Show simple item record

Analysis of inquiry materials to explain complexity of chemical reasoning in physical chemistry students’ argumentation

dc.contributor.authorMoon, Alena
dc.contributor.authorStanford, Courtney
dc.contributor.authorCole, Renee
dc.contributor.authorTowns, Marcy
dc.date.accessioned2017-12-15T16:48:09Z
dc.date.available2019-02-01T19:56:25Zen
dc.date.issued2017-12
dc.identifier.citationMoon, Alena; Stanford, Courtney; Cole, Renee; Towns, Marcy (2017). "Analysis of inquiry materials to explain complexity of chemical reasoning in physical chemistry students’ argumentation." Journal of Research in Science Teaching 54(10): 1322-1346.
dc.identifier.issn0022-4308
dc.identifier.issn1098-2736
dc.identifier.urihttps://hdl.handle.net/2027.42/139982
dc.description.abstractOne aim of inquiry activities in science education is to promote students’ participation in the practices used to build scientific knowledge by providing opportunities to engage in scientific discourse. However, many factors influence the actual outcomes and effect on students’ learning when using inquiry materials. In this study, discourse from two physical chemistry classrooms using the Process‐Oriented Guided Inquiry Learning (POGIL) approach was analyzed using a lens of scientific argumentation. Analysis of the complexity of reasoning in students’ arguments using a learning progression on chemical thinking indicated that students did not employ very complex reasoning to construct arguments. To explain the distribution of reasoning observed, a separate analysis of the curricular materials was performed using the Task Analysis Guide for Science (TAGS). Results indicate a relationship between the task’s targeted scientific practice and how students used evidence in their arguments as well as between the task’s cognitive demand and the complexity of reasoning employed in arguments. Examples illustrating these relationships can be used to inform implications for design of inquiry materials, facilitation of classroom discourse, and future research. © 2017 Wiley Periodicals, Inc. J Res Sci Teach 10: 1322–1346, 2017
dc.publisherSpringer, Science and Technology Education Library
dc.publisherWiley Periodicals, Inc.
dc.subject.othertask analysis
dc.subject.otherscience argumentation
dc.subject.otherclassroom discourse
dc.subject.otherphysical chemistry
dc.subject.otherinquiry
dc.titleAnalysis of inquiry materials to explain complexity of chemical reasoning in physical chemistry students’ argumentation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelScience (General)
dc.subject.hlbsecondlevelWomen’s and Gender Studies
dc.subject.hlbsecondlevelManagement
dc.subject.hlbsecondlevelEducation
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHumanities
dc.subject.hlbtoplevelBusiness and Economics
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139982/1/tea21407_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139982/2/tea21407.pdf
dc.identifier.doi10.1002/tea.21407
dc.identifier.sourceJournal of Research in Science Teaching
dc.identifier.citedreferenceSevian, H., & Talanquer, V. ( 2014 ). Rethinking chemistry: A learning progression on chemical thinking. Chemistry Education Research and Practice, 15 ( 1 ), 10 – 23.
dc.identifier.citedreferenceKulatunga, U., Moog, R. S., & Lewis, J. E. ( 2014 ). Use of Toulmin’s argumentation scheme for student discourse to gain insight about guided inquiry activities in college chemistry. Journal of College Science Teaching, 43 ( 5 ), 78 – 86.
dc.identifier.citedreferenceKulatunga, U., & Lewis, J. E. ( 2013 ). Exploration of peer leader verbal behaviors as they intervene with small groups in college general chemistry. Chemistry Education Research and Practice, 14 ( 4 ), 576 – 588.
dc.identifier.citedreferenceKuo, E., Hull, M. M., Gupta, A., & Elby, A. ( 2013 ). How students blend conceptual and formal mathematical reasoning in solving physics problems. Science Education, 97 ( 1 ), 32 – 57. http://doi.org/10.1002/sce.21043
dc.identifier.citedreferenceLoughlin, M. O. ( 1992 ). Rethinking science education: Beyond Piagetian constructivism toward a sociocultural model of teaching and learning*. Journal of Research in Science Teaching, 29 ( 8 ), 791 – 820. http://doi.org/10.1002/tea.3660290805
dc.identifier.citedreferenceMcNeill, K. L., & Krajcik, J. S. ( 2012 ). Supporting grade 5‐8 students in constructing explanations in science: The claim, evidence, and reasoning framework for talk and writing. Boston: Pearson Education.
dc.identifier.citedreferenceMercer, N. ( 2000 ). Words and minds. London: Routledge.
dc.identifier.citedreferenceMercer, N. ( 2007 ). Sociocultural discourse analysis: Analysing classroom talk as a social mode of thinking. Journal of Applied Linguistics, 1 ( 2 ), 137 – 168. http://doi.org/10.1558/jal.v1i2.137
dc.identifier.citedreferenceMercer, N., & Howe, C. ( 2012 ). Explaining the dialogic processes of teaching and learning: The value and potential of sociocultural theory. Learning, Culture and Social Interaction, 1 ( 1 ), 12 – 21. http://doi.org/10.1016/j.lcsi.2012.03.001
dc.identifier.citedreferenceMercer, N., Dawes, L., Wegerif, R., & Sams, C. ( 2004 ). Reasoning as a scientist: Ways of helping children to use language to learn science. British Educational Research Journal, 30, 359 – 377.
dc.identifier.citedreferenceMoog R. S. & Farrell J. J. ( 2008 ), Chemistry: A Guided Inquiry, 3rd edn, Hoboken, NJ: Wiley & Sons, Inc. Mork.
dc.identifier.citedreferenceMoon, A., Stanford, C., Cole, R., & Towns, M. ( 2016 ). The nature of students’ chemical reasoning employed in scientific argumentation in physical chemistry. Chemistry Education Research and Practice, 17, 353. http://doi.org/10.1039/C5RP00207A
dc.identifier.citedreferenceNational Research Council (NRC). ( 2012a ). A framework for K‐12 science education: Practices, crosscutting concepts, and core idea. Washington, DC: National Academies Press.
dc.identifier.citedreferenceNational Research Council (NRC). ( 2012b ). Discipline‐based education research: Understanding and improving learning in undergraduate science and engineering. Washington, DC: National Academies Press.
dc.identifier.citedreferencePerkins, D. N., & Grotzer, T. A. ( 2005 ). Dimensions of causal understanding: The role of complex causal models in students’ understanding of science. Studies in Science Education, 41 ( 1 ), 117 – 165.
dc.identifier.citedreferenceRasmussen, C., & Stephan, M. ( 2008 ). A methodology for documenting collective activity. In A. E. Kelly, R. A. Lesh, & J. Y. Baek (Eds.), Handbook of innovative design research in science, technology, engineering, mathematics (STEM) education (pp. 195 – 215 ). New York: Taylor and Francis.
dc.identifier.citedreferenceRuss, R. S., Scherr, R. E., Hammer, D., & Mikeska, J. ( 2008 ). Recognizing mechanistic reasoning in student scientific inquiry: A framework for discourse analysis developed from philosophy of science. Science Education, 92, 499 – 525.
dc.identifier.citedreferenceSampson, V., & Clark, D. ( 2011 ). A comparison of the collaborative scientific argumentation practices of two high and two low performing groups. Research in Science Education, 41 ( 1 ), 63 – 97. http://doi.org/10.1007/s11165‐009‐9146‐9
dc.identifier.citedreferenceSandoval, W. ( 2014 ). Conjecture mapping: An approach to systematic educational design research. Journal of the Learning Sciences, 23 ( 1 ), 18 – 36.
dc.identifier.citedreferenceSmith, C., Carey, S., & Wiser, M. ( 1985 ). On differentiation: A case study of the development of the concepts of size, weight, and density. Cognition, 21, 177 – 237.
dc.identifier.citedreferenceSpencer, J. N., Moog, R. S., & Farrell, J. J. ( 2004 ). Physical chemistry: A guided inquiry thermodynamics. Boston: Houghton Mifflin Company.
dc.identifier.citedreferenceStanford, C., Moon, A., Towns, M., & Cole, R. ( 2016 ). Analysis of instructor facilitation strategies and their influences on student argumentation: A case study of a process oriented guided inquiry learning physical chemistry classroom. Journal of Chemical Education, 93 ( 9 ), 1501 – 1513. http://doi.org/10.1021/acs.jchemed.5b00993
dc.identifier.citedreferenceSweller, J. ( 1988 ). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257 – 285.
dc.identifier.citedreferenceSzteinberg, G., Balicki, S., Banks, G., Clinchot, M., Cullipher, S., Huie, R., … Sevian, H. ( 2014 ). Collaborative professional development in chemistry education research: Bridging the gap between research and practice. Journal of Chemical Education, 91 ( 9 ), 1401 – 1408.
dc.identifier.citedreferenceTalanquer, V. ( 2010 ). Exploring dominant types of explanations built by general chemistry students. International Journal of Science Education, 32 ( 18 ), 2393 – 2412.
dc.identifier.citedreferenceTekkumru‐Kisa, M., Stein, M. K., & Schunn, C. ( 2015 ). A framework for analyzing cognitive demand and content‐practices integration: Task analysis guide in science. Journal of Research in Science Teaching, 52 ( 5 ), 659 – 685.
dc.identifier.citedreferenceToulmin, S. E. ( 1958 ). The uses of argument. Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferencevan Roon, P. H., van Sprang, H. F., & Verdonk, A. H. ( 1994 ). ‘Work’ and ‘Heat’: On a road towards thermodynamics. International Journal of Science Education, 16 ( 2 ), 131 – 144.
dc.identifier.citedreferenceWertsch, J. ( 1991 ). Voices of the mind: A sociocultural approach to mediated action. Cambridge, MA: Harvard University Press.
dc.identifier.citedreferenceAsterhan, C. S. C., & Schwarz, B. B. ( 2007 ). The effects of monological and dialogical argumentation on concept learning in evolutionary theory. Journal of Educational Psychology, 99 ( 3 ), 626 – 639.
dc.identifier.citedreferenceBanks, G., Clinchot, M., Cullipher, S., Huie, R., Lambertz, J., Lewis, R., … Weinrich, M. ( 2015 ). Uncovering chemical thinking in students’ decision making: A fuel‐choice scenario. Journal of Chemical Education, 92, 1610 – 1618.
dc.identifier.citedreferenceBecker, N., Rasmussen, C., Sweeney, G., Wawro, M., Towns, M., & Cole, R. ( 2013 ). Reasoning using particulate nature of matter: An example of a sociochemical norm in a university‐level physical chemistry class. Chemistry Education Research and Practice, 14, 81. http://doi.org/10.1039/c2rp20085f
dc.identifier.citedreferenceBecker, N., Stanford, C., Towns, M., & Cole, R. ( 2015 ). Translating across macroscopic, submicroscopic, and symbolic levels: The role of instructor facilitation in an inquiry‐oriented physical chemistry class. Chemistry Education Research and Practice, 16; 769 – 785. http://doi.org/10.1039/C5RP00064E
dc.identifier.citedreferenceBerland, L. K., & McNeill, K. L. ( 2010 ). A learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts. Science Education, 94 ( 5 ), 765 – 793.
dc.identifier.citedreferenceBismack, A. S., Arias, A. M., Davis, E. A., & Palincsar, A. S. ( 2015 ). Examining student work for evidence of teacher uptake of educative curriculum materials. Journal of Research in Science Teaching, 52 ( 6 ), 816 – 846.
dc.identifier.citedreferenceBrem, S. K., & Rips, L. J. ( 2000 ). Explanation and evidence in informal argument. Cognitive Science, 24 ( 4 ), 573 – 604.
dc.identifier.citedreferenceBricker, L. A., & Bell, P. ( 2008 ). Conceptualizations of argumentation from science studies and the learning sciences and their implications for the practices of science education. Science Education, 92, 473 – 498. http://doi.org/10.1002/sce.20278
dc.identifier.citedreferenceBrown, N. J. S., Nagashima, S. O., Fu, A., Timms, M., & Wilson, M. ( 2010 ). A framework for analyzing scientific reasoning in assessments. Educational Assessment, 15 ( 3–4 ), 142 – 174.
dc.identifier.citedreferenceCetin, P. ( 2014 ). Explicit argumentation instruction to facilitate conceptual understanding and argumentation skills. Research in Science and Technological Education, 32 ( 1 ), 1 – 20.
dc.identifier.citedreferenceChin, C., & Osborne, J. ( 2010 ). Students’ questions and discursive interaction: Their impact on argumentation during collaborative group discussions in science. Journal of Research in Science Teaching, 47 ( 7 ), 883 – 908.
dc.identifier.citedreferenceCho, K.‐L., & Jonassen, D. ( 2002 ). The effects of argumentation scaffolds on argumentation and problem solving. Educational Technology Research and Development, 50 ( 3 ), 5 – 22.
dc.identifier.citedreferenceCobb, P., & Whitenack, J. W. ( 1996 ). A method for conducting longitudinal analyses of classroom videorecordings and transcripts. Educational Studies in Mathematics, 30, 213 – 228.
dc.identifier.citedreferenceCobb, P., Stephan, M., McClain, K., & Gravemeijer, K. ( 2001 ). Participating in classroom mathematical practices. Journal of the Learning Sciences, 10, 113 – 163. http://doi.org/10.1207/S15327809JLS10‐1‐2_6
dc.identifier.citedreferenceCole, R., Becker, N., Towns, M., Sweeney, G., Wawro, M., & Rasmussen, C. ( 2012 ). Adapting a methodology from mathematics education research to chemistry education research: Documenting collective activity. International Journal of Science and Mathematics Education, 10 ( 1 ), 193 – 211.
dc.identifier.citedreferenceCullipher, S., Sevian, H., & Talanquer, V. ( 2015 ). Reasoning about benefits, costs, and risks of chemical substances: Mapping different levels of sophistication. Chemistry Education Research and Practice, 16, 377 – 392.
dc.identifier.citedreferenceDaubenmire, P. L., Bunce, D. M., Draus, C., Frazier, M., Gessell, A., & van Opstal, M. T. ( 2015 ). During POGIL implementation the professor still makes a difference. Journal of College Science Teaching, 44 ( 5 ), 72 – 81.
dc.identifier.citedreferenceDuschl, R. A., & Osborne, J. ( 2002 ). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38 ( 1 ), 39 – 72. http://doi.org/10.1080/03057260208560187
dc.identifier.citedreferenceErduran, S., Simon, S., & Osborne, J. ( 2004 ). TAPping into argumentation: Developments in the application of Toulmin’s argument pattern for studying science discourse. Science Education, 88 ( 6 ), 915 – 933.
dc.identifier.citedreferenceErduran, S. ( 2007 ). Methodological foundations in the study of argumentation in science classrooms. In Argumentation in science education, Volume 35, (pp. 47 – 69 ). Springer, Science and Technology Education Library. http://doi.org/10.1007/978‐1‐4020‐6670‐2
dc.identifier.citedreferenceFarrell, J. J., Moog, R. S., & Spencer, J. N. ( 1999 ). A guided inquiry general chemistry course. Journal of Chemical Education, 76 ( 4 ), 570 – 574.
dc.identifier.citedreferenceGarcia‐Mila, M., Gilabert, S., Erduran, S., & Felton, M. ( 2013 ). The effect of argumentative task goal on the quality of argumentative discourse. Science Education, 97 ( 4 ), 497 – 523. http://doi.org/10.1002/sce.21057
dc.identifier.citedreferenceHanson, D. ( 2006 ). Instructor’s guide to process‐oriented guided‐inquiry learning. Lisle, IL: Pacific Crest.
dc.identifier.citedreferenceJimenez‐Aleixandre, M. P. ( 2007 ). Designing argumentation learning environments. In Argumentation in science education. Volume 35, (pp 91 – 115 ). http://doi.org/10.1007/978‐1‐4020‐6670‐2
dc.identifier.citedreferenceJohn‐Steiner, V., & Mahn, H. ( 1996 ). Sociocultural approaches to learning and development: A Vygotskian framework. Educational Psychologist, 31 ( 3–4 ), 191 – 206. http://doi.org/10.1080/00461520.1996.9653266
dc.identifier.citedreferenceKhishfe, R. ( 2014 ). Explicit nature of science and argumentation instruction in the context of socioscientific issues: An effect on student learning and transfer. International Journal of Science Education, 36 ( 6 ), 974 – 1016.
dc.identifier.citedreferenceKuhn, D. ( 1991 ). The skills of argument. Cambridge: Cambridge University Press.
dc.identifier.citedreferenceKulatunga, U., Moog, R. S., & Lewis, J. E. ( 2013 ). Argumentation and participation patterns in general chemistry peer‐led sessions. Journal of Research in Science Teaching, 50 ( 10 ), 1207 – 1231.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.