Show simple item record

Impact of In‐Cloud Aqueous Processes on the Chemistry and Transport of Biogenic Volatile Organic Compounds

dc.contributor.authorLi, Yang
dc.contributor.authorBarth, Mary C.
dc.contributor.authorPatton, Edward G.
dc.contributor.authorSteiner, Allison L.
dc.date.accessioned2017-12-15T16:47:52Z
dc.date.available2018-12-03T15:34:03Zen
dc.date.issued2017-10-27
dc.identifier.citationLi, Yang; Barth, Mary C.; Patton, Edward G.; Steiner, Allison L. (2017). "Impact of In‐Cloud Aqueous Processes on the Chemistry and Transport of Biogenic Volatile Organic Compounds." Journal of Geophysical Research: Atmospheres 122(20): 11,131-11,153.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/139963
dc.description.abstractWe investigate the impacts of cloud aqueous processes on the chemistry and transport of biogenic volatile organic compounds (BVOC) using the National Center for Atmospheric Research’s large‐eddy simulation code with an updated chemical mechanism that includes both gas‐ and aqueous‐phase reactions. We simulate transport and chemistry for a meteorological case with a diurnal pattern of nonprecipitating cumulus clouds from the Baltimore‐Washington area DISCOVER‐AQ campaign. We evaluate two scenarios with and without aqueous‐phase chemical reactions. In the cloud layer (2–3 km), the addition of aqueous phase reactions decreases HCHO by 18% over the domain due to its solubility and the fast depletion from aqueous reactions, resulting in a corresponding decrease in radical oxidants (e.g., 18% decrease in OH). The decrease of OH increases the mixing ratios of isoprene and methacrolein (MACR) (100% and 15%, respectively) in the cloud layer because the reaction rate is lower. Aqueous‐phase reactions can modify the segregation between OH and BVOC by changing the sign of the segregation intensity, causing up to 55% reduction in the isoprene‐OH reaction rate and 40% reduction for the MACR‐OH reaction when clouds are present. Analysis of the isoprene‐OH covariance budget shows the chemistry term is the primary driver of the strong segregation in clouds, triggered by the decrease in OH. All organic acids except acetic acid are formed only through aqueous‐phase reactions. For acids formed in the aqueous phase, turbulence mixes these compounds on short time scales, with the near‐surface mixing ratios of these acids reaching 20% of the mixing ratios in the cloud layer within 1 h of cloud formation.Key PointsAdding aqueous chemistry to a LES model reduces OH by up to 25% and increases isoprene, promoting their segregation in cloudsCovariance of isoprene oxidation products with OH changes sign (from positive to negative) when aqueous‐phase reactions are includedIn‐cloud formation of organic acids increases their mixing ratios throughout the boundary layer
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otheraqueous chemistry
dc.subject.othervertical profiles
dc.subject.otherbiogenic volatile organic compounds
dc.subject.othersegregation
dc.subject.otherboundary layer dynamics
dc.subject.otherin‐cloud aqueous processes
dc.titleImpact of In‐Cloud Aqueous Processes on the Chemistry and Transport of Biogenic Volatile Organic Compounds
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139963/1/jgrd54176_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139963/2/jgrd54176.pdf
dc.identifier.doi10.1002/2017JD026688
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceMolemaker, M. J., & Vilà‐Guerau de Arellano, J. ( 1998 ). Control of chemical reactions by convective turbulence in the boundary layer. Journal of the Atmospheric Sciences, 55 ( 4 ), 568 – 579. https://doi.org/10.1175/1520-0469(1998)055%3C0568:COCRBC%3E2.0.CO;2
dc.identifier.citedreferenceOuwersloot, H. G., Vilà‐Guerau de Arellano, J., van Heerwaarden, C. C., Ganzeveld, L. N., Krol, M. C., & Lelieveld, J. ( 2011 ). On the segregation of chemical species in a clear boundary layer over heterogeneous land surfaces. Atmospheric Chemistry and Physics, 11 ( 20 ), 10,681 – 10,704. https://doi.org/10.5194/acp-11-10681-2011
dc.identifier.citedreferencePatton, E. G., Sullivan, P. P., & Moeng, C.‐H. ( 2005 ). The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. Journal of the Atmospheric Sciences, 62 ( 7 ), 2078 – 2097. https://doi.org/10.1175/JAS3465.1
dc.identifier.citedreferencePaulot, F., Crounse, J. D., Kjaergaard, H. G., Kürten, A., Clair, J. M. S., Seinfeld, J. H., & Wennberg, P. O. ( 2009 ). Unexpected epoxide formation in the gas‐phase photooxidation of isoprene. Science, 325 ( 5941 ), 730 – 733. https://doi.org/10.1126/science.1172910
dc.identifier.citedreferencePaulot, F., Henze, D., & Wennberg, P. ( 2012 ). Impact of the isoprene photochemical cascade on tropical ozone. Atmospheric Chemistry and Physics, 12 ( 3 ), 1307 – 1325. https://doi.org/10.5194/acp-12-1307-2012
dc.identifier.citedreferencePaulot, F., Wunch, D., Crounse, J. D., Toon, G. C., Millet, D. B., DeCarlo, P. F., … Wennberg, P. O. ( 2011 ). Importance of secondary sources in the atmospheric budgets of formic and acetic acids. Atmospheric Chemistry and Physics, 11 ( 5 ), 1989 – 2013. https://doi.org/10.5194/acp-11-1989-2011
dc.identifier.citedreferencePlank, V. G. ( 1969 ). The size distribution of cumulus clouds in representative Florida populations. Journal of Applied Meteorology, 8 ( 1 ), 46 – 67. https://doi.org/10.1175/1520-0450(1969)008%3C0046:TSDOCC%3E2.0.CO;2
dc.identifier.citedreferenceRienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., … Woollen, J. ( 2011 ). MERRA: NASA’s modern‐era retrospective analysis for research and applications. Journal of Climate, 24 ( 14 ), 3624 – 3648. https://doi.org/10.1175/JCLI-D-11-00015.1
dc.identifier.citedreferenceSander, R. ( 2015 ). Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics, 15 ( 8 ), 4399 – 4981. https://doi.org/10.5194/acp-15-4399-2015
dc.identifier.citedreferenceSander, S. P., Finlayson‐Pitts, B. J., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., … Ravishankara, R. ( 2011 ). Chemical kinetics and photochemical data for use in atmospheric studies: Evaluation number 17 Rep. JPL Publication 10–6. Pasadena, CA: Jet Propulsion Laboratory.
dc.identifier.citedreferenceSchumann, U. ( 1989 ). Large‐eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer. Atmospheric Environment (1967), 23 ( 8 ), 1713 – 1727. https://doi.org/10.1016/0004-6981(89)90056-5
dc.identifier.citedreferenceSempére, R., & Kawamura, K. ( 1994 ). Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosols from urban atmosphere. Atmospheric Environment, 28 ( 3 ), 449 – 459. https://doi.org/10.1016/1352-2310(94)90123-6
dc.identifier.citedreferenceSullivan, P. P., & Patton, E. G. ( 2011 ). The effect of mesh resolution on convective boundary layer statistics and structures generated by large‐Eddy simulation. Journal of the Atmospheric Sciences, 68 ( 10 ), 2395 – 2415. https://doi.org/10.1175/JAS-D-10-05010.1
dc.identifier.citedreferenceSykes, R. I., Parker, S. F., Henn, D. S., & Lewellen, W. S. ( 1994 ). Turbulent mixing with chemical reaction in the planetary boundary layer. Journal of Applied Meteorology, 33 ( 7 ), 825 – 834. https://doi.org/10.1175/1520-0450(1994)033%3C0825:TMWCRI%3E2.0.CO;2
dc.identifier.citedreferenceTie, X., Madronich, S., Walters, S., Zhang, R., Rasch, P., & Collins, W. ( 2003 ). Effect of clouds on photolysis and oxidants in the troposphere. Journal of Geophysical Research, 108 ( D20 ), 4642. https://doi.org/10.1029/2003JD003659
dc.identifier.citedreferenceTilgner, A., Bräuer, P., Wolke, R., & Herrmann, H. ( 2013 ). Modelling multiphase chemistry in deliquescent erosols and clouds using CAPRAM3.0i. Journal of Atmospheric Chemistry, 70 ( 3 ), 221 – 256. https://doi.org/10.1007/s10874-013-9267-4
dc.identifier.citedreferenceTost, H., Lawrence, M. G., Brühl, C., Jöckel, P., The, G. T., & The, S.‐O. D. A. T. ( 2010 ). Uncertainties in atmospheric chemistry modelling due to convection parameterisations and subsequent scavenging. Atmospheric Chemistry and Physics, 10 ( 4 ), 1931 – 1951. https://doi.org/10.5194/acp-10-1931-2010
dc.identifier.citedreferenceTuccella, P., Curci, G., Grell, G., Visconti, G., Crumeroylle, S., Schwarzenboeck, A., & Mensah, A. ( 2015 ). A new chemistry option in WRF‐Chem v.3.4 for the simulation of direct and indirect aerosol effects using. VBS: Evaluation against IMPACT‐EUCAARI data. Geoscientific Model Development, 8 ( 9 ), 2749 – 2776. https://doi.org/10.5194/gmd‐8‐2749‐2015
dc.identifier.citedreferenceVerver, G. H. L., Van Dop, H., & Holtslag, A. A. M. ( 1997 ). Turbulent mixing of reactive gases in the convective boundary layer. Boundary‐Layer Meteorology, 85 ( 2 ), 197 – 222. https://doi.org/10.1023/A:1000414710372
dc.identifier.citedreferenceVilà‐Guerau de Arellano, J., Kim, S. W., Barth, M. C., & Patton, E. G. ( 2005 ). Transport and chemical transformations influenced by shallow cumulus over land. Atmospheric Chemistry and Physics, 5 ( 12 ), 3219 – 3231. https://doi.org/10.5194/acp-5-3219-2005
dc.identifier.citedreferenceVinuesa, J.‐F., & De Arellano, J. V.‐G. ( 2003 ). Fluxes and (co‐)variances of reacting scalars in the convective boundary layer. Tellus B, 55 ( 4 ), 935 – 949. https://doi.org/10.1046/j.1435-6935.2003.00073.x
dc.identifier.citedreferenceVinuesa, J. F., & Porté‐Agel, F. ( 2005 ). A dynamic similarity subgrid model for chemical transformations in large‐eddy simulation of the atmospheric boundary layer. Geophysical Research Letters, 32, L03814. https://doi.org/10.1029/2004GL021349
dc.identifier.citedreferenceVinuesa, J.‐F., Porté‐Agel, F., Basu, S., & Stoll, R. ( 2006 ). Subgrid‐scale modeling of reacting scalar fluxes in large‐eddy simulations of atmospheric boundary layers. Environmental Fluid Mechanics, 6 ( 2 ), 115 – 131. https://doi.org/10.1007/s10652-005-6020-9
dc.identifier.citedreferenceWang, K., Zhang, Y., Yahya, K., Wu, S.‐Y., & Grell, G. ( 2015 ). Implementation and initial application of new chemistry‐aerosol options in WRF/Chem for simulating secondary organic aerosols and aerosol indirect effects for regional air quality. Atmospheric Environment, 115, 716 – 732. https://doi.org/10.1016/j.atmosenv.2014.12.007
dc.identifier.citedreferenceWolfe, G., Hanisco, T., Arkinson, H., Bui, T., Crounse, J., Dean‐Day, J., … Huey, G. ( 2015 ). Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations. Geophysical Research Letters, 42 ( 19 ), 8231 – 8240. https://doi.org/10.1002/2015GL065839
dc.identifier.citedreferenceAtkinson, R. ( 2000 ). Atmospheric chemistry of VOCs and NOx. Atmospheric Environment, 34 ( 12–14 ), 2063 – 2101. https://doi.org/10.1016/S1352-2310(99)00460-4
dc.identifier.citedreferenceBarth, M., Bela, M., Fried, A., Wennberg, P., Crounse, J., Clair, J. S., … Brune, W. ( 2016 ). Convective transport and scavenging of peroxides by thunderstorms observed over the central US during DC3. Journal of Geophysical Research: Atmospheres, 121 ( 8 ), 4272 – 4295. https://doi.org/10.1002/2015JD024570
dc.identifier.citedreferenceBarth, M., Sillman, S., Hudman, R., Jacobson, M., Kim, C. H., Monod, A., & Liang, J. ( 2003 ). Summary of the cloud chemistry modeling intercomparison: Photochemical box model simulation. Journal of Geophysical Research, 108 ( D7 ), 4214. https://doi.org/10.1029/2002JD002673
dc.identifier.citedreferenceBarth, M. C., Hess, P. G., & Madronich, S. ( 2002 ). Effect of marine boundary layer clouds on tropospheric chemistry as analyzed in a regional chemistry transport model. Journal of Geophysical Research, 107 ( D11 ), AAC 7‐1‐AAC 7‐12. https://doi.org/10.1029/2001JD000468
dc.identifier.citedreferenceBarth, M. C., Kim, S.‐W., Wang, C., Pickering, K. E., Ott, L. E., Stenchikov, G., … Telenta, B. ( 2007 ). Cloud‐scale model intercomparison of chemical constituent transport in deep convection. Atmospheric Chemistry and Physics, 7 ( 18 ), 4709 – 4731. https://doi.org/10.5194/acp-7-4709-2007
dc.identifier.citedreferenceBarth, M. C., Stuart, A. L., & Skamarock, W. C. ( 2001 ). Numerical simulations of the July 10, 1996, stratospheric‐tropospheric experiment: Radiation, aerosols, and ozone (STERAO)‐deep convection experiment storm: Redistribution of soluble tracers. Journal of Geophysical Research, 106 ( D12 ), 12,381 – 12,400. https://doi.org/10.1029/2001JD900139
dc.identifier.citedreferenceBerg, L., Shrivastava, M., Easter, R., Fast, J., Chapman, E., Liu, Y., & Ferrare, R. ( 2015 ). A new WRF‐Chem treatment for studying regional‐scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli. Geoscientific Model Development, 8 ( 2 ), 409 – 429. https://doi.org/10.5194/gmd-8-409-2015
dc.identifier.citedreferenceBetts, A. ( 1973 ). Non‐precipitating cumulus convection and its parameterization. Quarterly Journal of the Royal Meteorological Society, 99 ( 419 ), 178 – 196. https://doi.org/10.1002/qj.49709941915
dc.identifier.citedreferenceBlando, J. D., & Turpin, B. J. ( 2000 ). Secondary organic aerosol formation in cloud and fog droplets: A literature evaluation of plausibility. Atmospheric Environment, 34 ( 10 ), 1623 – 1632. https://doi.org/10.1016/S1352-2310(99)00392-1
dc.identifier.citedreferenceBower, K., Choularton, T., Gallagher, M., Colvile, R., Beswick, K., Inglis, D., … Berg, O. ( 1999 ). The great dun fell experiment 1995: An overview. Atmospheric Research, 50 ( 3‐4 ), 151 – 184. https://doi.org/10.1016/S0169-8095(98)00103-3
dc.identifier.citedreferenceCarlton, A. G., Turpin, B. J., Altieri, K. E., Seitzinger, S., Reff, A., Lim, H.‐J., & Ervens, B. ( 2007 ). Atmospheric oxalic acid and SOA production from glyoxal: Results of aqueous photooxidation experiments. Atmospheric Environment, 41 ( 35 ), 7588 – 7602. https://doi.org/10.1016/j.atmosenv.2007.05.035
dc.identifier.citedreferenceCarlton, A. G., Turpin, B. J., Altieri, K. E., Seitzinger, S. P., Mathur, R., Roselle, S. J., & Weber, R. J. ( 2008 ). CMAQ model performance enhanced when in‐cloud secondary organic aerosol is included: Comparisons of organic carbon predictions with measurements. Environmental Science & Technology, 42 ( 23 ), 8798 – 8802. https://doi.org/10.1021/es801192n
dc.identifier.citedreferenceCarmichael, G. R., & Peters, L. K. ( 1986 ). A second generation model for regional‐scale transport/chemistry/deposition. Atmospheric Environment (1967), 20 ( 1 ), 173 – 188. https://doi.org/10.1016/0004-6981(86)90218-0
dc.identifier.citedreferenceChameides, W. L. ( 1984 ). The photochemistry of a remote marine stratiform cloud. Journal of Geophysical Research, 89 ( D3 ), 4739 – 4755. https://doi.org/10.1029/JD089iD03p04739
dc.identifier.citedreferenceChameides, W. L., & Davis, D. D. ( 1982 ). The free radical chemistry of cloud droplets and its impact upon the composition of rain. Journal of Geophysical Research, 87 ( C7 ), 4863 – 4877. https://doi.org/10.1029/JC087iC07p04863
dc.identifier.citedreferenceChang, J., Brost, R., Isaksen, I., Madronich, S., Middleton, P., Stockwell, W., & Walcek, C. ( 1987 ). A three‐dimensional Eulerian acid deposition model: Physical concepts and formulation. Journal of Geophysical Research, 92 ( D12 ), 14,681 – 14,700. https://doi.org/10.1029/JD092iD12p14681
dc.identifier.citedreferenceChapman, E. G., Gustafson, W. Jr., Easter, R. C., Barnard, J. C., Ghan, S. J., Pekour, M. S., & Fast, J. D. ( 2009 ). Coupling aerosol‐cloud‐radiative processes in the WRF‐Chem model: Investigating the radiative impact of elevated point sources. Atmospheric Chemistry and Physics, 9 ( 3 ), 945 – 964. https://doi.org/10.5194/acp-9-945-2009
dc.identifier.citedreferenceChapman, E. G., Kenny, D. V., Busness, K. M., Thorp, J. M., & Spicer, C. W. ( 1995 ). Continuous airborne measurements of gaseous formic and acetic acids over the western North Atlantic. Geophysical Research Letters, 22 ( 4 ), 405 – 408. https://doi.org/10.1029/94GL03023
dc.identifier.citedreferenceChen, J., Griffin, R., Grini, A., & Tulet, P. ( 2007 ). Modeling secondary organic aerosol formation through cloud processing of organic compounds. Atmospheric Chemistry and Physics, 7 ( 20 ), 5343 – 5355. https://doi.org/10.5194/acp-7-5343-2007
dc.identifier.citedreferenceCotton, W. R., Alexander, G. D., Hertenstein, R., Walko, R. L., McAnelly, R. L., & Nicholls, M. ( 1995 ). Cloud venting—A review and some new global annual estimates. Earth‐Science Reviews, 39 ( 3‐4 ), 169 – 206. https://doi.org/10.1016/0012-8252(95)00007-0
dc.identifier.citedreferenceDeardorff, J. ( 1976a ). Clear and cloud‐capped mixed layers, their numerical simulation, structure and growth and parameterization, paper presented at Seminars on the Treatment of the Boundary Layer in Numerical Weather Prediction.
dc.identifier.citedreferenceDeardorff, J. ( 1976b ). Usefulness of liquid‐water potential temperature in a shallow‐cloud model. Journal of Applied Meteorology, 15 ( 1 ), 98 – 102. https://doi.org/10.1175/1520-0450(1976)015%3C0098:UOLWPT%3E2.0.CO;2
dc.identifier.citedreferenceDeardorff, J. ( 1980 ). Stratocumulus‐capped mixed layers derived from a three‐dimensional model. Boundary‐Layer Meteorology, 18 ( 4 ), 495 – 527. https://doi.org/10.1007/BF00119502
dc.identifier.citedreferenceErvens, B. ( 2015 ). Modeling the processing of aerosol and trace gases in clouds and fogs. Chemical Reviews, 115 ( 10 ), 4157 – 4198. https://doi.org/10.1021/cr5005887
dc.identifier.citedreferenceErvens, B., Carlton, A. G., Turpin, B. J., Altieri, K. E., Kreidenweis, S. M., & Feingold, G. ( 2008 ). Secondary organic aerosol yields from cloud‐processing of isoprene oxidation products. Geophysical Research Letters, 35, L02816. https://doi.org/10.1029/2007GL031828
dc.identifier.citedreferenceErvens, B., Gligorovski, S., & Herrmann, H. ( 2003 ). Temperature‐dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions. Physical Chemistry Chemical Physics, 5 ( 9 ), 1811 – 1824. https://doi.org/10.1039/b300072a
dc.identifier.citedreferenceErvens, B., Turpin, B. J., & Weber, R. J. ( 2011 ). Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies. Atmospheric Chemistry and Physics, 11 ( 21 ), 11,069 – 11,102. https://doi.org/10.5194/acp-11-11069-2011
dc.identifier.citedreferenceFu, T.‐M., Jacob, D. J., & Heald, C. L. ( 2009 ). Aqueous‐phase reactive uptake of dicarbonyls as a source of organic aerosol over eastern North America. Atmospheric Environment, 43 ( 10 ), 1814 – 1822. https://doi.org/10.1016/j.atmosenv.2008.12.029
dc.identifier.citedreferenceFu, T. M., Jacob, D. J., Wittrock, F., Burrows, J. P., Vrekoussis, M., & Henze, D. K. ( 2008 ). Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. Journal of Geophysical Research, 113, D15303. https://doi.org/10.1029/2007JD009505
dc.identifier.citedreferenceGoldstein, A. H., & Galbally, I. E. ( 2007 ). Known and unexplored organic constituents in the Earth’s atmosphere. Environmental Science & Technology, 41 ( 5 ), 1514 – 1521. https://doi.org/10.1021/es072476p
dc.identifier.citedreferenceGuenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., & Geron, C. ( 2006 ). Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmospheric Chemistry and Physics, 6 ( 11 ), 3181 – 3210. https://doi.org/10.5194/acp-6-3181-2006
dc.identifier.citedreferenceGuenther, A., Nicholas Hewitt, C., Erickson, D., Fall, R., Geron, C., Graedel, T., … Zimmerman, P. ( 1995 ). A global model of natural volatile organic compound emissions. Journal of Geophysical Research, 100 ( D5 ), 8873 – 8892. https://doi.org/10.1029/94JD02950
dc.identifier.citedreferenceHegg, D. A., & Hobbs, P. V. ( 1979 ). The homogeneous oxidation of sulfur dioxide in cloud droplets. Atmospheric Environment (1967), 13 ( 7 ), 981 – 987. https://doi.org/10.1016/0004-6981(79)90008-8
dc.identifier.citedreferenceHegg, D. A., & Hobbs, P. V. ( 1981 ). Cloud water chemistry and the production of sulfates in clouds. Atmospheric Environment (1967), 15 ( 9 ), 1597 – 1604. https://doi.org/10.1016/0004-6981(81)90144-X
dc.identifier.citedreferenceHegg, D. A., & Hobbs, P. V. ( 1982 ). Measurements of sulfate production in natural clouds. Atmospheric Environment (1967), 16 ( 11 ), 2663 – 2668. https://doi.org/10.1016/0004-6981(82)90348-1
dc.identifier.citedreferenceHerrmann, H., Hoffmann, D., Schaefer, T., Bräuer, P., & Tilgner, A. ( 2010 ). Tropospheric aqueous‐phase free‐radical chemistry: Radical sources, spectra, reaction kinetics and prediction tools. Chemphyschem, 11 ( 18 ), 3796 – 3822. https://doi.org/10.1002/cphc.201000533
dc.identifier.citedreferenceHerrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich, M., & Otto, T. ( 2015 ). Tropospheric aqueous‐phase chemistry: Kinetics, mechanisms, and its coupling to a changing gas phase. Chemical Reviews, 115 ( 10 ), 4259 – 4334. https://doi.org/10.1021/cr500447k
dc.identifier.citedreferenceHorowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J., Granier, C., … Brasseur, G. P. ( 2003 ). A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. Journal of Geophysical Research, 108 ( D24 ), 4784. https://doi.org/10.1029/2002JD002853
dc.identifier.citedreferenceHozumi, K., Harimaya, T., & Magono, C. ( 1982 ). The size distribution of cumulus clouds as a function of cloud amount. Journal of the Meteorological Society of Japan, 60 ( 2 ), 691 – 699. https://doi.org/10.2151/jmsj1965.60.2_691
dc.identifier.citedreferenceHusain, L. ( 1989 ). A technique for determining in‐cloud formation of SO 4. Geophysical Research Letters, 16 ( 1 ), 57 – 60. https://doi.org/10.1029/GL016i001p00057
dc.identifier.citedreferenceHusain, L., Ghauri, B., Yang, K., Khan, A. R., & Rattigan, O. ( 2004 ). Application of the SO 4 2− /Se tracer technique to study SO 2 oxidation in cloud and fog on a time scale of minutes. Chemosphere, 54 ( 2 ), 177 – 183. https://doi.org/10.1016/S0045-6535(03)00531-9
dc.identifier.citedreferenceJacob, D. J. ( 1986 ). Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate. Journal of Geophysical Research, 91 ( D9 ), 9807 – 9826. https://doi.org/10.1029/JD091iD09p09807
dc.identifier.citedreferenceJacob, D. J., & Wofsy, S. C. ( 1988 ). Photochemistry of biogenic emissions over the Amazon forest. Journal of Geophysical Research, 93 ( D2 ), 1477 – 1486. https://doi.org/10.1029/JD093iD02p01477
dc.identifier.citedreferenceKarl, T., Guenther, A., Yokelson, R. J., Greenberg, J., Potosnak, M., Blake, D. R., & Artaxo, P. ( 2007 ). The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. Journal of Geophysical Research, 112, D18302. https://doi.org/10.1029/2007JD008539
dc.identifier.citedreferenceKim, S. W., Barth, M., & Trainer, M. ( 2016 ). Impact of turbulent mixing on isoprene chemistry. Geophysical Research Letters, 43 ( 14 ), 7701 – 7708. https://doi.org/10.1002/2016GL069752
dc.identifier.citedreferenceKim, S.‐W., M. C. Barth, & C.‐H. Moeng ( 2004 ). The effect of shallow cumulus convection on the segregation of chemical reactants, paper presented at 16th symposium on boundary layers and turbulence.
dc.identifier.citedreferenceKim, S. W., Barth, M. C., & Trainer, M. ( 2012 ). Influence of fair‐weather cumulus clouds on isoprene chemistry. Journal of Geophysical Research, 117, D10302. https://doi.org/10.1029/2011JD017099
dc.identifier.citedreferenceKrol, M. C., Molemaker, M. J., & de Arellano, J. V. G. ( 2000 ). Effects of turbulence and heterogeneous emissions on photochemically active species in the convective boundary layer. Journal of Geophysical Research, 105 ( D5 ), 6871 – 6884. https://doi.org/10.1029/1999JD900958
dc.identifier.citedreferenceLaj, P., Fuzzi, S., Facchini, M., Orsi, G., Berner, A., Kruisz, C., … Gallagher, M. ( 1997 ). Experimental evidence for in‐cloud production of aerosol sulphate. Atmospheric Environment, 31 ( 16 ), 2503 – 2514. https://doi.org/10.1016/S1352-2310(96)00217-8
dc.identifier.citedreferenceLelieveld, J., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer, H., Ganzeveld, L., … Williams, J. ( 2008 ). Atmospheric oxidation capacity sustained by a tropical forest. Nature, 452 ( 7188 ), 737 – 740. https://doi.org/10.1038/nature06870
dc.identifier.citedreferenceLelieveld, J., & Crutzen, P. ( 1991 ). The role of clouds in tropospheric photochemistry. Journal of Atmospheric Chemistry, 12 ( 3 ), 229 – 267. https://doi.org/10.1007/BF00048075
dc.identifier.citedreferenceLelieveld, J., & Crutzen, P. J. ( 1990 ). Influences of cloud photochemical processes on tropospheric ozone. Nature, 343 ( 6255 ), 227 – 233. https://doi.org/10.1038/343227a0
dc.identifier.citedreferenceLenderink, G., Siebesma, A., Cheinet, S., Irons, S., Jones, C. G., Marquet, P., … Sanchez, E. ( 2004 ). The diurnal cycle of shallow cumulus clouds over land: A single‐column model intercomparison study. Quarterly Journal of the Royal Meteorological Society, 130 ( 604 ), 3339 – 3364. https://doi.org/10.1256/qj.03.122
dc.identifier.citedreferenceLeriche, M., Pinty, J. P., Mari, C., & Gazen, D. ( 2013 ). A cloud chemistry module for the 3‐D cloud‐resolving mesoscale model Meso‐NH with application to idealized cases. Geoscientific Model Development, 6 ( 4 ), 1275 – 1298. https://doi.org/10.5194/gmd-6-1275-2013
dc.identifier.citedreferenceLi, Y., Barth, M. C., Chen, G., Patton, E. G., Kim, S. W., Wisthaler, A., … Steiner, A. L. ( 2016 ). Large‐eddy simulation of biogenic VOC chemistry during the DISCOVER‐AQ 2011 campaign. Journal of Geophysical Research: Atmospheres, 121 ( 13 ), 8083 – 8105. https://doi.org/10.1002/2016JD024942
dc.identifier.citedreferenceLiang, J., & Jacob, D. J. ( 1997 ). Effect of aqueous phase cloud chemistry on tropospheric ozone. Journal of Geophysical Research, 102 ( D5 ), 5993 – 6001. https://doi.org/10.1029/96JD02957
dc.identifier.citedreferenceLim, Y. B., Tan, Y., Perri, M. J., Seitzinger, S. P., & Turpin, B. J. ( 2010 ). Aqueous chemistry and its role in secondary organic aerosol (SOA) formation. Atmospheric Chemistry and Physics, 10 ( 21 ), 10,521 – 10,539. https://doi.org/10.5194/acp-10-10521-2010
dc.identifier.citedreferenceMadronich, S., & Flocke, S. ( 1999 ). The role of solar radiation in atmospheric chemistry. In P.   Boule (Ed.), Environmental photochemistry (pp. 1 – 26 ). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-69044-3_1
dc.identifier.citedreferenceMarais, E. A., Jacob, D. J., Jimenez, J. L., Campuzano‐Jost, P., Day, D. A., Hu, W., & Miller, C. C. ( 2016 ). Aqueous‐phase mechanism for secondary organic aerosol formation from isoprene: Application to the southeast United States and co‐benefit of SO 2 emission controls. Atmospheric Chemistry and Physics, 16 ( 3 ), 1603 – 1618. https://doi.org/10.5194/acp-16-1603-2016
dc.identifier.citedreferenceMcNeill, V. F., Woo, J. L., Kim, D. D., Schwier, A. N., Wannell, N. J., Sumner, A. J., & Barakat, J. M. ( 2012 ). Aqueous‐phase secondary organic aerosol and Organosulfate formation in atmospheric aerosols: A modeling study. Environmental Science & Technology, 46 ( 15 ), 8075 – 8081. https://doi.org/10.1021/es3002986
dc.identifier.citedreferenceMillet, D. B., Baasandorj, M., Farmer, D. K., Thornton, J. A., Baumann, K., Brophy, P., … Hu, L. ( 2015 ). A large and ubiquitous source of atmospheric formic acid. Atmospheric Chemistry and Physics, 15 ( 11 ), 6283 – 6304. https://doi.org/10.5194/acp-15-6283-2015
dc.identifier.citedreferenceMoeng, C.‐H. ( 1984 ). A large‐eddy‐simulation model for the study of planetary boundary‐layer turbulence. Journal of the Atmospheric Sciences, 41 ( 13 ), 2052 – 2062. https://doi.org/10.1175/1520-0469(1984)041%3C2052:ALESMF%3E2.0.CO;2
dc.identifier.citedreferenceMoeng, C.‐H. ( 1987 ). Large‐eddy simulation of a stratus‐topped boundary layer. Part II: Implications for mixed‐layer modeling. Journal of the Atmospheric Sciences, 44 ( 12 ), 1605 – 1614. https://doi.org/10.1175/1520-0469(1987)044%3C1605:LESOAS%3E2.0.CO;2
dc.identifier.citedreferenceMoeng, C.‐H., & Sullivan, P. P. ( 1994 ). A comparison of shear‐ and buoyancy‐driven planetary boundary layer flows. Journal of the Atmospheric Sciences, 51 ( 7 ), 999 – 1022. https://doi.org/10.1175/1520-0469(1994)051%3C0999:ACOSAB%3E2.0.CO;2
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.