Show simple item record

Age‐related reduction of dermal fibroblast size upregulates multiple matrix metalloproteinases as observed in aged human skin in vivo

dc.contributor.authorQin, Z.
dc.contributor.authorBalimunkwe, R.M.
dc.contributor.authorQuan, T.
dc.date.accessioned2017-12-15T16:47:31Z
dc.date.available2019-01-07T18:34:36Zen
dc.date.issued2017-11
dc.identifier.citationQin, Z.; Balimunkwe, R.M.; Quan, T. (2017). "Age‐related reduction of dermal fibroblast size upregulates multiple matrix metalloproteinases as observed in aged human skin in vivo." British Journal of Dermatology 177(5): 1337-1348.
dc.identifier.issn0007-0963
dc.identifier.issn1365-2133
dc.identifier.urihttps://hdl.handle.net/2027.42/139949
dc.publisherNova Biomedical
dc.publisherWiley Periodicals, Inc.
dc.titleAge‐related reduction of dermal fibroblast size upregulates multiple matrix metalloproteinases as observed in aged human skin in vivo
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDermatology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139949/1/bjd15379_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139949/2/bjd15379.pdf
dc.identifier.doi10.1111/bjd.15379
dc.identifier.sourceBritish Journal of Dermatology
dc.identifier.citedreferenceStadtman ER. Protein oxidation and aging. Science 1992; 257: 1220 – 4.
dc.identifier.citedreferenceAlenghat FJ, Nauli SM, Kolb R et al. Global cytoskeletal control of mechanotransduction in kidney epithelial cells. Exp Cell Res 2004; 301: 23 – 30.
dc.identifier.citedreferenceSilver FH, Siperko LM, Seehra GP. Mechanobiology of force transduction in dermal tissue. Skin Res Technol 2003; 9: 3 – 23.
dc.identifier.citedreferenceWang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993; 260: 1124 – 7.
dc.identifier.citedreferenceGolden TR, Hinerfeld DA, Melov S. Oxidative stress and aging: beyond correlation. Aging Cell 2002; 1: 117 – 23.
dc.identifier.citedreferenceQin Z, Voorhees JJ, Fisher GJ, Quan T. Age‐associated reduction of cellular spreading/mechanical force up‐regulates matrix metalloproteinase‐1 expression and collagen fibril fragmentation via c‐Jun/AP‐1 in human dermal fibroblasts. Aging Cell 2014; 13: 1028 – 37.
dc.identifier.citedreferenceFisher GJ, Shao Y, He T et al. Reduction of fibroblast size/mechanical force down‐regulates TGF‐beta type II receptor: implications for human skin aging. Aging Cell 2016; 15: 67 – 76.
dc.identifier.citedreferenceMendez MV, Stanley A, Park HY et al. Fibroblasts cultured from venous ulcers display cellular characteristics of senescence. J Vasc Surg 1998; 28: 876 – 83.
dc.identifier.citedreferenceWall IB, Moseley R, Baird DM et al. Fibroblast dysfunction is a key factor in the non‐healing of chronic venous leg ulcers. J Invest Dermatol 2008; 128: 2526 – 40.
dc.identifier.citedreferenceWysocki AB, Staiano‐Coico L, Grinnell F. Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP‐2 and MMP‐9. J Invest Dermatol 1993; 101: 64 – 8.
dc.identifier.citedreferenceWeckroth M, Vaheri A, Lauharanta J et al. Matrix metalloproteinases, gelatinase and collagenase, in chronic leg ulcers. J Invest Dermatol 1996; 106: 1119 – 24.
dc.identifier.citedreferenceLobmann R, Ambrosch A, Schultz G et al. Expression of matrix‐metalloproteinases and their inhibitors in the wounds of diabetic and non‐diabetic patients. Diabetologia 2002; 45: 1011 – 6.
dc.identifier.citedreferenceYager DR, Zhang LY, Liang HX et al. Wound fluids from human pressure ulcers contain elevated matrix metalloproteinase levels and activity compared to surgical wound fluids. J Invest Dermatol 1996; 107: 743 – 8.
dc.identifier.citedreferenceVeves A, Sheehan P, Pham HT. A randomized, controlled trial of Promogran (a collagen/oxidized regenerated cellulose dressing) vs. standard treatment in the management of diabetic foot ulcers. Arch Surg 2002; 137: 822 – 7.
dc.identifier.citedreferenceCullen B. The role of oxidized regenerated cellulose/collagen in chronic wound repair. Part 2. Ostomy Wound Manage 2002; 48: 8 – 13.
dc.identifier.citedreferenceLobmann R, Zemlin C, Motzkau M et al. Expression of matrix metalloproteinases and growth factors in diabetic foot wounds treated with a protease absorbent dressing. J Diabetes Complications 2006; 20: 329 – 35.
dc.identifier.citedreferenceDi Lullo GA, Sweeney SM, Korkko J et al. Mapping the ligand‐binding sites and disease‐associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 2002; 277: 4223 – 31.
dc.identifier.citedreferenceUitto J. Connective tissue biochemistry of the aging dermis. Age‐related alterations in collagen and elastin. Dermatol Clin 1986; 4: 433 – 46.
dc.identifier.citedreferenceFisher GJ, Varani J, Voorhees JJ. Looking older: fibroblast collapse and therapeutic implications. Arch Dermatol 2008; 144: 666 – 72.
dc.identifier.citedreferenceQuan T, Fisher GJ. Role of age‐associated alterations of the dermal extracellular matrix microenvironment in human skin aging: a mini‐review. Gerontology 2015; 61: 427 – 34.
dc.identifier.citedreferenceMa W, Wlaschek M, Tantcheva‐Poór I et al. Chronological ageing and photoageing of the fibroblasts and the dermal connective tissue. Clin Exp Dermatol 2001; 26: 592 – 9.
dc.identifier.citedreferenceAshcroft GS, Horan MA, Ferguson MW. The effects of ageing on cutaneous wound healing in mammals. J Anat 1995; 187: 1 – 26.
dc.identifier.citedreferenceGilchrest BA, Stoff JS, Soter NA. Chronologic aging alters the response to ultraviolet‐induced inflammation in human skin. J Invest Dermatol 1982; 79: 11 – 5.
dc.identifier.citedreferenceEaglstein WH. Wound healing and aging. Clin Geriatr Med 1989; 5: 183 – 8.
dc.identifier.citedreferenceAshcroft GS, Mills SJ, Ashworth JJ. Ageing and wound healing. Biogerontology 2002; 3: 337 – 45.
dc.identifier.citedreferenceRogers HW, Weinstock MA, Feldman SR, Coldiron BM. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012. JAMA Dermatol 2015; 151: 1081 – 6.
dc.identifier.citedreferencePickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 2014; 15: 1243 – 53.
dc.identifier.citedreferenceQuan T. Skin connective tissue aging and dermal fibroblasts. In: Dermal Fibroblasts: Histological Perspectives, Characterization and Role in Disease ( Bai X ed.). Hauppauge, NY: Nova Biomedical, 2013; 31 – 55.
dc.identifier.citedreferenceHynes RO. The extracellular matrix: not just pretty fibrils. Science 2009; 326: 1216 – 9.
dc.identifier.citedreferenceIngber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J 2006; 20: 811 – 27.
dc.identifier.citedreferenceGeiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 2009; 10: 21 – 33.
dc.identifier.citedreferenceVarani J, Schuger L, Dame MK et al. Reduced fibroblast interaction with intact collagen as a mechanism for depressed collagen synthesis in photodamaged skin. J Invest Dermatol 2004; 122: 1471 – 9.
dc.identifier.citedreferenceFisher GJ, Quan T, Purohit T et al. Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase‐1 in fibroblasts in aged human skin. Am J Pathol 2009; 174: 101 – 14.
dc.identifier.citedreferenceBonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014; 15: 786 – 801.
dc.identifier.citedreferenceHegedus L, Cho H, Xie X, Eliceiri GL. Additional MDA‐MB‐231 breast cancer cell matrix metalloproteinases promote invasiveness. J Cell Physiol 2008; 216: 480 – 5.
dc.identifier.citedreferenceQin Z, Fisher GJ, Quan T. Cysteine‐rich protein 61 (CCN1) domain‐specific stimulation of matrix metalloproteinase‐1 expression through αVβ3 integrin in human skin fibroblasts. J Biol Chem 2013; 288: 12386 – 94.
dc.identifier.citedreferenceChakraborti S, Mandal M, Das S et al. Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 2003; 253: 269 – 85.
dc.identifier.citedreferenceGutman A, Wasylyk B. The collagenase gene promoter contains a TPA and oncogene‐responsive unit encompassing the PEA3 and AP‐1 binding sites. EMBO J 1990; 9: 2241 – 6.
dc.identifier.citedreferenceBirkedal‐Hansen H, Moore WG, Bodden MK et al. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 1993; 4: 197 – 250.
dc.identifier.citedreferenceFisher GJ, Wang ZQ, Datta SC et al. Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med 1997; 337: 1419 – 28.
dc.identifier.citedreferenceQuan T, Qin Z, Voorhees JJ, Fisher GJ. Cysteine‐rich protein 61 (CCN1) mediates replicative senescence‐associated aberrant collagen homeostasis in human skin fibroblasts. J Cell Biochem 2012; 113: 3011 – 8.
dc.identifier.citedreferenceGieni RS, Hendzel MJ. Mechanotransduction from the ECM to the genome: are the pieces now in place? J Cell Biochem 2008; 104: 1964 – 87.
dc.identifier.citedreferenceBenbow U, Brinckerhoff CE. The AP‐1 site and MMP gene regulation: what is all the fuss about? Matrix Biol 1997; 15: 519 – 26.
dc.identifier.citedreferenceBrenneisen P, Sies H, Scharffetter‐Kochanek K. Ultraviolet‐B irradiation and matrix metalloproteinases: from induction via signaling to initial events. Ann N Y Acad Sci 2002; 973: 31 – 43.
dc.identifier.citedreferenceFisher GJ, Datta SC, Talwar HS et al. Molecular basis of sun‐induced premature skin ageing and retinoid antagonism. Nature 1996; 379: 335 – 9.
dc.identifier.citedreferenceQuan T, Qin Z, Xia W et al. Matrix‐degrading metalloproteinases in photoaging. J Investig Dermatol Symp Proc 2009; 14: 20 – 4.
dc.identifier.citedreferenceAngel P, Karin M. The role of Jun, Fos and the AP‐1 complex in cell‐proliferation and transformation. Biochim Biophys Acta 1991; 1072: 129 – 57.
dc.identifier.citedreferenceShaulian E, Karin M. AP‐1 as a regulator of cell life and death. Nat Cell Biol 2002; 4: e131 – 6.
dc.identifier.citedreferenceChung JH, Kang S, Varani J et al. Decreased extracellular‐signal‐regulated kinase and increased stress‐activated MAP kinase activities in aged human skin in vivo. J Invest Dermatol 2000; 115: 177 – 82.
dc.identifier.citedreferenceShin MH, Rhie GE, Kim YK et al. H2O2 accumulation by catalase reduction changes MAP kinase signaling in aged human skin in vivo. J Invest Dermatol 2005; 125: 221 – 9.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.