03.024
dc.identifier.citedreferenceFrahm, R. A., Sharber, J. R., Winningham, J. D., Wurz, P., Liemohn, M. W., Kallio, E.,â ¦ McKennaâ Lawler, S. ( 2006 ). Locations of atmospheric photoelectron energy peaks within the Mars environment, 126, 389 â 402. https://doi.org/10.1007/s11214-006-9119-5
dc.identifier.citedreferenceHalekas, J. S., Ruhunusiri, S., Harada, Y., Collinson, G., Mitchell, D. L., Mazelle, C.,â ¦ Jakosky, B. M. ( 2017 ). Structure, dynamics, and seasonal variability of the Marsâ solar wind interaction: MAVEN solar wind ion analyzer inâ flight performance and science results. Journal of Geophysical Research: Space Physics, 122, 547 â 578. https://doi.org/10.1002/2016JA023167
dc.identifier.citedreferenceHan, X., Fraenz, M., Dubinin, E., Wei, Y., Andrews, D. J., Wan, W.,â ¦ Barabash, S. ( 2014 ). Discrepancy between ionopause and photoelectron boundary determined from Mars Express measurements. Geophysical Research Letters, 41, 8221 â 8227. https://doi.org/10.1002/2014GL062287
dc.identifier.citedreferenceJakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G.,â ¦ Zurek, R. ( 2015 ). The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Space Science Reviews, 195, 3 â 48. https://doi.org/10.1007/s11214-015-0139-x
dc.identifier.citedreferenceLiemohn, M. W., Frahm, R. A., Winningham, J. D., Ma, Y., Barabash, S., Lundin, R.,â ¦ Dierker, C. ( 2006 ). Numerical interpretation of highâ altitude photoelectron observations. Icarus, 182, 383 â 395. https://doi.org/10.1016/j.icarus.2005.10.036
dc.identifier.citedreferenceLundin, R., Barabash, S., Andersson, H., Holmström, M., Grigoriev, A., Yamauchi, M.,â ¦ Bochsler, P. ( 2004 ). Solar windâ induced atmospheric erosion at Mars: First results from ASPERAâ 3 on Mars Express. Science, 305 ( 5692 ), 1933 â 1936. https://doi.org/10.1126/science.1101860
dc.identifier.citedreferenceMantas, G. P., & Hanson, W. B. ( 1979 ). Photoelectron fluxes in the Martian ionosphere. Journal of Geophysical Research, 84, 369 â 385. https://doi.org/10.1029/JA084iA02p00369
dc.identifier.citedreferenceMatsunaga, K., Seki, K., Brain, D. A., Hara, T., Masunaga, K., McFadden, J. P.,â ¦ Jakosky, B. M. ( 2015 ). Comparison of Martian magnetic pileup boundary with ion composition boundary observed by MAVEN. American Geophysical Union, Fall Meeting 2015, Abstract P21Aâ 2071.
dc.identifier.citedreferenceMitchell, D. L., Lin, R. P., Mazelle, C., Rème, H., Cloutier, P. A., Connerney, J. E. P.,â ¦ Ness, N. F. ( 2001 ). Probing Mars’ crustal magnetic field and ionosphere with the MGS electron reflectometer. Journal of Geophysical Research, 106, 23,419 â 23,428. https://doi.org/10.1029/2000JE001435
dc.identifier.citedreferenceMitchell, D. L., Lin, R. P., Rème, H., Crider, D. H., Cloutier, P. A, Connerney, J. E. P.,â ¦ Ness, N. F ( 2000 ). Oxygen auger electrons observed in Mars’ ionosphere. Geophysical Research Letters, 27, 1871 â 1874. https://doi.org/10.1029/1999GL010754
dc.identifier.citedreferenceMitchell, D. L., Mazelle, C., Sauvaud, J.â A., Thocaven, J.â J., Rouzaud, J., Fedorov, A.,â ¦ Jakosky, B. M. ( 2016 ). The MAVEN solar wind electron analyzer. Space Science Reviews, 200, 495 â 528. https://doi.org/10.1007/s11214-015-0232-1
dc.identifier.citedreferenceMorschhauser, A., Lesur, V., & Grott, M. ( 2014 ). A spherical harmonic model of the lithospheric magnetic field of Mars. Journal of Geophysical Research: Planets, 119, 1162 â 1188. https://doi.org/10.1002/2013JE004555
dc.identifier.citedreferenceNagy, A. F, wINTerhalter, D., Sauer, K., Cravens, T. E, Brecht, S., Mazelle, C.,â ¦ Trotignon, J. G ( 2004 ). The plasma environment of Mars. Space Science Reviews, 111, 33 â 114. https://doi.org/10.1023/B: SPAC.0000032718.47512.92
dc.identifier.citedreferenceRamstad, R., Barabash, S., Futaana, Y., Nilsson, H., Wang, X.â D., & Holmström, M. ( 2015 ). The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: 1. Seven years of Mars Express observations. Journal of Geophysical Research: Planets, 120, 1298 â 1309. https://doi.org/10.1002/2015JE004816
dc.identifier.citedreferenceRosenbauer, H., Shutte, N., Galeev, A., Gringauz, K., & Apathy, I. ( 1989 ). Ions of Martian origin and plasma sheet in the Martian magnetosphereâ Initial results of the TAUS experiment. Nature, 341, 612 â 614. https://doi.org/10.1038/341612a0
dc.identifier.citedreferenceSakai, S., Rahmati, A., Mitchell, D. L., Cravens, T. E., Bougher, S. W., Mazelle, C.,â ¦ Jakosky, B. M. ( 2015 ). Model insights into energetic photoelectrons measured at Mars by MAVEN. Geophysical Research Letters, 42, 8894 â 8900. https://doi.org/10.1002/2015GL065169
dc.identifier.citedreferenceSteckiewicz, M., Garnier, P., André, N., Mitchell, D. L., Andersson, L., Penou, E.,â ¦ Jakosky, B. M. ( 2017 ). Comparative study of the Martian suprathermal electron depletions based on Mars Global Surveyor, Mars Express, and Mars atmosphere and volatile evolution mission observations. Journal of Geophysical Research: Space Physics, 122, 857 â 873. https://doi.org/10.1002/2016JA023205
dc.identifier.citedreferenceSteckiewicz, M., Mazelle, C., Garnier, P., André, N., Penou, E., Beth, A.,â ¦ Jakosky, B. M. ( 2015 ). Altitude dependence of nightside Martian suprathermal electron depletions as revealed by MAVEN observations. Geophysical Research Letters, 42, 8877 â 8884. https://doi.org/10.1002/2015GL065257
dc.identifier.citedreferenceTrantham, M., Liemohn, M., Mitchell, D., & Frank, J. ( 2011 ). Photoelectrons on closed crustal field lines at Mars. Journal of Geophysical Research, 116, A07311. https://doi.org/10.1029/2010JA016231
dc.identifier.citedreferenceTrotignon, J. G., Mazelle, C., Bertucci, C., & Acuña, M. H. ( 2006 ). Martian shock and magnetic pileâ up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets. Planetary and Space Science, 54, 357 â 369. https://doi.org/10.1016/j.pss.2006.01.003
dc.identifier.citedreferenceTsang, S. M. E., Coates, A. J., Jones, G. H., Frahm, R. A., Winningham, J. D., Barabash, S.,â ¦ Fedorov, A. ( 2015 ). Ionospheric photoelectrons at Venus: Case studies and first observation in the tail. Planetary and Space Science, 113, 385 â 394. https://doi.org/10.1016/j.pss.2015.01.019
dc.identifier.citedreferenceVignes, D., Acuña, M. H., Connerney, J. E. P., Crider, D. H., Reme, H., & Mazelle, C. ( 2002 ). Factors controlling the location of the bow shock at Mars. Geophysical Research Letters, 29 ( 9 ), 42â 1â 42â 4. https://doi.org/10.1029/2001GL014513
dc.identifier.citedreferenceWellbrock, A., Coates, A. J., Sillanpää, I., Jones, G. H., Arridge, C. S., Lewis, G. R.,â ¦ Aylward, A. D. ( 2012 ). Cassini observations of ionospheric photoelectrons at large distances from Titan: Implications for Titan’s exospheric environment and magnetic tail. Journal of Geophysical Research, 117, A03216. https://doi.org/10.1029/2011JA017113
dc.identifier.citedreferenceXu, S., Liemohn, M., Bougher, S., & Mitchell, D. ( 2015 ). Enhanced carbon dioxide causing the dust stormâ related increase in highâ altitude photoelectron fluxes at Mars. Geophysical Research Letters, 42, 9702 â 9710. https://doi.org/10.1002/2015GL066043
dc.identifier.citedreferenceXu, S., Mitchell, D., Liemohn, M., Dong, C., Bougher, S., Fillingim, M.,â ¦ Jakosky, B. ( 2016 ). Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source. Geophysical Research Letters, 43, 8876 â 8884. https://doi.org/10.1002/2016GL070527
dc.identifier.citedreferenceXu, S., Liemohn, M., Bougher, S., & Mitchell, D. ( 2016 ). Martian highâ altitude photoelectrons independent of solar zenith angle. Journal of Geophysical Research: Space Physics, 121, 3767 â 3780. https://doi.org/10.1002/2015JA022149
dc.identifier.citedreferenceXu, S., Liemohn, M. W., Dong, C., Mitchell, D. L., Bougher, S. W., & Ma, Y. ( 2016 ). Pressure and ion composition boundaries at Mars. Journal of Geophysical Research: Space Physics, 121, 6417 â 6429. https://doi.org/10.1002/2016JA022644
dc.identifier.citedreferenceXu, S., Mitchell, D., Liemohn, M., Fang, X., Ma, Y., Luhmann, J.,â ¦ Jakosky, B. ( 2017 ). Martian lowâ altitude magnetic topology deduced from MAVEN/SWEA observations. Journal of Geophysical Research: Space Physics, 122, 1831 â 1852. https://doi.org/10.1002/2016JA023467
dc.identifier.citedreferenceBarabash, S., Lundin, R., Andersson, H., Brinkfeldt, K., Grigoriev, A., Gunell, H.,â ¦ Thocaven, J.â J. ( 2006 ). The Analyzer of Space Plasmas and Energetic Atoms (ASPERAâ 3) for the Mars Express mission. Space Science Reviews, 126 ( 1 ), 113 â 164. https://doi.org/10.1007/s11214-006-9124-8
dc.identifier.citedreferenceBertucci, C., Mazelle, C., Crider, D. H., Mitchell, D. L., Sauer, K., Acuña, M. H.,â ¦ Winterhalter, D. ( 2004 ). MGS MAG/ER observations at the magnetic pileup boundary of Mars: Draping enhancement and low frequency waves. Advances in Space Research, 33, 1938 â 1944. https://doi.org/10.1016/j.asr.2003.04.054
dc.identifier.citedreferenceBox, G. ( 1953 ). Nonâ normality and tests on variances. Biometrika, 40 ( 3â 4 ), 318 â 335. https://doi.org/10.1093/ biomet/40.3-4.318
dc.identifier.citedreferenceBrain, D. A., Barabash, S., Bougher, S. W., Duru, F., Jakosky, B. M., & Modolo, R. ( 2017 ). Solar Wind Interaction and Atmospheric Escape (pp. 433 â 463 ). Cambridge: Cambridge Planetary Science, Cambridge University Press. https://doi.org/10.1017/9781139060172.015
dc.identifier.citedreferenceBrain, D. A., Lillis, R. J., Mitchell, D. L., Halekas, J. S., & Lin, R. P. ( 2007 ). Electron pitch angle distributions as indicators of magnetic field topology near Mars. Journal of Geophysical Research, 112, A09201. https://doi.org/10.1029/2007JA012435
dc.identifier.citedreferenceCarlsson, E., Brain, D., Luhmann, J., Barabash, S., Grigoriev, A., Nilsson, H., & Lundin, R. ( 2008 ). Influence of IMF draping direction and crustal magnetic field location on Martian ion beams. Planetary and Space Science, 56 ( 6 ), 861 â 867. https://doi.org/10.1016/j.pss.2007.12.016
dc.identifier.citedreferenceChamberlin, P. C., Woods, T. N., & Eparvier, F. G. ( 2007 ). Flare Irradiance Spectral Model (FISM): Daily component algorithms and results. Space Weather, 5, S07005. https://doi.org/10.1029/2007SW000316
dc.identifier.citedreferenceCoates, A. J., Tsang, S. M. E., Wellbrock, A., Frahm, R. A., Winningham, J. D., Barabash, S.,â ¦ Crary, F. J. ( 2011 ). Ionospheric photoelectrons: Comparing Venus, Earth, Mars and Titan. Planetary and Space Science, 59, 1019 â 1027. https://doi.org/10.1016/j.pss.2010.07.016
dc.identifier.citedreferenceCoates, A. J., Wellbrock, A., Frahm, R. A., Winningham, J. D., Fedorov, A., Barabash, S., & Lundin, R. ( 2015 ). Distant ionospheric photoelectron energy peak observations at Venus. Planetary and Space Science, 113, 378 â 384. https://doi.org/10.1016/j.pss.2015.02.003
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.