Show simple item record

Site‐, Technique‐, and Time‐Related Aspects of the Postmortem Redistribution of Diazepam, Methadone, Morphine, and their Metabolites: Interest of Popliteal Vein Blood Sampling

dc.contributor.authorLemaire, Eric
dc.contributor.authorSchmidt, Carl
dc.contributor.authorDubois, Nathalie
dc.contributor.authorDenooz, Raphael
dc.contributor.authorCharlier, Corinne
dc.contributor.authorBoxho, Philippe
dc.date.accessioned2017-12-15T16:48:37Z
dc.date.available2019-01-07T18:34:37Zen
dc.date.issued2017-11
dc.identifier.citationLemaire, Eric; Schmidt, Carl; Dubois, Nathalie; Denooz, Raphael; Charlier, Corinne; Boxho, Philippe (2017). "Site‐, Technique‐, and Time‐Related Aspects of the Postmortem Redistribution of Diazepam, Methadone, Morphine, and their Metabolites: Interest of Popliteal Vein Blood Sampling." Journal of Forensic Sciences 62(6): 1559-1574.
dc.identifier.issn0022-1198
dc.identifier.issn1556-4029
dc.identifier.urihttps://hdl.handle.net/2027.42/140010
dc.description.abstractSampling site, technique, and time influence postmortem drug concentrations. In 57 cases, we studied drug concentration differences as follows: subclavian vein‐dissection/clamping versus blind stick, femoral vein‐dissection/clamping versus blind stick, right cardiac chamber, and popliteal vein‐dissection and clamping only. Cases were distributed in group #1 (all cases with both techniques), group #2 (dissection/clamping), and group #3 (blind stick). Sampled drugs were diazepam, methadone, morphine, and their metabolites. To assess PMR, mean concentrations and ratios were calculated for each group. Time‐dependent variations of blood concentrations and ratios were also assessed. Results indicate that site, method, and time may influence postmortem distribution interpretation in different ways. Popliteal blood seems less subject to PMR. In conclusion, our study is the first to evaluate concurrently three main aspects of PMR and confirms that the popliteal vein may represent a site that is more resistant to the changes seen as a result of PMR.
dc.publisherSpringer‐Verlag
dc.publisherWiley Periodicals, Inc.
dc.subject.otherblind stick
dc.subject.otherdissection/clamping
dc.subject.otherpostmortem interval
dc.subject.otherforensic toxicology
dc.subject.otherforensic science
dc.subject.otherpopliteal blood
dc.subject.otherpostmortem redistribution
dc.subject.othersampling site
dc.subject.othersampling technique
dc.titleSite‐, Technique‐, and Time‐Related Aspects of the Postmortem Redistribution of Diazepam, Methadone, Morphine, and their Metabolites: Interest of Popliteal Vein Blood Sampling
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelScience (General)
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/140010/1/jfo13404_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/140010/2/jfo13404.pdf
dc.identifier.doi10.1111/1556-4029.13404
dc.identifier.sourceJournal of Forensic Sciences
dc.identifier.citedreferenceHolm KM, Linnet K. Distribution of enantiomers of methadone and its main metabolite EDDP in human tissues and blood of postmortem cases. J Forensic Sci 2015; 60 ( 1 ): 95 – 101.
dc.identifier.citedreferenceQuatrehomme G, Bourret F, Liao Z, Ollier A. An experimental methodology for the study of postmortem changes in toxic concentrations of drugs, using secobarbital as an example. J Forensic Sci 1994; 39 ( 5 ): 1300 – 4.
dc.identifier.citedreferencePalamalai V, Olson KN, Kloss J, Middleton O, Mills K, Strobl AQ, et al. Superiority of postmortem liver fentanyl concentrations over peripheral blood influenced by postmortem interval for determination of fentanyl toxicity. Clin Biochem 2013; 46 ( 7–8 ): 598 – 602.
dc.identifier.citedreferenceLogan BK, Smirnow D. Postmortem distribution and redistribution of morphine in man. J Forensic Sci 1996; 41 ( 2 ): 221 – 9.
dc.identifier.citedreferenceHepler BR, Isenschmid DS, Schmidt CJ. Postmortem redistribution: practical considerations in death investigation. Proceedings of the 56th Annual Meeting American Academy of Forensic Sciences; 2004 Feb 16–21; Dallas, TX. Colorado Springs, CO: American Academy of Forensic Sciences, 2004.
dc.identifier.citedreferenceDalpe‐Scott M, Degouffe M, Garbutt D, Drost MA. Comparison of drug concentrations in postmortem cardiac and peripheral blood in 320 Cases. Can Soc For Sci J 1995; 28 ( 2 ): 113 – 21.
dc.identifier.citedreferencePos Pok PR, Haddouche D, Mauras M, Kuhlmann E, Burle J, Salmon T, et al. Cardiac and peripheral blood similarities in the comparison of nordiazepam and bromazepam blood concentrations. J Anal Toxicol 2008; 32 ( 9 ): 782 – 6.
dc.identifier.citedreferenceBaselt RC. Disposition of toxic drugs and chemicals in man, 10th edn. Seal Beach, CA: Biomedical Publications, 2014.
dc.identifier.citedreferenceHan E, Kim E, Hong H, Jeong S, Kim J, In S, et al. Evaluation of postmortem redistribution phenomena for commonly encountered drugs. Forensic Sci Int 2012; 219 ( 1–3 ): 265 – 71.
dc.identifier.citedreferenceCaplehorn JR, Drummer OH. Methadone dose and post‐mortem blood concentration. Drug Alcohol Rev 2002; 21 ( 4 ): 329 – 33.
dc.identifier.citedreferenceJantos R, Skopp G. Postmortem blood and tissue concentrations of R‐ and S‐enantiomers of methadone and its metabolite EDDP. Forensic Sci Int 2013; 226 ( 1–3 ): 254 – 60.
dc.identifier.citedreferenceCrandall CS, Kerrigan S, Blau RL, Lavalley J, Zumwalt R, McKinney PE. The influence of site of collection on postmortem morphine concentrations in heroin overdose victims. J Forensic Sci 2006; 51 ( 2 ): 413 – 20.
dc.identifier.citedreferenceSkopp G, Lutz R, Ganssmann B, Mattern R, Aderjan R. Postmortem distribution pattern of morphine and morphine glucuronides in heroin overdose. Int J Legal Med 1996; 109 ( 3 ): 118 – 24.
dc.identifier.citedreferenceGerostamoulos J, Drummer OH. Postmortem redistribution of morphine and its metabolites. J Forensic Sci 2000; 45 ( 4 ): 843 – 5.
dc.identifier.citedreferenceKoren G, Klein J. Postmortem redistribution of morphine in rats. Ther Drug Monit 1992; 14 ( 6 ): 461 – 3.
dc.identifier.citedreferenceMaskell PD, Albeishy M, De Paoli G, Wilson NE, Seetohul LN. Postmortem redistribution of the heroin metabolites morphine and morphine‐3‐glucuronide in rabbits over 24 h. Int J Legal Med 2016; 130 ( 2 ): 519 – 31.
dc.identifier.citedreferenceCrandall CS, Kerrigan S, Aguero RL, Lavalley J, McKinney PE. The influence of collection site and methods on postmortem morphine concentrations in a porcine model. J Anal Toxicol 2006; 30 ( 9 ): 651 – 8.
dc.identifier.citedreferenceCarrupt PA, Testa B, Bechalany A, el Tayar N, Descas P, Perrissoud D. Morphine 6‐glucuronide and morphine 3‐glucuronide as molecular chameleons with unexpected lipophilicity. J Med Chem 1991; 34 ( 4 ): 1272 – 5.
dc.identifier.citedreferenceLevine B, Blanke RV, Valentour JC. Postmortem stability of benzodiazepines in blood and tissues. J Forensic Sci 1983; 28 ( 1 ): 102 – 15.
dc.identifier.citedreferenceKarinen R, Andresen W, Smith‐Kielland A, Morland J. Long‐term storage of authentic postmortem forensic blood samples at −20°C: measured concentrations of benzodiazepines, central stimulants, opioids and certain medicinal drugs before and after storage for 16–18 years. J Anal Toxicol 2014; 38: 686 – 95.
dc.identifier.citedreferenceStevens HM. The stability of some drugs and poisons in putrefying human liver tissues. J Forensic Sci Soc 1984; 24 ( 6 ): 577 – 89.
dc.identifier.citedreferenceRobertson MD, Drummer OH. Postmortem drug metabolism by bacteria. J Forensic Sci 1995; 40 ( 3 ): 382 – 6.
dc.identifier.citedreferenceEl Mahjoub A, Staub C. Stability of benzodiazepines in whole blood samples stored at varying temperatures. J Pharm Biomed Anal 2000; 23 ( 6 ): 1057 – 63.
dc.identifier.citedreferenceSkopp G, Pötsch L, König I, Mattern R. A preliminary study on the stability of benzodiazepines in blood and plasma stored at 4 degrees C. Int J Legal Med 1998; 111 ( 1 ): 1 – 5.
dc.identifier.citedreferenceMoody DE, Monti KM, Spanbauer AC. Long‐term stability of abused drugs and antiabuse chemotherapeutical agents stored at −20°C. J Anal Toxicol 1999; 23 ( 6 ): 535 – 40.
dc.identifier.citedreferenceHadidi KA, Oliver JS. Stability of morphine and buprenorphine in whole blood. Int J Legal Med 1998; 111 ( 3 ): 165 – 7.
dc.identifier.citedreferencePapoutsis I, Nikolaou P, Pistos C, Dona A, Stefanidou M, Spiliopoulou C, et al. Stability of morphine, codeine, and 6‐acetylmorphine in blood at different sampling and storage conditions. J Forensic Sci 2014; 59 ( 2 ): 550 – 4.
dc.identifier.citedreferenceDubois N, Debrus B, Hubert Ph, Charlier C. Validated quantitative simultaneous determination of cocaine, opiates and amphetamines in serum by U‐HPLC coupled to tandem mass spectrometry. Acta Clin Belg 2010; 65 ( 1 ): 75 – 84.
dc.identifier.citedreferenceGaillard Y, Pépin G. Use of high‐performance liquid chromatography with photodiode array UV detection for the creation of a 600‐compound library. Application to forensic toxicology. J Chromatogr A 1997; 763: 149 – 63.
dc.identifier.citedreferencePélissier‐Alicot AL, Gaulier JM, Champsaur P, Marquet P. Mechanisms underlying postmortem redistribution of drugs: a review. J Anal Toxicol 2003; 27 ( 8 ): 533 – 44.
dc.identifier.citedreferenceYarema MC, Becker CE. Key concepts in postmortem drug redistribution. Clin Toxicol 2005; 43 ( 4 ): 235 – 41.
dc.identifier.citedreferenceCook DS, Braithwaite RA, Hale KA. Estimating antemortem drug concentrations from postmortem blood samples: the influence of postmortem redistribution. J Clin Pathol 2000; 53 ( 4 ): 282 – 5.
dc.identifier.citedreferenceFerner RE. Post‐mortem clinical pharmacology. Br J Clin Pharmacol 2008; 66 ( 4 ): 430 – 43.
dc.identifier.citedreferenceRodda KE, Drummer OH. The redistribution of selected psychiatric drugs in post‐mortem cases. Forensic Sci Int 2006; 164 ( 2–3 ): 235 – 9.
dc.identifier.citedreferenceKennedy MC. Post‐mortem drug concentrations. Intern Med J 2010; 40 ( 3 ): 183 – 7.
dc.identifier.citedreferenceDrummer OH. Postmortem toxicological redistribution. In: Rutty GN, editor. Essentials of autopsy practice. London, U.K.: Springer‐Verlag, 2008; 1 – 21.
dc.identifier.citedreferenceSastre C, Baillif‐Couniou V, Musarella F, Bartoli C, Mancini J, Piercecchi‐Marti MD, et al. Can subclavian blood be equated with a peripheral blood sample? A series of 50 cases Int J Legal Med 2013; 127 ( 2 ): 379 – 84.
dc.identifier.citedreferenceDrummer OH. Postmortem toxicology of drugs of abuse. Forensic Sci Int 2004; 142 ( 2–3 ): 101 – 13.
dc.identifier.citedreferenceCarroll FT, Marraccini JV, Lewis S, Wright W. Morphine‐3‐D glucuronide stability in postmortem specimens exposed to bacterial enzymatic hydrolysis. Am J Forensic Med Pathol 2000; 21 ( 4 ): 323 – 9.
dc.identifier.citedreferenceMoriya F, Hashimoto Y. Distribution of free and conjugated morphine in body fluids and tissues in a fatal heroin overdose: is conjugated morphine stable in postmortem specimens? J Forensic Sci 1997; 42 ( 4 ): 736 – 40.
dc.identifier.citedreferenceSkopp G, Pötsch L, Klingmann A, Mattern R. Stability of morphine, morphine‐3‐glucuronide, and morphine‐6‐glucuronide in fresh blood and plasma and postmortem blood samples. J Anal Toxicol 2001; 25 ( 1 ): 2 – 7.
dc.identifier.citedreferenceRobertson MD, Drummer OH. Stability of nitrobenzodiazepines in postmortem blood. J Forensic Sci 1998; 43 ( 1 ): 5 – 8.
dc.identifier.citedreferenceLemaire E, Schmidt C. Comparison of the concentrations of morphine, methadone and diazepam when sampled from cardiac, subclavian, femoral and popliteal sites and from clamped and unclamped subclavian and femoral vein samples. Proceedings of the 67th Annual Meeting of the American Academy of Forensic Sciences; 2015 Feb 16–21; Orlando, FL. Colorado Springs, CO: American Academy of Forensic Sciences, 2015.
dc.identifier.citedreferenceLemaire E, Schmidt C, Denooz R, Charlier C, Boxho P. Popliteal vein blood sampling and the postmortem redistribution of diazepam, methadone and morphine. J Forensic Sci 2016; 61 ( 4 ): 1017 – 28.
dc.identifier.citedreferenceProuty RW, Anderson WH. The forensic science implications of site and temporal influences on postmortem blood‐drug concentrations. J Forensic Sci 1990; 35 ( 2 ): 243 – 70.
dc.identifier.citedreferenceMcIntyre IM. Liver and peripheral blood concentration ratio (L/P) as a marker of postmortem drug redistribution: a literature review. Forensic Sci Med Pathol 2014; 10 ( 1 ): 91 – 6.
dc.identifier.citedreferenceMcIntyre IM, Meyer Escott C. Postmortem drug redistribution. J Forensic Res 2012; 3: 6.
dc.identifier.citedreferencePounder DJ, Adams E, Fuke C, Langford AM. Site to site variability of postmortem drug concentrations in liver and lung. J Forensic Sci 1996; 41 ( 6 ): 927 – 32.
dc.identifier.citedreferenceMcIntyre IM, Sherrard J, Lucas J. Postmortem carisoprodol and meprobamate concentrations in blood and liver: lack of significant redistribution. J Anal Toxicol 2012; 36 ( 3 ): 177 – 81.
dc.identifier.citedreferenceMcIntyre IM, Mallett P. Sertraline concentrations and postmortem redistribution. Forensic Sci Int 2012; 223 ( 1–3 ): 349 – 52.
dc.identifier.citedreferencePounder DJ, Jones GR. Post‐mortem drug redistribution – a toxicological nightmare. Forensic Sci Int 1990; 45 ( 3 ): 253 – 63.
dc.identifier.citedreferenceSkopp G. Preanalytical aspects in postmortem toxicology. Forensic Sci Int 2004; 142 ( 2–3 ): 75 – 100.
dc.identifier.citedreferenceHargrove VM, McCutcheon JR. Comparison of drug concentrations taken from clamped and unclamped femoral vessels. J Anal Toxicol 2008; 32 ( 8 ): 621 – 5.
dc.identifier.citedreferenceHargrove VM, Molina DK. Peripheral postmortem redistribution of morphine. Am J Forensic Med Pathol 2014; 35 ( 2 ): 106 – 8.
dc.identifier.citedreferenceMolina DK, Hargrove VM. Should postmortem subclavian blood be considered a peripheral or central sample? Am J Forensic Med Pathol 2013; 34 ( 2 ): 155 – 8.
dc.identifier.citedreferenceLemaire E, Schmidt C, Denooz R, Charlier C, Boxho P. Postmortem concentration and redistribution of diazepam, methadone and morphine with subclavian and femoral vein dissection/clamping. J Forensic Sci 2016; 61 ( 6 ): 1596 – 603.
dc.identifier.citedreferenceLeikin JB, Watson WA. Post‐mortem toxicology: what the dead can and cannot tell us. J Toxicol Clin Toxicol 2003; 41 ( 1 ): 47 – 56.
dc.identifier.citedreferenceMoriya F, Hashimoto Y. Redistribution of basic drugs into cardiac blood from surrounding tissues during early‐stages postmortem. J Forensic Sci 1999; 44 ( 1 ): 10 – 6.
dc.identifier.citedreferenceSawyer WR, Forney RB. Postmortem disposition of morphine in rats. Forensic Sci Int 1988 Sep; 38 ( 3–4 ): 259 – 73.
dc.identifier.citedreferencePounder DJ, Hartley AK, Watmough PJ. Postmortem redistribution and degradation of dothiepin. Human case studies and an animal model. Am J Forensic Med Pathol 1994; 15 ( 3 ): 231 – 5.
dc.identifier.citedreferenceButzbach DM. The influence of putrefaction and sample storage on post‐mortem toxicology results. Forensic Sci Med Pathol 2010; 6 ( 1 ): 35 – 45.
dc.identifier.citedreferenceGerostamoulos D, Beyer J, Staikos V, Tayler P, Woodford N, Drummer OH. The effect of the postmortem interval on the redistribution of drugs: a comparison of mortuary admission and autopsy blood specimens. Forensic Sci Med Pathol 2012; 8 ( 4 ): 373 – 9.
dc.identifier.citedreferenceSaar E, Beyer J, Gerostamoulos D, Drummer OH. The time‐dependant post‐mortem redistribution of antipsychotic drugs. Forensic Sci Int 2012; 222 ( 1–3 ): 223 – 7.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.