Show simple item record

Annulated Dialkoxybenzenes as Catholyte Materials for Non‐aqueous Redox Flow Batteries: Achieving High Chemical Stability through Bicyclic Substitution

dc.contributor.authorZhang, Jingjing
dc.contributor.authorYang, Zheng
dc.contributor.authorShkrob, Ilya A.
dc.contributor.authorAssary, Rajeev S.
dc.contributor.authorTung, Siu on
dc.contributor.authorSilcox, Benjamin
dc.contributor.authorDuan, Wentao
dc.contributor.authorZhang, Junjie
dc.contributor.authorSu, Chi Cheung
dc.contributor.authorHu, Bin
dc.contributor.authorPan, Baofei
dc.contributor.authorLiao, Chen
dc.contributor.authorZhang, Zhengcheng
dc.contributor.authorWang, Wei
dc.contributor.authorCurtiss, Larry A.
dc.contributor.authorThompson, Levi T.
dc.contributor.authorWei, Xiaoliang
dc.contributor.authorZhang, Lu
dc.date.accessioned2017-12-15T16:48:20Z
dc.date.available2019-01-07T18:34:37Zen
dc.date.issued2017-11
dc.identifier.citationZhang, Jingjing; Yang, Zheng; Shkrob, Ilya A.; Assary, Rajeev S.; Tung, Siu on; Silcox, Benjamin; Duan, Wentao; Zhang, Junjie; Su, Chi Cheung; Hu, Bin; Pan, Baofei; Liao, Chen; Zhang, Zhengcheng; Wang, Wei; Curtiss, Larry A.; Thompson, Levi T.; Wei, Xiaoliang; Zhang, Lu (2017). "Annulated Dialkoxybenzenes as Catholyte Materials for Non‐aqueous Redox Flow Batteries: Achieving High Chemical Stability through Bicyclic Substitution." Advanced Energy Materials 7(21): n/a-n/a.
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/2027.42/139992
dc.description.abstract1,4‐Dimethoxybenzene derivatives are materials of choice for use as catholytes in non‐aqueous redox flow batteries, as they exhibit high open‐circuit potentials and excellent electrochemical reversibility. However, chemical stability of these materials in their oxidized form needs to be improved. Disubstitution in the arene ring is used to suppress parasitic reactions of their radical cations, but this does not fully prevent ring‐addition reactions. By incorporating bicyclic substitutions and ether chains into the dialkoxybenzenes, a novel catholyte molecule, 9,10‐bis(2‐methoxyethoxy)‐1,2,3,4,5,6,7,8‐octahydro‐1,4:5,8‐dimethanenoanthracene (BODMA), is obtained and exhibits greater solubility and superior chemical stability in the charged state. A hybrid flow cell containing BODMA is operated for 150 charge–discharge cycles with a minimal loss of capacity.A novel bicyclical substituted dialkoxy‐benzene molecule, 9,10‐bis(2‐methoxy‐ethoxy)‐1,2,3,4,5,6,7,8‐octahydro‐1,4:5,8‐dimethanenoanthracene (BODMA), is developed for use as catholyte materials in non‐aqueous redox flow batteries with greater solubility (in their neutral state) and improved chemical stability (in their charged state). A hybrid flow cell using BODMA demonstrates stable efficiencies and capacity over 150 cycles. The molecular design approach of BODMA can be inspirational for future development of redox active molecules.
dc.publisherINTECH
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbicyclic substitution
dc.subject.othercatholyte materials
dc.subject.othernon‐aqueous redox flow batteries
dc.subject.otherpara‐dialkoxybenzene
dc.titleAnnulated Dialkoxybenzenes as Catholyte Materials for Non‐aqueous Redox Flow Batteries: Achieving High Chemical Stability through Bicyclic Substitution
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139992/1/aenm201701272.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139992/2/aenm201701272-sup-0001-S1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139992/3/aenm201701272_am.pdf
dc.identifier.doi10.1002/aenm.201701272
dc.identifier.sourceAdvanced Energy Materials
dc.identifier.citedreferenceB. Huskinson, M. P. Marshak, C. Suh, S. Er, M. R. Gerhardt, C. J. Galvin, X. Chen, A. Aspuru‐Guzik, R. G. Gordon, M. J. Aziz, Nature. 2014, 505, 195.
dc.identifier.citedreferenceK. Gong, Q. Fang, S. Gu, S. F. Y. Li, Y. Yan, Energy Environ. Sci. 2015, 8, 3515.
dc.identifier.citedreferenceG. L. Y. Soloveichik, Chem. Rev. 2015, 115, 11533.
dc.identifier.citedreferenceY. Yang, G. Zheng, Y. Cui, Energy Environ. Sci. 2013, 6, 1552.
dc.identifier.citedreferenceA. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick, Q. Liu, J. Appl. Electrochem. 2011, 41, 1137.
dc.identifier.citedreferenceL. Zhang, Z. Zhang, K. Amine, in Lithium Ion Battery‐New Developments, (Ed: Ilias Belharouak ), INTECH, Croatia 2012, pp. 174 – 188.
dc.identifier.citedreferenceL. Zhang, Z. Zhang, P. C. Redfern, L. A. Curtiss, K. Amine, Energy Environ. Sci. 2012, 5, 8204.
dc.identifier.citedreferenceR. Rathore, J. K. Kochi, J. Org. Chem. 1995, 60, 4399.
dc.identifier.citedreferenceJ. Huang, B. Pan, W. Duan, X. Wei, R. S. Assary, L. Su, F. R. Brushett, L. Cheng, C. Liao, M. S. Ferrandon, W. Wang, Z. Zhang, A. K. Burrell, L. A. Curtiss, I. A. Shkrob, J. S. Moore, L. Zhang, Sci. Rep. 2016, 6, 32102.
dc.identifier.citedreferenceJ. Huang, I. A. Shkrob, P. Wang, L. Cheng, B. Pan, M. He, C. Liao, Z. Zhang, L. A. Curtiss, L. Zhang, J. Mater. Chem. A 2015, 3, 7332.
dc.identifier.citedreferenceJ. Huang, L. Cheng, R. S. Assary, P. Wang, Z. Xue, A. K. Burrell, L. A. Curtiss, L. Zhang, Adv. Energy Mater. 2015, 5, 1401782.
dc.identifier.citedreferenceJ. A. Kowalski, L. Su, J. D. Milshtein, F. R. Brushett, Curr. Opin. Chem. Eng. 2016, 13, 45.
dc.identifier.citedreferenceS.‐H. Shin, S.‐H. Yun, S.‐H. Moon, RSC Adv. 2013, 3, 9095.
dc.identifier.citedreferenceF. R. Brushett, J. T. Vaughey, A. N. Jansen, Adv. Energy Mater. 2012, 2, 1390.
dc.identifier.citedreferenceM. L. Perry, A. Z. Weber, J. Electrochem. Soc. 2016, 163, A5064.
dc.identifier.citedreferenceY. Zhao, Y. Ding, J. Song, G. Li, G. Dong, J. B. Goodenough, G. Yu, Angew. Chem. Int. Ed. 2014, 53, 11036.
dc.identifier.citedreferenceZ. Chen, Y. Qin, K. Amine, Electrochim. Acta 2009, 54, 5605.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.