Analysis of inquiry materials to explain complexity of chemical reasoning in physical chemistry students’ argumentation

Show simple item record

dc.contributor.author Moon, Alena
dc.contributor.author Stanford, Courtney
dc.contributor.author Cole, Renee
dc.contributor.author Towns, Marcy
dc.date.accessioned 2017-12-15T16:48:09Z
dc.date.available 2019-02-01T19:56:25Z en
dc.date.issued 2017-12
dc.identifier.citation Moon, Alena; Stanford, Courtney; Cole, Renee; Towns, Marcy (2017). "Analysis of inquiry materials to explain complexity of chemical reasoning in physical chemistry students’ argumentation." Journal of Research in Science Teaching 54(10): 1322-1346.
dc.identifier.issn 0022-4308
dc.identifier.issn 1098-2736
dc.identifier.uri http://hdl.handle.net/2027.42/139982
dc.description.abstract One aim of inquiry activities in science education is to promote students’ participation in the practices used to build scientific knowledge by providing opportunities to engage in scientific discourse. However, many factors influence the actual outcomes and effect on students’ learning when using inquiry materials. In this study, discourse from two physical chemistry classrooms using the Process‐Oriented Guided Inquiry Learning (POGIL) approach was analyzed using a lens of scientific argumentation. Analysis of the complexity of reasoning in students’ arguments using a learning progression on chemical thinking indicated that students did not employ very complex reasoning to construct arguments. To explain the distribution of reasoning observed, a separate analysis of the curricular materials was performed using the Task Analysis Guide for Science (TAGS). Results indicate a relationship between the task’s targeted scientific practice and how students used evidence in their arguments as well as between the task’s cognitive demand and the complexity of reasoning employed in arguments. Examples illustrating these relationships can be used to inform implications for design of inquiry materials, facilitation of classroom discourse, and future research. © 2017 Wiley Periodicals, Inc. J Res Sci Teach 10: 1322–1346, 2017
dc.publisher Springer, Science and Technology Education Library
dc.publisher Wiley Periodicals, Inc.
dc.subject.other task analysis
dc.subject.other science argumentation
dc.subject.other classroom discourse
dc.subject.other physical chemistry
dc.subject.other inquiry
dc.title Analysis of inquiry materials to explain complexity of chemical reasoning in physical chemistry students’ argumentation
dc.type Article en_US
dc.rights.robots IndexNoFollow
dc.subject.hlbsecondlevel Science (General)
dc.subject.hlbsecondlevel Women’s and Gender Studies
dc.subject.hlbsecondlevel Management
dc.subject.hlbsecondlevel Education
dc.subject.hlbtoplevel Science
dc.subject.hlbtoplevel Humanities
dc.subject.hlbtoplevel Business and Economics
dc.subject.hlbtoplevel Social Sciences
dc.description.peerreviewed Peer Reviewed
dc.description.bitstreamurl https://deepblue.lib.umich.edu/bitstream/2027.42/139982/1/tea21407_am.pdf
dc.description.bitstreamurl https://deepblue.lib.umich.edu/bitstream/2027.42/139982/2/tea21407.pdf
dc.identifier.doi 10.1002/tea.21407
dc.identifier.source Journal of Research in Science Teaching
dc.identifier.citedreference Sevian, H., & Talanquer, V. ( 2014 ). Rethinking chemistry: A learning progression on chemical thinking. Chemistry Education Research and Practice, 15 ( 1 ), 10 – 23.
dc.identifier.citedreference Kulatunga, U., Moog, R. S., & Lewis, J. E. ( 2014 ). Use of Toulmin’s argumentation scheme for student discourse to gain insight about guided inquiry activities in college chemistry. Journal of College Science Teaching, 43 ( 5 ), 78 – 86.
dc.identifier.citedreference Kulatunga, U., & Lewis, J. E. ( 2013 ). Exploration of peer leader verbal behaviors as they intervene with small groups in college general chemistry. Chemistry Education Research and Practice, 14 ( 4 ), 576 – 588.
dc.identifier.citedreference Kuo, E., Hull, M. M., Gupta, A., & Elby, A. ( 2013 ). How students blend conceptual and formal mathematical reasoning in solving physics problems. Science Education, 97 ( 1 ), 32 – 57. http://doi.org/10.1002/sce.21043
dc.identifier.citedreference Loughlin, M. O. ( 1992 ). Rethinking science education: Beyond Piagetian constructivism toward a sociocultural model of teaching and learning*. Journal of Research in Science Teaching, 29 ( 8 ), 791 – 820. http://doi.org/10.1002/tea.3660290805
dc.identifier.citedreference McNeill, K. L., & Krajcik, J. S. ( 2012 ). Supporting grade 5‐8 students in constructing explanations in science: The claim, evidence, and reasoning framework for talk and writing. Boston: Pearson Education.
dc.identifier.citedreference Mercer, N. ( 2000 ). Words and minds. London: Routledge.
dc.identifier.citedreference Mercer, N. ( 2007 ). Sociocultural discourse analysis: Analysing classroom talk as a social mode of thinking. Journal of Applied Linguistics, 1 ( 2 ), 137 – 168. http://doi.org/10.1558/jal.v1i2.137
dc.identifier.citedreference Mercer, N., & Howe, C. ( 2012 ). Explaining the dialogic processes of teaching and learning: The value and potential of sociocultural theory. Learning, Culture and Social Interaction, 1 ( 1 ), 12 – 21. http://doi.org/10.1016/j.lcsi.2012.03.001
dc.identifier.citedreference Mercer, N., Dawes, L., Wegerif, R., & Sams, C. ( 2004 ). Reasoning as a scientist: Ways of helping children to use language to learn science. British Educational Research Journal, 30, 359 – 377.
dc.identifier.citedreference Moog R. S. & Farrell J. J. ( 2008 ), Chemistry: A Guided Inquiry, 3rd edn, Hoboken, NJ: Wiley & Sons, Inc. Mork.
dc.identifier.citedreference Moon, A., Stanford, C., Cole, R., & Towns, M. ( 2016 ). The nature of students’ chemical reasoning employed in scientific argumentation in physical chemistry. Chemistry Education Research and Practice, 17, 353. http://doi.org/10.1039/C5RP00207A
dc.identifier.citedreference National Research Council (NRC). ( 2012a ). A framework for K‐12 science education: Practices, crosscutting concepts, and core idea. Washington, DC: National Academies Press.
dc.identifier.citedreference National Research Council (NRC). ( 2012b ). Discipline‐based education research: Understanding and improving learning in undergraduate science and engineering. Washington, DC: National Academies Press.
dc.identifier.citedreference Perkins, D. N., & Grotzer, T. A. ( 2005 ). Dimensions of causal understanding: The role of complex causal models in students’ understanding of science. Studies in Science Education, 41 ( 1 ), 117 – 165.
dc.identifier.citedreference Rasmussen, C., & Stephan, M. ( 2008 ). A methodology for documenting collective activity. In A. E. Kelly, R. A. Lesh, & J. Y. Baek (Eds.), Handbook of innovative design research in science, technology, engineering, mathematics (STEM) education (pp. 195 – 215 ). New York: Taylor and Francis.
dc.identifier.citedreference Russ, R. S., Scherr, R. E., Hammer, D., & Mikeska, J. ( 2008 ). Recognizing mechanistic reasoning in student scientific inquiry: A framework for discourse analysis developed from philosophy of science. Science Education, 92, 499 – 525.
dc.identifier.citedreference Sampson, V., & Clark, D. ( 2011 ). A comparison of the collaborative scientific argumentation practices of two high and two low performing groups. Research in Science Education, 41 ( 1 ), 63 – 97. http://doi.org/10.1007/s11165‐009‐9146‐9
dc.identifier.citedreference Sandoval, W. ( 2014 ). Conjecture mapping: An approach to systematic educational design research. Journal of the Learning Sciences, 23 ( 1 ), 18 – 36.
dc.identifier.citedreference Smith, C., Carey, S., & Wiser, M. ( 1985 ). On differentiation: A case study of the development of the concepts of size, weight, and density. Cognition, 21, 177 – 237.
dc.identifier.citedreference Spencer, J. N., Moog, R. S., & Farrell, J. J. ( 2004 ). Physical chemistry: A guided inquiry thermodynamics. Boston: Houghton Mifflin Company.
dc.identifier.citedreference Stanford, C., Moon, A., Towns, M., & Cole, R. ( 2016 ). Analysis of instructor facilitation strategies and their influences on student argumentation: A case study of a process oriented guided inquiry learning physical chemistry classroom. Journal of Chemical Education, 93 ( 9 ), 1501 – 1513. http://doi.org/10.1021/acs.jchemed.5b00993
dc.identifier.citedreference Sweller, J. ( 1988 ). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257 – 285.
dc.identifier.citedreference Szteinberg, G., Balicki, S., Banks, G., Clinchot, M., Cullipher, S., Huie, R., … Sevian, H. ( 2014 ). Collaborative professional development in chemistry education research: Bridging the gap between research and practice. Journal of Chemical Education, 91 ( 9 ), 1401 – 1408.
dc.identifier.citedreference Talanquer, V. ( 2010 ). Exploring dominant types of explanations built by general chemistry students. International Journal of Science Education, 32 ( 18 ), 2393 – 2412.
dc.identifier.citedreference Tekkumru‐Kisa, M., Stein, M. K., & Schunn, C. ( 2015 ). A framework for analyzing cognitive demand and content‐practices integration: Task analysis guide in science. Journal of Research in Science Teaching, 52 ( 5 ), 659 – 685.
dc.identifier.citedreference Toulmin, S. E. ( 1958 ). The uses of argument. Cambridge, UK: Cambridge University Press.
dc.identifier.citedreference van Roon, P. H., van Sprang, H. F., & Verdonk, A. H. ( 1994 ). ‘Work’ and ‘Heat’: On a road towards thermodynamics. International Journal of Science Education, 16 ( 2 ), 131 – 144.
dc.identifier.citedreference Wertsch, J. ( 1991 ). Voices of the mind: A sociocultural approach to mediated action. Cambridge, MA: Harvard University Press.
dc.identifier.citedreference Asterhan, C. S. C., & Schwarz, B. B. ( 2007 ). The effects of monological and dialogical argumentation on concept learning in evolutionary theory. Journal of Educational Psychology, 99 ( 3 ), 626 – 639.
dc.identifier.citedreference Banks, G., Clinchot, M., Cullipher, S., Huie, R., Lambertz, J., Lewis, R., … Weinrich, M. ( 2015 ). Uncovering chemical thinking in students’ decision making: A fuel‐choice scenario. Journal of Chemical Education, 92, 1610 – 1618.
dc.identifier.citedreference Becker, N., Rasmussen, C., Sweeney, G., Wawro, M., Towns, M., & Cole, R. ( 2013 ). Reasoning using particulate nature of matter: An example of a sociochemical norm in a university‐level physical chemistry class. Chemistry Education Research and Practice, 14, 81. http://doi.org/10.1039/c2rp20085f
dc.identifier.citedreference Becker, N., Stanford, C., Towns, M., & Cole, R. ( 2015 ). Translating across macroscopic, submicroscopic, and symbolic levels: The role of instructor facilitation in an inquiry‐oriented physical chemistry class. Chemistry Education Research and Practice, 16; 769 – 785. http://doi.org/10.1039/C5RP00064E
dc.identifier.citedreference Berland, L. K., & McNeill, K. L. ( 2010 ). A learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts. Science Education, 94 ( 5 ), 765 – 793.
dc.identifier.citedreference Bismack, A. S., Arias, A. M., Davis, E. A., & Palincsar, A. S. ( 2015 ). Examining student work for evidence of teacher uptake of educative curriculum materials. Journal of Research in Science Teaching, 52 ( 6 ), 816 – 846.
dc.identifier.citedreference Brem, S. K., & Rips, L. J. ( 2000 ). Explanation and evidence in informal argument. Cognitive Science, 24 ( 4 ), 573 – 604.
dc.identifier.citedreference Bricker, L. A., & Bell, P. ( 2008 ). Conceptualizations of argumentation from science studies and the learning sciences and their implications for the practices of science education. Science Education, 92, 473 – 498. http://doi.org/10.1002/sce.20278
dc.identifier.citedreference Brown, N. J. S., Nagashima, S. O., Fu, A., Timms, M., & Wilson, M. ( 2010 ). A framework for analyzing scientific reasoning in assessments. Educational Assessment, 15 ( 3–4 ), 142 – 174.
dc.identifier.citedreference Cetin, P. ( 2014 ). Explicit argumentation instruction to facilitate conceptual understanding and argumentation skills. Research in Science and Technological Education, 32 ( 1 ), 1 – 20.
dc.identifier.citedreference Chin, C., & Osborne, J. ( 2010 ). Students’ questions and discursive interaction: Their impact on argumentation during collaborative group discussions in science. Journal of Research in Science Teaching, 47 ( 7 ), 883 – 908.
dc.identifier.citedreference Cho, K.‐L., & Jonassen, D. ( 2002 ). The effects of argumentation scaffolds on argumentation and problem solving. Educational Technology Research and Development, 50 ( 3 ), 5 – 22.
dc.identifier.citedreference Cobb, P., & Whitenack, J. W. ( 1996 ). A method for conducting longitudinal analyses of classroom videorecordings and transcripts. Educational Studies in Mathematics, 30, 213 – 228.
dc.identifier.citedreference Cobb, P., Stephan, M., McClain, K., & Gravemeijer, K. ( 2001 ). Participating in classroom mathematical practices. Journal of the Learning Sciences, 10, 113 – 163. http://doi.org/10.1207/S15327809JLS10‐1‐2_6
dc.identifier.citedreference Cole, R., Becker, N., Towns, M., Sweeney, G., Wawro, M., & Rasmussen, C. ( 2012 ). Adapting a methodology from mathematics education research to chemistry education research: Documenting collective activity. International Journal of Science and Mathematics Education, 10 ( 1 ), 193 – 211.
dc.identifier.citedreference Cullipher, S., Sevian, H., & Talanquer, V. ( 2015 ). Reasoning about benefits, costs, and risks of chemical substances: Mapping different levels of sophistication. Chemistry Education Research and Practice, 16, 377 – 392.
dc.identifier.citedreference Daubenmire, P. L., Bunce, D. M., Draus, C., Frazier, M., Gessell, A., & van Opstal, M. T. ( 2015 ). During POGIL implementation the professor still makes a difference. Journal of College Science Teaching, 44 ( 5 ), 72 – 81.
dc.identifier.citedreference Duschl, R. A., & Osborne, J. ( 2002 ). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38 ( 1 ), 39 – 72. http://doi.org/10.1080/03057260208560187
dc.identifier.citedreference Erduran, S., Simon, S., & Osborne, J. ( 2004 ). TAPping into argumentation: Developments in the application of Toulmin’s argument pattern for studying science discourse. Science Education, 88 ( 6 ), 915 – 933.
dc.identifier.citedreference Erduran, S. ( 2007 ). Methodological foundations in the study of argumentation in science classrooms. In Argumentation in science education, Volume 35, (pp. 47 – 69 ). Springer, Science and Technology Education Library. http://doi.org/10.1007/978‐1‐4020‐6670‐2
dc.identifier.citedreference Farrell, J. J., Moog, R. S., & Spencer, J. N. ( 1999 ). A guided inquiry general chemistry course. Journal of Chemical Education, 76 ( 4 ), 570 – 574.
dc.identifier.citedreference Garcia‐Mila, M., Gilabert, S., Erduran, S., & Felton, M. ( 2013 ). The effect of argumentative task goal on the quality of argumentative discourse. Science Education, 97 ( 4 ), 497 – 523. http://doi.org/10.1002/sce.21057
dc.identifier.citedreference Hanson, D. ( 2006 ). Instructor’s guide to process‐oriented guided‐inquiry learning. Lisle, IL: Pacific Crest.
dc.identifier.citedreference Jimenez‐Aleixandre, M. P. ( 2007 ). Designing argumentation learning environments. In Argumentation in science education. Volume 35, (pp 91 – 115 ). http://doi.org/10.1007/978‐1‐4020‐6670‐2
dc.identifier.citedreference John‐Steiner, V., & Mahn, H. ( 1996 ). Sociocultural approaches to learning and development: A Vygotskian framework. Educational Psychologist, 31 ( 3–4 ), 191 – 206. http://doi.org/10.1080/00461520.1996.9653266
dc.identifier.citedreference Khishfe, R. ( 2014 ). Explicit nature of science and argumentation instruction in the context of socioscientific issues: An effect on student learning and transfer. International Journal of Science Education, 36 ( 6 ), 974 – 1016.
dc.identifier.citedreference Kuhn, D. ( 1991 ). The skills of argument. Cambridge: Cambridge University Press.
dc.identifier.citedreference Kulatunga, U., Moog, R. S., & Lewis, J. E. ( 2013 ). Argumentation and participation patterns in general chemistry peer‐led sessions. Journal of Research in Science Teaching, 50 ( 10 ), 1207 – 1231.
dc.owningcollname Interdisciplinary and Peer-Reviewed
 Show simple item record

This item appears in the following Collection(s)


Search Deep Blue

Advanced Search

Browse by

My Account

Information

Available Now


MLibrary logo