Show simple item record

The effect of interactions between a bacterial strain isolated from drinking water and a pathogen surrogate on biofilms formation diverged under static vs flow conditions

dc.contributor.authorDai, D.
dc.contributor.authorRaskin, L.
dc.contributor.authorXi, C.
dc.date.accessioned2017-12-15T16:48:29Z
dc.date.available2019-02-01T19:56:25Zen
dc.date.issued2017-12
dc.identifier.citationDai, D.; Raskin, L.; Xi, C. (2017). "The effect of interactions between a bacterial strain isolated from drinking water and a pathogen surrogate on biofilms formation diverged under static vs flow conditions." Journal of Applied Microbiology 123(6): 1614-1627.
dc.identifier.issn1364-5072
dc.identifier.issn1365-2672
dc.identifier.urihttps://hdl.handle.net/2027.42/140002
dc.description.abstractAimsInteractions with water bacteria affect the incorporation of pathogens into biofilms and thus pathogen control in drinking water systems. This study was to examine the impact of static vs flow conditions on interactions between a pathogen and a water bacterium on pathogen biofilm formation under laboratory settings.Methods and ResultsA pathogen surrogate Escherichia coli and a drinking water isolate Stenotrophomonas maltophilia was selected for this study. Biofilm growth was examined under two distinct conditions, in flow cells with continuous medium supply vs in static microtitre plates with batch culture. E. coli biofilm was greatly stimulated (c. 2–1000 times faster) with the presence of S. maltophilia in flow cells, but surprisingly inhibited (c. 65–95% less biomass) in microtitre plates. These divergent effects were explained through various aspects including surface attachment, cellular growth, extracellular signals and autoaggregation.ConclusionsInteractions with the same water bacterium resulted in different effects on E. coli biofilm formation when culture conditions changed from static to flow.Significance and Impact of StudyThis study highlights the complexity of species interactions on biofilm formation and suggests that environmental conditions such as the flow regime can be taken into consideration for the management of microbial contamination in drinking water systems.
dc.publisherDenmark
dc.publisherWiley Periodicals, Inc.
dc.subject.otherenvironmental
dc.subject.othermicrobial contamination
dc.subject.otherE. coli
dc.subject.otherdrinking water
dc.subject.otherbiofilms
dc.titleThe effect of interactions between a bacterial strain isolated from drinking water and a pathogen surrogate on biofilms formation diverged under static vs flow conditions
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/140002/1/jam13596.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/140002/2/jam13596_am.pdf
dc.identifier.doi10.1111/jam.13596
dc.identifier.sourceJournal of Applied Microbiology
dc.identifier.citedreferenceSimoes, L.C., Azevedo, N., Pacheco, A., Keevil, C.W. and Vieira, M.J. ( 2006 ) Drinking water biofilm assessment of total and culturable bacteria under different operating conditions. Biofouling 22, 91 – 99.
dc.identifier.citedreferenceRudi, K., Tannaes, T. and Vatn, M. ( 2009 ) Temporal and spatial diversity of the tap water microbiota in a Norwegian hospital. Appl Environ Microbiol 75, 7855 – 7857.
dc.identifier.citedreferenceRyan, R.P., Fouhy, Y., Garcia, B.F., Watt, S.A., Niehaus, K., Yang, L., Tolker‐Nielsen, T. and Dow, J.M. ( 2008 ) Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol Microbiol 68, 75 – 86.
dc.identifier.citedreferenceRyan, R.P., Monchy, S., Cardinale, M., Taghavi, S., Crossman, L., Avison, M.B., Berg, G., van der Lelie, D. et al. ( 2009 ) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7, 514 – 525.
dc.identifier.citedreferenceSafdar, A. and Rolston, K.V. ( 2007 ) Stenotrophomonas maltophilia: changing spectrum of a serious bacterial pathogen in patients with cancer. Clin Infect Dis 45, 1602 – 1609.
dc.identifier.citedreferenceSanchez‐Vizuete, P., Orgaz, B., Aymerich, S., Le Coq, D. and Briandet, R. ( 2015 ) Pathogens protection against the action of disinfectants in multispecies biofilms. Front Microbiol 6, 705.
dc.identifier.citedreferenceSchwering, M., Song, J., Louie, M., Turner, R.J. and Ceri, H. ( 2013 ) Multi‐species biofilms defined from drinking water microorganisms provide increased protection against chlorine disinfection. Biofouling 29, 917 – 928.
dc.identifier.citedreferenceShen, Y., Monroy, G.L., Derlon, N., Janjaroen, D., Huang, C., Morgenroth, E., Boppart, S.A., Ashbolt, N.J. et al. ( 2015 ) Role of biofilm roughness and hydrodynamic conditions in Legionella pneumophila adhesion to and detachment from simulated drinking water biofilms. Environ Sci Technol 49, 4274 – 4282.
dc.identifier.citedreferenceSimoes, L.C., Simoes, M. and Vieira, M.J. ( 2007 ) Biofilm interactions between distinct bacterial genera isolated from drinking water. Appl Environ Microbiol 73, 6192 – 6200.
dc.identifier.citedreferenceSimoes, L.C., Simoes, M. and Vieira, M.J. ( 2010 ) Adhesion and biofilm formation on polystyrene by drinking water‐isolated bacteria. Antonie Van Leeuwenhoek 98, 317 – 329.
dc.identifier.citedreferenceSimões, L.C., Simões, M., Oliveira, R. and Vieira, M.J. ( 2007 ) Potential of the adhesion of bacteria isolated from drinking water to materials. J Basic Microbiol 47, 174 – 183.
dc.identifier.citedreferenceStoodley, P., Dodds, I., Boyle, J.D. and Lappin‐Scott, H.M. ( 1998 ) Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol 85 ( Suppl 1 ), 19S – 28S.
dc.identifier.citedreferenceStoodley, P., Cargo, R., Rupp, C.J., Wilson, S. and Klapper, I. ( 2002 ) Biofilm material properties as related to shear‐induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29, 361 – 367.
dc.identifier.citedreferenceSutherland, I. ( 2001 ) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147, 3 – 9.
dc.identifier.citedreferenceSzewzyk, U., Szewzyk, R., Manz, W. and Schleifer, K.H. ( 2000 ) Microbiological safety of drinking water. Annu Rev Microbiol 54, 81 – 127.
dc.identifier.citedreferenceSzymańska, J. ( 2007 ) Bacterial contamination of water in dental unit reservoirs. Ann Agric Environ Med 14, 137 – 140.
dc.identifier.citedreferenceVan Gerven, N., Klein, R.D., Hultgren, S.J. and Remaut, H. ( 2015 ) Bacterial amyloid formation: structural insights into curli biogensis. Trends Microbiol 23, 693 – 706.
dc.identifier.citedreferenceVidal, O., Longin, R., Prigent‐Combaret, C., Dorel, C., Hooreman, M. and Lejeune, P. ( 1998 ) Isolation of an Escherichia coli K‐12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180, 2442 – 2449.
dc.identifier.citedreferenceWang, H., Masters, S., Edwards, M.A., Falkinham, J.O. 3rd and Pruden, A. ( 2014 ) Effect of disinfectant, water age, and pipe materials on bacterial and eukaryotic community structure in drinking water biofilm. Environ Sci Technol 48, 1426 – 1435.
dc.identifier.citedreferenceWaters, V., Yau, Y., Prasad, S., Lu, A., Atenafu, E., Crandall, I., Tom, S., Tullis, E. et al. ( 2011 ) Stenotrophomonas maltophilia in cystic fibrosis: serologic response and effect on lung disease. Am J Respir Crit Care Med 183, 635 – 640.
dc.identifier.citedreferenceWingender, J. and Flemming, H.C. ( 2011 ) Biofilms in drinking water and their role as reservoir for pathogens. Int J Hyg Environ Health 214, 417 – 423.
dc.identifier.citedreferenceZhang, W., Sileika, T. and Packman, A.I. ( 2013 ) Effects of fluid flow conditions on interactions between species in biofilms. FEMS Microbiol Ecol 84, 344 – 354.
dc.identifier.citedreferenceArvanitidou, M., Vayona, A., Spanakis, N. and Tsakris, A. ( 2003 ) Occurrence and antimicrobial resistance of Gram‐negative bacteria isolated in haemodialysis water and dialysate of renal units: results of a Greek multicentre study. J Appl Microbiol 95, 180 – 185.
dc.identifier.citedreferenceBeer, K.D., Gargano, J.W., Roberts, V.A., Hill, V.R., Garrison, L.E., Kutty, P.K., Hilborn, E.D., Wade, T.J. et al. ( 2015 ) Surveillance for waterborne disease outbreaks associated with drinking water ‐ United States, 2011‐2012. MMWR Morb Mortal Wkly Rep 64, 842 – 848.
dc.identifier.citedreferencede Beer, D., Stoodley, P. and Lewandowski, Z. ( 1994 ) Liquid flow in heterogeneous biofilms. Biotechnol Bioeng 44, 636 – 641.
dc.identifier.citedreferenceBrunkard, J.M., Ailes, E., Roberts, V.A., Hill, V., Hilborn, E.D., Craun, G.F., Rajasingham, A., Kahler, A. et al. ( 2011 ) Surveillance for waterborne disease outbreaks associated with drinking water—United States, 2007–2008. MMWR Surveill Summ 60, 38 – 68.
dc.identifier.citedreferenceBurmolle, M., Ren, D.W., Bjarnsholt, T. and Sorensen, S.J. ( 2014 ) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22, 84 – 91.
dc.identifier.citedreferenceCastonguay, M.H., van der Schaaf, S., Koester, W., Krooneman, J., van der Meer, W., Harmsen, H. and Landini, P. ( 2006 ) Biofilm formation by Escherichia coli is stimulated by synergistic interactions and co‐adhesion mechanisms with adherence‐proficient bacteria. Res Microbiol 157, 471 – 478.
dc.identifier.citedreferenceCritchley, M., Cromar, N., McClure, N. and Fallowfield, H. ( 2003 ) The influence of the chemical composition of drinking water on cuprosolvency by biofilm bacteria. J Appl Microbiol 94, 501 – 507.
dc.identifier.citedreferenceDeziel, E., Comeau, Y. and Villemur, R. ( 2001 ) Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 183, 1195 – 1204.
dc.identifier.citedreferenceDonohue, M.J., Mistry, J.H., Donohue, J.M., O’Connell, K., King, D., Byran, J., Covert, T. and Pfaller, S. ( 2015 ) Increased frequency of nontuberculous Mycobacteria detection at potable water taps within the United States. Environ Sci Technol 49, 6127 – 6133.
dc.identifier.citedreferenceDouterelo, I., Jackson, M., Solomon, C. and Boxall, J. ( 2016 ) Microbial analysis of in situ biofilm formation in drinking water distribution systems: implications for monitoring and control of drinking water quality. Appl Microbiol Biotechnol 100, 3301 – 3311.
dc.identifier.citedreferenceElias, S. and Banin, E. ( 2012 ) Multi‐species biofilms: living with friendly neighbors. FEMS Microbiol Rev 36, 990 – 1004.
dc.identifier.citedreferenceGomes, I.B., Simoes, M. and Simoes, L.C. ( 2014 ) An overview on the reactors to study drinking water biofilms. Water Res 62, 63 – 87.
dc.identifier.citedreferenceGuo, K., Freguia, S., Dennis, P.G., Chen, X., Donose, B.C., Keller, J., Gooding, J.J. and Rabaey, K. ( 2013 ) Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ Sci Technol 47, 7563 – 7570.
dc.identifier.citedreferenceHaig, S.J., Kotlarz, N., Rockey, N., Kalikin, L.M., Caverly, L.J., LiPuma, J.J. and Raskin, L. ( 2016 ) Stagnation time, pipe material and chemical parameters impact the occurrence of opportunistic respiratory pathogens in drinking water. In IWA Specialist Conference: Microbial Ecology in Water Engineering and Biofilms ed. September 4–7. Copenhagen: Denmark.
dc.identifier.citedreferenceHeydorn, A., Nielsen, A.T., Hentzer, M., Sternberg, C., Givskov, M., Ersboll, B.K. and Molin, S. ( 2000 ) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146 ( Pt 10 ), 2395 – 2407.
dc.identifier.citedreferenceJakubovics, N.S., Gill, S.R., Iobst, S.E., Vickerman, M. and Kolenbrander, P.E. ( 2008 ) Regulation of gene expression in a mixed‐genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J Bacteriol 190, 3646 – 3657.
dc.identifier.citedreferenceKlayman, B.J., Volden, P.A., Stewart, P.S. and Camper, A.K. ( 2009 ) Escherichia coli O157:H7 requires colonizing partner to adhere and persist in a capillary flow cell. Environ Sci Technol 43, 2105 – 2111.
dc.identifier.citedreferenceKramer, M.H., Herwaldt, B.L., Craun, G.F., Calderon, R.L. and Juranek, D.D. ( 1996 ) Surveillance for waterborne‐disease outbreaks–United States, 1993‐1994. MMWR CDC Surveill Summ 45, 1 – 33.
dc.identifier.citedreferenceKreth, J., Merritt, J., Shi, W. and Qi, F. ( 2005 ) Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 187, 7193 – 7203.
dc.identifier.citedreferenceLau, H.Y. and Ashbolt, N.J. ( 2009 ) The role of biofilms and protozoa in Legionella pathogenesis: implications for drinking water. J Appl Microbiol 107, 368 – 378.
dc.identifier.citedreferenceLeChevallier, M.W., Welch, N.J. and Smith, D.B. ( 1996 ) Full‐scale studies of factors related to coliform regrowth in drinking water. Appl Environ Microbiol 62, 2201 – 2211.
dc.identifier.citedreferenceMampel, J., Spirig, T., Weber, S.S., Haagensen, J.A., Molin, S. and Hilbi, H. ( 2006 ) Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions. Appl Environ Microbiol 72, 2885 – 2895.
dc.identifier.citedreferenceManuel, C.M., Nunes, O.C. and Melo, L.F. ( 2007 ) Dynamics of drinking water biofilm in flow/non‐flow conditions. Water Res 41, 551 – 562.
dc.identifier.citedreferenceMashburn, L.M., Jett, A.M., Akins, D.R. and Whiteley, M. ( 2005 ) Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J Bacteriol 187, 554 – 566.
dc.identifier.citedreferenceNorton, C.D. and LeChevallier, M.W. ( 2000 ) A pilot study of bacteriological population changes through potable water treatment and distribution. Appl Environ Microbiol 66, 268 – 276.
dc.identifier.citedreferenceO’Toole, G.A. and Kolter, R. ( 1998 ) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28, 449 – 461.
dc.identifier.citedreferencePrigent‐Combaret, C., Prensier, G., Le Thi, T.T., Vidal, O., Lejeune, P. and Dorel, C. ( 2000 ) Developmental pathway for biofilm formation in curli‐producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2, 450 – 464.
dc.identifier.citedreferenceRendueles, O. and Ghigo, J.M. ( 2015 ) Mechanisms of competition in biofilm communities. Microbiol Spectr 3, 319 – 342.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.