Show simple item record

Timeâ and Stateâ Dependent Input Delayâ Compensated Bangâ Bang Control of a Screw Extruder for 3D Printing

dc.contributor.authorDiagne, Mamadou
dc.contributor.authorBekiaris‐liberis, Nikolaos
dc.contributor.authorKrstic, Miroslav
dc.date.accessioned2017-12-15T16:48:25Z
dc.date.available2019-01-07T18:34:37Zen
dc.date.issued2017-11-25
dc.identifier.citationDiagne, Mamadou; Bekiaris‐liberis, Nikolaos ; Krstic, Miroslav (2017). "Timeâ and Stateâ Dependent Input Delayâ Compensated Bangâ Bang Control of a Screw Extruder for 3D Printing." International Journal of Robust and Nonlinear Control 27(17): 3727-3757.
dc.identifier.issn1049-8923
dc.identifier.issn1099-1239
dc.identifier.urihttps://hdl.handle.net/2027.42/139997
dc.publisherSpringer Berlin Heidelberg
dc.publisherWiley Periodicals, Inc.
dc.subject.otherextrusion
dc.subject.other3D printing
dc.subject.otherbangâ bang control
dc.subject.othertimeâ varying delay
dc.subject.othercoupled PDE/ODE
dc.titleTimeâ and Stateâ Dependent Input Delayâ Compensated Bangâ Bang Control of a Screw Extruder for 3D Printing
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMechanical Engineering
dc.subject.hlbsecondlevelIndustrial and Operations Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139997/1/rnc3761_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139997/2/rnc3761.pdf
dc.identifier.doi10.1002/rnc.3761
dc.identifier.sourceInternational Journal of Robust and Nonlinear Control
dc.identifier.citedreferenceElsey J, Riepenhausen J, Mckay B, Barton G, Willis M. Modeling and control of a food extrusion process. Computers Chemical Engineering 1997; 21: 361 â 366.
dc.identifier.citedreferenceJanssen LPBM, Rozendal PF, Hoogstraten HW, Cioffi M. A dynamic model for multiple steady states in reactive extrusion. International Polymer Processing 2001; 16: 263 â 271.
dc.identifier.citedreferenceJanssen LPBM, Rozendal PF, Hoogstraten HW, Cioffi M. A dynamic model accounting for oscillating behavior in extrusion reaction. International Polymer Processing 2003; 18: 277 â 284.
dc.identifier.citedreferenceBooy ML. Isothermal flow of viscous liquids in corotating twin screw devices. Polymer Engineering Science 1980; 20: 1220 â 1228.
dc.identifier.citedreferenceBooy ML. Geometry of fully wiped twinâ screw equipment. Polymer Engineering & Science 1978; 18 ( 12 ): 973 â 984.
dc.identifier.citedreferenceLi C. Modelling extrusion cooking. Mathematical and Computer Modelling 2001; 33: 553 â 563.
dc.identifier.citedreferenceFenner RT, Cox APD, Isherwood DP. Surging in screwâ extruders. POLYMER 1979; 20: 733 â 736.
dc.identifier.citedreferenceKulshreshtha M, Zaror CA, Jukes DJ. Simulating the performance of a control system for food extruders using modelâ based setâ point adjustment. Food Control 1995; 6: 135 â 141.
dc.identifier.citedreferenceNield S, Budman H, Tzoganakis C. Control of a LPDE reactive extrusion process. Control Engineering Practice 2000; 8: 911 â 920.
dc.identifier.citedreferenceMoreira R, Srivastava A, Gerrish J. Feedforward control model for a twinâ screw food extruder. Food Control 1990; 6: 361 â 386.
dc.identifier.citedreferenceMcAfee M, Thompson S. A novel approach to dynamic modeling of polymer extrusion for improved process control. Systems and Control Engineering 2007; 221: 617 â 627.
dc.identifier.citedreferencePetit N. Control problems for oneâ dimensional fluids and reactive fluids with moving interfaces. In Advances in the theory of control, signals and systems with physical modeling. Springer Berlin Heidelberg, 2010; 323 â 337.
dc.identifier.citedreferenceSontag E. On characterizations of the inputâ toâ state stability property. Systems & Control Letters 1995; 24 ( 5 ): 351 â 359.
dc.identifier.citedreferenceKrstic M. Input delay compensation for forward complete and strictâ feedforward nonlinear systems. IEEE Transactions on Automatic Control 2010; 55 ( 2 ): 287 â 303.
dc.identifier.citedreferenceKarafyllis I, Krstic M. Numerical schemes for nonlinear predictor feedback. Mathematics of Control, Signals, and Systems 2014; 26 ( 4 ): 519 â 546.
dc.identifier.citedreferenceKarafyllis I. Stabilization by means of approximate predictors for systems with delayed input. SIAM Journal on Control and Optimization 2011; 49 ( 3 ): 1100 â 1123.
dc.identifier.citedreferenceBreschâ Pietri D, Leroy T, Chauvin J, Petit N. 2014. Practical delay modeling of externally recirculated burned gas fraction for sparkâ ignited engines. In Delay Systems, Advances in Delays and Dynamics, vol. 1 Springer International Publishing: Switzerland; 359 â 372.
dc.identifier.citedreferenceMalisoff M, Mazenc F. Further remarks on strict inputâ toâ state stable Lyapunov functions for timeâ varying systems. Automatica 2005; 41 ( 11 ): 1973 â 1978.
dc.identifier.citedreferencePraly L, Wang Y. Stabilization in spite of matched unmodeled dynamics and an equivalent definition of inputâ toâ state stability. Mathematics of Control, Signals and Systems 1996; 9 ( 1 ): 1 â 33.
dc.identifier.citedreferenceKarafyllis I, Jiang Zâ P. Stability and Stabilization of Nonlinear Systems. Springerâ Verlag: London, 2011.
dc.identifier.citedreferenceEdwards H, Lin Y, Wang Y. Further remarks on strict inputâ toâ state stable Lyapunov functions for timeâ varying systems. In Proc. 39th IEEE Conf. Decision and Control, Sydney, Australia, 2000; 3501 â 3506.
dc.identifier.citedreferenceEdwards H, Lin Y, Wang Y. On inputâ toâ state stability for time varying nonlinear systems. Proc. 39th IEEE Conf. Decision and Control, Sydney, Australia, 2000; 3501 â 3506.
dc.identifier.citedreferenceMironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computerâ aided jetâ based 3D tissue engineering. Trends in Biotechnology 2003; 21 ( 4 ): 157 â 161.
dc.identifier.citedreferenceBilliet TB, Gevaert E, De Schryver T, Cornelissen M, Dubruel P. The 3D printing of gelatin methacrylamide cellâ laden tissueâ engineered constructs with high cell viability. Biomaterials 2014; 35 ( 1 ): 49 â 62.
dc.identifier.citedreferenceDragone V, Sans V, Rosnes MH, Kitson PJ, Cronin L. 3Dâ printed devices for continuousâ flow organic chemistry. Beilstein Journal of Organic Chemistry 2013; 9: 951 â 959.
dc.identifier.citedreferenceValkenaers H, Vogeler F, Ferraris E, Voet A, Kruth JP. A novel approach to additive manufacturing: screw extrusion 3Dâ printing. In 10th International Conference on Multi Material Micro Manufacturing, San Sebastian, Spain, 2013; 235 â 238.
dc.identifier.citedreferenceLadd C, So JH, Muth J, Dickey MD. 3D printing of free standing liquid metal microstructures. Advanced Materials 2013; 25 ( 36 ): 5081 â 5085.
dc.identifier.citedreferenceSeitz H, Rieder W, Irsen S, Leukers B, Tille C. Threeâ dimensional printing of porous ceramic scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2005; 74B ( 2 ): 782 â 788.
dc.identifier.citedreferenceWidmer MS, Gupta PK, Lu L, Meszlenyi RK, Evans G. R, Brandt K, Savel T, Gurlek A, Patrick CW, Mikos AG. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials 1998; 19 ( 21 ): 1945 â 1955.
dc.identifier.citedreferenceZein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 2002; 23 ( 4 ): 1169 â 1185.
dc.identifier.citedreferenceHutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. Journal of Biomedical Materials Research 2001; 55 ( 2 ): 203 â 216.
dc.identifier.citedreferenceWei H, Xianglin Z, Quan W, Bin W. Fabrication of HA/ β â TCP scaffolds based on microâ syringe extrusion system. Rapid Prototyping Journal 2013; 19 ( 5 ): 319 â 326.
dc.identifier.citedreferenceDeuser BK, Tang L, Landers RG, Leu MC, Hilmas GE. Hybrid extrusion forceâ velocity control using freezeâ form extrusion fabrication for functionally graded material parts. Journal of Manufacturing Science and Engineering 2013; 35: 1 â 11.
dc.identifier.citedreferenceLi M, Tang L, Xue F, Landers RG. Numerical simulation of ram extrusion process for ceramic materials. In Proceedings of Solid Freeform Symposium, vol. 35, Austin, TX, 2011; 290 â 308.
dc.identifier.citedreferenceZhao X, Landers RG, Leu MC. Adaptive control of freezeâ form extrusion fabrication processes. In Proceedings of ASME Dynamic Systems and Control Conference, vol. 35, Ann Arbor, 2008; 290 â 308.
dc.identifier.citedreferenceMason MS, Huang T, Landers RG, Leu MC, Hilmas GE, Hayes MW. Aqueousâ based extrusion fabrication of ceramics on demand. In Eighteen Annual Solid Freeform Fabrication of Ceramic on Demand, Austin, TX, 2007; 124 â 133.
dc.identifier.citedreferenceSatish B, Ben C. Dynamic modeling and monitoring of contour craftingâ an extrusionâ based layered manufacturing process. Journal of Manufacturing Science and Engineering 2007; 129: 135 â 142.
dc.identifier.citedreferenceLiu G. A new lowâ priced rapid prototyping system. In International Technology and Innovation Conference, 2006. ITIC 2006, Hangzhou, China, 2006; 856 â 860.
dc.identifier.citedreferenceSilveira Z, de Freitas MS, InforÄ atti Neto P, Noritomi PY, Silva JV. Study of the technical feasibility and design of a mini head screw extruder applied to filament deposition in desktop 3â D printer. Key Engineering Materials 2014; 572: 151 â 154.
dc.identifier.citedreferenceFreitas MS, Inforçatti NP, Silveira ZC, Noritomi PY, Silva JVL. Development of an innovative micro extrusion head based on screw for experimental additive manufacturing machines. 6th IFAC Conference on Management and Control of Production and Logistics, Fortaleza, Ceará, Brazil, 2013; 46 ( 24 ): 367 â 372.
dc.identifier.citedreferenceSilveira Z, de Freitas MS, InforÄ atti Neto P, Noritomi PY, da Silva JVL. Design development and functional validation of an interchangeable head based on mini screw extrusion applied in an experimental desktop 3â D printer. International Journal of Rapid Manufacturing 2014; 4 ( 1 ): 49 â 65.
dc.identifier.citedreferenceNeto I, Noritomi P, Silva J, Freitas M, Silveira Z. Development of an interchangeable head based on variable section screw applied to desktop 3â D printers. In High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping: Proceedings of the 6th International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 1â 5 October, 2013, 2013; 19.
dc.identifier.citedreferenceTurner BN, Strong R, Gold SA. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping Journal 2014; 20 ( 3 ): 192 â 204.
dc.identifier.citedreferenceKulshrestha M, Zaror C. An unsteady state model for twin screw extruders. Transactions of the Institution of Chemical Engineers, Part C 1992; 70: 21 â 28.
dc.identifier.citedreferenceLi C. Modelling extrusion cooking. Food and Bioproducts Processing 1999; 77 ( 1 ): 55 â 63.
dc.identifier.citedreferenceDiagne M, Couenne F, Maschke B. Mass transport equation with moving interface and its control as an input delay system. In IFAC, 11th Workshop on Timeâ Delay Systems, WTC, vol. 11, Grenoble, France, 2013; 331 â 336.
dc.identifier.citedreferenceDiagne M. Modelling and control of systems of conservation laws with a moving interface: an application to an extrusion process. PhD Thesis, University Claude Bernard, Lyon 1, Lyon, France, June 2013.
dc.identifier.citedreferenceDiagne M, Krstic M. Stateâ dependent input delayâ compensated bangâ bang control: application to 3D printing based on screw extruder. In 2015 American Control Conference (ACC), Chicago, IL, 2015; 5653 â 5658.
dc.identifier.citedreferenceDiagne M, Shang P, Wang Z. Feedback stabilization for the mass balance equations of an extrusion process. in IEEE Transactions on Automatic Control 2016; 61 ( 3 ): 760 â 765.
dc.identifier.citedreferenceDiagne M, Shang P, Wang Z. Feedback stabilization of a food extrusion process described by 1D PDEs defined on coupled timeâ varying spatial domains. In 12th IFAC Workshop on Time Delay Systems, Ann Arbor, MI, USA, 2015; 51 â 56.
dc.identifier.citedreferenceDiagne M, Shang P, Wang Z. Well â posedness and exact controllability of the mass balance equations for an extrusion process. Mathematical Methods in the Applied Sciences 2016; 39: 2659 â 2670.
dc.identifier.citedreferenceChoulak S, Couenne F, Le Gorrec Y, Jallut C, Cassagnau P, Michel A. Generic dynamic model for simulation and control of reactive extrusion. Industrial & Engineering Chemistry Research 2004; 43: 7373 â 7382.
dc.identifier.citedreferenceRoberts S, Guy R. Instabilities in an extrusionâ cooker: a simple model. Journal of Food Engineering 1986; 5 ( 1 ): 7 â 30.
dc.identifier.citedreferenceBekiarisâ Liberis N, Krstic M. Compensation of stateâ dependent input delay for nonlinear systems. IEEE Transactions on Automatic Control 2013; 58 ( 2 ): 275 â 289.
dc.identifier.citedreferenceBekiarisâ Liberis N, Krstic M. Robustness of nonlinear predictor feedback laws to timeâ and stateâ dependent delay perturbations. Automatica 2013; 49 ( 4 ): 1576 â 1590.
dc.identifier.citedreferenceBekiarisâ Liberis N, Krstic M. Compensation of timeâ varying input and state delays for nonlinear systems. Journal of Dynamic Systems, Measurement, and Control 2012; 134 ( 1 ): 011009.
dc.identifier.citedreferenceDerezinski SJ. Calculating surge dampening in melt delivery systems. Society of Plastics Engineers Ann. Tech. Conf, Toronto, 1997; 1: 341 â 346.
dc.identifier.citedreferenceHatzikiriakos SG, Dealy JM. Role of slip and fracture in the oscillating flow of HDPE in a capillary. Journal of Rheology 1992; 36 ( 5 ): 845 â 884.
dc.identifier.citedreferenceAbeykoon C, McAfee M, Li K, Martin PJ, Kelly AL. The inferential monitoring of screw load torque to predict process fluctuations in polymer extrusion. Journal of Materials Processing Technology 2011; 211 ( 12 ): 1907 â 1918.
dc.identifier.citedreferenceMudalamane R, Bigio DI. Process variations and the transient behavior of extruders. AIChE Journal 2003; 49 ( 12 ): 3150 â 3160.
dc.identifier.citedreferenceTadmor Z, Lipshitz SD, Lavie R. Dynamic model of a plasticating extruder. Polymer Engineering & Science 1974; 14 ( 2 ): 112 â 119, DOI: 10.1002/pen.760140206.
dc.identifier.citedreferenceKim EK, White JL. Isothermal transient startup for starved flow modular coâ rotating twin screw extruder. Polymer Engineering and Science 2004; 40: 543 â 553.
dc.identifier.citedreferenceKim EK, White JL. Nonâ isothermal transient startup for starved flow modular coâ rotating twin screw extruder. International Polymer Processing 2004; 15: 233 â 241.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.