Show simple item record

Spectral decomposition of internal gravity wave sea surface height in global models

dc.contributor.authorSavage, Anna C.
dc.contributor.authorArbic, Brian K.
dc.contributor.authorAlford, Matthew H.
dc.contributor.authorAnsong, Joseph K.
dc.contributor.authorFarrar, J. Thomas
dc.contributor.authorMenemenlis, Dimitris
dc.contributor.authorO’Rourke, Amanda K.
dc.contributor.authorRichman, James G.
dc.contributor.authorShriver, Jay F.
dc.contributor.authorVoet, Gunnar
dc.contributor.authorWallcraft, Alan J.
dc.contributor.authorZamudio, Luis
dc.date.accessioned2017-12-15T16:47:29Z
dc.date.available2018-12-03T15:34:03Zen
dc.date.issued2017-10
dc.identifier.citationSavage, Anna C.; Arbic, Brian K.; Alford, Matthew H.; Ansong, Joseph K.; Farrar, J. Thomas; Menemenlis, Dimitris; O’Rourke, Amanda K.; Richman, James G.; Shriver, Jay F.; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis (2017). "Spectral decomposition of internal gravity wave sea surface height in global models." Journal of Geophysical Research: Oceans 122(10): 7803-7821.
dc.identifier.issn2169-9275
dc.identifier.issn2169-9291
dc.identifier.urihttps://hdl.handle.net/2027.42/139946
dc.description.abstractTwo global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency‐horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high‐frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high‐frequency motions (>0.87  cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest‐resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high‐frequency motions are of particular interest because of their contributions to the small‐scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low‐frequency variance for high wavenumbers (length scales smaller than ∼50 km), especially in the higher‐resolution simulations. In the highest‐resolution simulations, the high‐frequency variance can be greater than the low‐frequency variance at these scales.Key PointsTwo high‐resolution ocean models compare well against data in frequency spectral density of dynamic heightSea surface height frequency‐horizontal wavenumber spectral densities show high variance along internal gravity wave dispersion curvesTwo high‐resolution ocean models give different estimates of variance in high‐frequency, high wavenumber phenomena
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge Univ. Press
dc.subject.otherinternal tides
dc.subject.othersea surface height variability
dc.subject.otherhigh‐resolution ocean models
dc.subject.otherinternal gravity waves
dc.titleSpectral decomposition of internal gravity wave sea surface height in global models
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139946/1/jgrc22465-sup-0002-2017JC013009-fs01.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139946/2/jgrc22465-sup-0003-2017JC013009-fs02.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139946/3/jgrc22465_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139946/4/jgrc22465.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139946/5/jgrc22465-sup-0007-2017JC013009-fs06.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139946/6/jgrc22465-sup-0009-2017JC013009-fs08.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139946/7/jgrc22465-sup-0004-2017JC013009-fs03.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139946/8/jgrc22465-sup-0005-2017JC013009-fs04.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139946/9/jgrc22465-sup-0006-2017JC013009-fs05.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139946/10/jgrc22465-sup-0001-2017JC013009-s01.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139946/11/jgrc22465-sup-0008-2017JC013009-fs07.pdf
dc.identifier.doi10.1002/2017JC013009
dc.identifier.sourceJournal of Geophysical Research: Oceans
dc.identifier.citedreferenceRay, R. D., and D. A. Byrne ( 2010 ), Bottom pressure tides along a line in the southern Atlantic Ocean and comparisons with satellite altimetry, Ocean Dyn., 60, 1167 – 1176, doi: 10.1007/s10236-010-0316-0.
dc.identifier.citedreferenceMartini, K. I., M. H. Alford, S. Kelly, and J. D. Nash ( 2011 ), Observations of internal tides on the Oregon Continental Slope, J. Phys. Oceanogr., 41 ( 9 ), 1772 – 1794.
dc.identifier.citedreferenceMartini, K. I., M. H. Alford, E. Kunze, S. M. Kelly, and J. D. Nash ( 2013 ), Internal bores and breaking internal tides on the Oregon continental slope, J. Phys. Oceanogr., 43 ( 1 ), 120 – 141.
dc.identifier.citedreferenceMenemenlis, D., J.‐M. Campin, P. Heimbach, C. N. Hill, T. Lee, A. T. Nguyen, M. P. Schodlok, and H. Zhang ( 2008 ), ECCO2: High resolution global ocean and sea ice data synthesis, Mercator Ocean Q. Newsl., 31, 13 – 21.
dc.identifier.citedreferenceMüller, M., B. K. Arbic, J. G. Richman, J. F. Shriver, E. L. Kunze, R. B. Scott, A. J. Wallcraft, and L. Zamudio ( 2015 ), Toward an internal gravity wave spectrum in global ocean models, Geophys. Res. Lett., 42, 3474 – 3481, doi: 10.1002/2015GL063365.
dc.identifier.citedreferenceMunk, W. ( 1981 ), Internal waves and small‐scale processes, in Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel, chap. 9, pp. 264 – 291, MIT Press, Cambridge, U. K.
dc.identifier.citedreferenceMunk, W., and C. Wunsch ( 1998 ), Abysall recipes II: Energetics of tidal and wind mixing, Deep Sea Res., Part I, 45, 1977 – 2010.
dc.identifier.citedreferenceNash, J. D., M. H. Alford, E. Kunze, K. I. Martini, and S. Kelly ( 2007 ), Hotspots of deep ocean mixing on the Oregon continental slope, Geophys. Res. Lett., 34, L01605, doi: 10.1029/2006GL028170.
dc.identifier.citedreferenceNgodock, H. E., I. Souopgui, A. J. Wallcraft, J. G. Richman, J. F. Shriver, and B. K. Arbic ( 2016 ), On improving the accuracy of the M 2 barotropic tides embedded in a high‐resolution global ocean circulation model, Ocean Modell., 97, 16 – 26, doi: 10.1016/j.ocemod.2015.10.011.
dc.identifier.citedreferencePonte, R. M., A. H. Chaudhuri, and S. V. Vinogradov ( 2015 ), Long‐period tides in an atmospherically driven, stratified ocean, J. Phys. Oceanogr., 45, 1917 – 1928, doi: 10.1175/JPO-D-15-0006.1.
dc.identifier.citedreferenceQiu, B., T. Nakano, S. Chen, and P. Klein ( 2017 ), Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean, Nat. Commun., 8, 14055, doi: 10.1038/ncomms14055.
dc.identifier.citedreferenceRay, R. D. ( 1999 ), A Global Ocean Tide Model from TOPEX/POSEIDON altimetry: GOT99.2, Tech. Memo. nASA/TM‐1999–209478, 58 pp., Natl. Aeronaut. and Space Admin., Goddard Space Flight Center, Greenbelt, Md.
dc.identifier.citedreferenceRay, R. D., and G. T. Mitchum ( 1997 ), Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges, Prog. Oceanogr., 40, 135 – 162, doi: 10.1016/S0079-6611(97)00025-6.
dc.identifier.citedreferenceRay, R. D., and E. D. Zaron ( 2016 ), M 2 internal tides and their observed wavenumber spectra from satellite altimetry, J. Phys. Oceanogr., 46, 3 – 22, doi: 10.1175/JPO-D-15-0065.1.
dc.identifier.citedreferenceRichman, J. G., B. K. Arbic, J. F. Shriver, E. J. Metzger, and A. J. Wallcraft ( 2012 ), Inferring dynamics from the wavenumber spectra of an eddying global ocean model with embedded tides, J. Geophys. Res., 117, C12012, doi: 10.1029/2012JC008364.
dc.identifier.citedreferenceRocha, C. B., T. K. Chereskin, S. T. Gille, and D. Menemenlis ( 2016a ), Mesoscale to submesoscale wavenumber spectra in Drake Passage, J. Phys. Oceanogr., 46, 601 – 620, doi: 10.1175/JPO-D-15-0087.1.
dc.identifier.citedreferenceRocha, C. B., S. T. Gille, T. K. Chereskin, and D. Menemenlis ( 2016b ), Seasonality of submesoscale dynamics in the Kuroshio Extension, Geophys. Res. Lett., 43, 11,304 – 11,311, doi: 10.1002/2016GL071349.
dc.identifier.citedreferenceSasaki, H., and P. Klein ( 2012 ), SSH wavenumber spectra in the North Pacific from a high‐resolution realistic simulation, J. Phys. Oceanogr., 42, 1233 – 1241, doi: 10.1175/JPO-D-11-0180.1.
dc.identifier.citedreferenceSavage, A. C., et al. ( 2017 ), Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies, J. Geophys. Res. Oceans, 122, 2519 – 2538, doi: 10.1002/2016JC012331.
dc.identifier.citedreferenceShriver, J. F., B. K. Arbic, J. G. Richman, R. D. Ray, E. J. Metzger, A. J. Wallcraft, and P. G. Timko ( 2012 ), An evaluation of the barotropic and internal tides in a high‐resolution global ocean circulation model, J. Geophys. Res., 17, C10024, doi: 10.1029/2012JC008170.
dc.identifier.citedreferenceSmith, W. H. F., and D. T. Sandwell ( 1997 ), Global sea floor topography from satellite altimetry and ship depth soundings, Science, 277, 1956 – 1962, doi: 10.1126/science.277.5334.1956.
dc.identifier.citedreferenceSoufflet, Y., P. Marchesiello, F. Lemarié, J. Jouanno, X. Capet, L. Debreu, and R. Benshila ( 2016 ), On effective resolution in ocean models, Ocean Modell., 98, 36 – 50, doi: 10.1016/j.ocemod.2015.004.
dc.identifier.citedreferenceStammer, D. ( 1997 ), Global characteristics of ocean variability estimated from regional TOPEX/Poseidon altimeter measurements, J. Phys. Oceanogr., 27, 1743 – 1769, doi: 10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2.
dc.identifier.citedreferenceStammer, D., et al. ( 2014 ), Accuracy assessment of global barotropic ocean tide models, Rev. Geophys., 52, 243 – 282, doi: 10.1002/2014RG000450.
dc.identifier.citedreferenceTimko, P. G., B. K. Arbic, J. G. Richman, R. B. Scott, E. J. Metzger, and A. J. Wallcraft ( 2012 ), Skill tests of three‐dimensional tidal currents in a global ocean model: A look at the North Atlantic, J. Geophys. Res., 117, C08014, doi: 10.1029/2011JC007617.
dc.identifier.citedreferenceTimko, P. G., B. K. Arbic, J. G. Richman, R. B. Scott, E. J. Metzger, and A. J. Wallcraft ( 2013 ), Skill testing a three‐dimensional global tide model to historical current meter records, J. Geophys. Res. Oceans, 118, 6914 – 6933, doi: 10.1002/2013JC009071.
dc.identifier.citedreferenceWhalen, C. B., L. D. Talley, and J. A. MacKinnon ( 2012 ), Spatial and temporal variability of global ocean mixing inferred from Argo profiles, Geophys. Res. Lett., 39, L18612, doi: 10.1029/2012GL053196.
dc.identifier.citedreferenceXu, Y., and L.‐L. Fu ( 2012 ), The effects of altimeter instrument noise on the estimation of the wavenumber spectrum of sea surface height, J. Phys. Oceanogr., 42, 2229 – 2233, doi: 10.1175/JPO-D-12-0106.1.
dc.identifier.citedreferenceZantopp, R. J., and K. D. Leaman ( 1984 ), The feasibility of dynamic height determination from moored temperature sensors, J. Phys. Oceanogr., 14, 1399 – 1406.
dc.identifier.citedreferenceZhao, Z., M. H. Alford, J. A. MacKinnon, and R. Pinkel ( 2010 ), Long‐range propagation of the semidiurnal internal tide from the Hawaiian Ridge, J. Phys. Oceanogr., 40 ( 4 ), 713 – 736.
dc.identifier.citedreferenceZhao, Z., M. H. Alford, J. B. Girton, L. Rainville, and H. L. Simmons ( 2016 ), Global observations of open‐ocean mode‐1 M 2 internal tides, J. Phys. Oceanogr., 46, 1657 – 1684, doi: 10.1175/JPO-D-15-0105.1.
dc.identifier.citedreferenceAlford, M. H., J. A. MacKinnon, Z. Zhao, R. Pinkel, J. Klymak, and T. Peacock ( 2007 ), Internal waves across the Pacific, Geophys. Res. Lett., 34, L24601, doi: 10.1029/2007GL031566.
dc.identifier.citedreferenceAlford, M. H., et al. ( 2011 ), Energy flux and dissipation in Luzon Strait: Two tales of two ridges, J. Phys. Oceanogr., 41 ( 11 ), 2211 – 2222.
dc.identifier.citedreferenceAnsong, J. K., B. K. Arbic, M. C. Buijsman, J. G. Richman, J. F. Shriver, and A. J. Wallcraft ( 2015 ), Indirect evidence for substantial damping of low‐mode internal tides in the open ocean, J. Geophys. Res. Oceans, 120, 7997 – 8019, doi: 10.1002/2015JC010998.
dc.identifier.citedreferenceAnsong, J. K., et al. ( 2017 ), Semidiurnal internal tide energy fluxes and their variability in a global ocean model and moored observations, J. Geophys. Res. Oceans, 122, 1882 – 1900, doi: 10.1002/2016JC012184.
dc.identifier.citedreferenceArbic, B. K., A. J. Wallcraft, and E. J. Metzger ( 2010 ), Concurrent simulation of the eddying general circulation and tides in a global ocean model, Ocean Modell., 32, 175 – 187, doi: 10.1016/j.ocemod.2010.01.007.
dc.identifier.citedreferenceArbic, B. K., J. G. Richman, J. F. Shriver, P. G. Timko, E. J. Metzger, and A. J. Wallcraft ( 2012 ), Global modeling of internal tides within an eddying ocean general circulation model, Oceanography, 25, 20 – 29, doi: 10.5670/oceanog.2012.38.
dc.identifier.citedreferenceBaker‐Yeboah, S., D. R. Watts, and D. A. Byrne ( 2009 ), Measurements of sea surface height variability in the eastern Atlantic from pressure sensor‐equipped inverted echo sounders: Baroclinic and barotropic components, J. Atmos. Oceanic Technol., 26, 2593 – 2609, doi: 10.1175/2009JTECHO659.1.
dc.identifier.citedreferenceBuijsman, M. C., B. K. Arbic, J. A. M. Green, R. W. Helber, J. G. Richman, J. F. Shriver, P. G. Timko, and A. J. Wallcraft ( 2015 ), Optimizing internal wave drag in a forward barotropic model with semidiurnal tides, Ocean Modell., 85, 42 – 55.
dc.identifier.citedreferenceBuijsman, M. C., J. K. Ansong, B. K. Arbic, J. G. Richman, J. F. Shriver, P. G. Timko, A. J. Wallcraft, C. B. Whalen, and Z. Zhao ( 2016 ), Impact of parameterized internal wave drag on the semidiurnal energy balance in a global ocean circulation model, J. Phys. Oceanogr., 46, 1399 – 1419, doi: 10.1175/JPO-D-15-0074.1.
dc.identifier.citedreferenceCallies, J., and R. Ferrari ( 2013 ), Interpreting energy and tracer spectra of upper‐ocean turbulence in the submesoscale range (1–200 km), J. Phys. Oceanogr., 43, 2456 – 2474, doi: 10.1175/JPO-D-13-063.1.
dc.identifier.citedreferenceCartwright, D. E. ( 1999 ), Tides: A Scientific History, 192 pp., Cambridge Univ. Press, Cambridge, U. K.
dc.identifier.citedreferenceChassignet, E. P., et al. ( 2009 ), Global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM), Oceanography, 22, 64 – 76.
dc.identifier.citedreferenceD’Asaro, E. A. ( 1984 ), Wind forced internal waves in the North Pacific and Sargasso Sea, J. Phys. Oceanogr., 14, 781 – 794.
dc.identifier.citedreferenceDee, D. P., et al. ( 2011 ), The ERA‐interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137, 553 – 597, doi: 10.1002/qj.828.
dc.identifier.citedreferenceDoherty, K. W., D. E. Frye, S. P. Liberatore, and J. M. Toole ( 1999 ), A moored profiling instrument, J. Atmos. Oceanic Technol., 16, 1816 – 1829, doi: 10.1175/1520-0426(1999)016<1816:AMPI>2.0.CO;2.
dc.identifier.citedreferenceEgbert, G. D., A. F. Bennett, and M. G. G. Foreman ( 1994 ), TOPEX/POSEIDON tides estimated using a global inverse model, J. Geophys. Res., 99, 24,821 – 24,852.
dc.identifier.citedreferenceErofeeva, S. Y., G. D. Egbert, and P. M. Kosro ( 2003 ), Tidal currents on the central Oregon shelf: Models, data, and assimilation, J. Geophys. Res., 108 ( C5 ), 3148, doi: 10.1029/2002JC001615.
dc.identifier.citedreferenceFerrari, R., and C. Wunsch ( 2009 ), Ocean circulation kinetic energy: Reservoirs, sources, and sinks, Annu. Rev. Fluid Mech., 41, 253 – 282, doi: 10.1146/annurev.fluid.40.111406.102139.
dc.identifier.citedreferenceFu, L. L., D. Alsdorf, R. Morrow, E. Rodriguez, and N. Mognard (Eds.) ( 2012 ), SWOT: The Surface Water and Ocean Topography Mission: Wide‐Swatch Altimetric Measurement of Water Elevation on Earth, JPL‐Publication, 228 pp., Jet Propul. Lab., Pasadena, Calif.
dc.identifier.citedreferenceGarrett, C., and W. Munk ( 1972 ), Space‐time scales of internal waves, J. Geophys. Res., 2, 225 – 264.
dc.identifier.citedreferenceGlazman, R. E., and B. Cheng ( 1999 ), Altimeter observations of baroclinic oceanic inertia‐gravity wave turbulence, Proc. R. Soc. London, Ser. A, 455, 90 – 123, doi: 10.1098/rspa.1999.0304.
dc.identifier.citedreferenceHarris, F. J. ( 1976 ), Windows, Harmonic Analysis, and the Discrete Fourier Transform, Undersea Surveillance Dep., Naval Undersea Cent., San Diego, Calif.
dc.identifier.citedreferenceHendershott, M. C. ( 1972 ), The effects of solid earth deformation on global ocean tides, Geophys. J. R. Astron. Soc., 29, 389 – 402, doi: 10.1111/j.1365-246X.1972.tb06167.x.
dc.identifier.citedreferenceHogan, T. F., et al. ( 2014 ), The Navy Global Environmental Model, Oceanography, 27, 116 – 125, doi: 10.5670/oceanog.2014.73.
dc.identifier.citedreferenceJakobsson, M., R. Macnab, L. Mayer, R. Anderson, M. Edwards, J. Hatzky, H. W. Schenke, and P. Johnson ( 2008 ), An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses, Geophys. Res. Lett., 35, L07602, doi: 10.1029/2008GL033520.
dc.identifier.citedreferenceJan, S., R. Lien, and C. Ting ( 2008 ), Numerical study of baroclinic tides in Luzon Strait, J. Oceanogr., 64, 789 – 802, doi: 10.1007/s10872-008-0066-5.
dc.identifier.citedreferenceJayne, S. R., and L. C. St. Laurent ( 2001 ), Parameterizing tidal dissipation over rough topography, Geophys. Res. Lett., 28, 811 – 814.
dc.identifier.citedreferenceKnauss, J. A. ( 1997 ), Introduction to Physical Oceanography, 2nd ed., Waveland Press, Inc., Long Grove, Ill.
dc.identifier.citedreferenceLarge, W. G., and S. G. Yeager ( 2004 ), Diurnal and decadal global forcing for ocean and sea‐ice models: The data sets and climatologies, Tech. Note tN‐460+ST, 105 pp., NCAR, Boulder, Colo., doi: 10.5065/D6KK98Q6.
dc.identifier.citedreferenceLe Traon, P. Y., P. Klein, B. L. Hua, and G. Dibarboure ( 2008 ), Do altimeter wavenumber spectra agree with the interior or surface quasi‐geostrophic theory?, J. Phys. Oceanogr., 38, 1137 – 1142, doi: 10.1175/2007JPO3806.1.
dc.identifier.citedreferenceLosch, M., D. Menemenlis, J.‐M. Campin, P. Heimbach, and C. N. Hill ( 2010 ), On the formulation of sea‐ice models. Part 1: Effects of different solver implementations and parameterizations, Ocean Modell., 33, 129 – 144, doi: 10.1016/j.ocemod.2009.12.008.
dc.identifier.citedreferenceLumley, J. L. ( 1970 ), Stochastic Tools in Turbulence, 100 pp., Dover, Mineola, N. Y.
dc.identifier.citedreferenceMacKinnon, J. A., M. H. Alford, R. Pinkel, J. Klymak, and Z. Zhao ( 2013a ), The latitudinal dependence of shear and mixing in the Pacific transiting the critical latitude for PSI, J. Phys. Oceanogr., 43 ( 1 ), 3 – 16.
dc.identifier.citedreferenceMacKinnon, J. A., M. H. Alford, O. Sun, R. Pinkel, Z. Zhao, and J. Klymak ( 2013b ), Parametric subharmonic instability of the internal tide at 29°N, J. Phys. Oceanogr., 43 ( 1 ), 17 – 28.
dc.identifier.citedreferenceMarshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey ( 1997 ), A finite‐volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res., 102, 5753 – 5766, doi: 10.1029/96JC02775.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.