Show simple item record

Mutations in fetal genes involved in innate immunity and host defense against microbes increase risk of preterm premature rupture of membranes (PPROM)

dc.contributor.authorModi, Bhavi P.
dc.contributor.authorTeves, Maria E.
dc.contributor.authorPearson, Laurel N.
dc.contributor.authorParikh, Hardik I.
dc.contributor.authorHaymond‐thornburg, Hannah
dc.contributor.authorTucker, John L.
dc.contributor.authorChaemsaithong, Piya
dc.contributor.authorGomez‐lopez, Nardhy
dc.contributor.authorYork, Timothy P.
dc.contributor.authorRomero, Roberto
dc.contributor.authorStrauss, Jerome F.
dc.date.accessioned2017-12-15T16:49:08Z
dc.date.available2019-01-07T18:34:38Zen
dc.date.issued2017-11
dc.identifier.citationModi, Bhavi P.; Teves, Maria E.; Pearson, Laurel N.; Parikh, Hardik I.; Haymond‐thornburg, Hannah ; Tucker, John L.; Chaemsaithong, Piya; Gomez‐lopez, Nardhy ; York, Timothy P.; Romero, Roberto; Strauss, Jerome F. (2017). "Mutations in fetal genes involved in innate immunity and host defense against microbes increase risk of preterm premature rupture of membranes (PPROM)." Molecular Genetics & Genomic Medicine 5(6): 720-729.
dc.identifier.issn2324-9269
dc.identifier.issn2324-9269
dc.identifier.urihttps://hdl.handle.net/2027.42/140041
dc.description.abstractBackgroundTwin studies have revealed a significant contribution of the fetal genome to risk of preterm birth. Preterm premature rupture of membranes (PPROM) is the leading identifiable cause of preterm delivery. Infection and inflammation of the fetal membranes is commonly found associated with PPROM.MethodsWe carried out whole exome sequencing (WES) of genomic DNA from neonates born of Africanâ American mothers whose pregnancies were complicated by PPROM (76) or were normal term pregnancies (N = 43) to identify mutations in 35 candidate genes involved in innate immunity and host defenses against microbes. Targeted genotyping of mutations in the candidates discovered by WES was conducted on an additional 188 PPROM cases and 175 controls.ResultsWe identified rare heterozygous nonsense and frameshift mutations in several of the candidate genes, including CARD6, CARD8, DEFB1, FUT2, MBL2, NLP10, NLRP12, and NOD2. We discovered that some mutations (CARD6, DEFB1, FUT2, MBL2, NLRP10, NOD2) were present only in PPROM cases.ConclusionsWe conclude that rare damaging mutations in innate immunity and host defense genes, the majority being heterozygous, are more frequent in neonates born of pregnancies complicated by PPROM. These findings suggest that the risk of preterm birth in Africanâ Americans may be conferred by mutations in multiple genes encoding proteins involved in dampening the innate immune response or protecting the host against microbial infection and microbial products.Rare damaging mutations in fetal innate immunity and host defense genes, the majority being heterozygous, are more frequent in neonates born of pregnancies complicated by preterm premature rupture of membranes. An increased risk of preterm birth may be conferred by mutations in multiple genes encoding proteins involved in dampening the innate immune response or protecting the host against microbial infection and microbial products.
dc.publisherWiley Periodicals, Inc.
dc.publisherNational Academy Press
dc.subject.othermannoseâ binding lectin protein
dc.subject.otherAntimicrobial peptides
dc.subject.otherchorioamnionitis
dc.subject.otherdefensins
dc.subject.otherfucosyltransferase
dc.subject.otherinflammasome
dc.subject.otherinnate immunity
dc.subject.otherpreterm birth
dc.subject.otherpreterm premature rupture of membranes
dc.titleMutations in fetal genes involved in innate immunity and host defense against microbes increase risk of preterm premature rupture of membranes (PPROM)
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelHuman Genetics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/140041/1/mgg3330.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/140041/2/mgg3330_am.pdf
dc.identifier.doi10.1002/mgg3.330
dc.identifier.sourceMolecular Genetics & Genomic Medicine
dc.identifier.citedreferencePorto, W. F., D. O. Nolasco, A. S. Pires, R. Pereira, O. L. Franco, and S. A. Alencar. 2016. Biopolymers 106: 633 â 644.
dc.identifier.citedreferenceLorenz, E., M. Hallman, R. Marttila, R. Haataja, and D. A. Schwartz. 2002. Association between the Asp299Gly polymorphisms in the Tollâ like receptor 4 and premature births in the Finnish population. Pediatr. Res. 52: 373 â 376.
dc.identifier.citedreferenceMacones, G. A., S. Parry, M. Elkousy, B. Clothier, S. H. Ural, and J. F. Strauss 3rd. 2004. A polymorphism in the promoter region of TNF and bacterial vaginosis: preliminary evidence of geneâ environment interaction in the etiology of spontaneous preterm birth. Am. J. Obstet. Gynecol. 190: 1504 â 1508.
dc.identifier.citedreferenceMeis, P. J., R. L. Goldenberg, B. M. Mercer, J. D. Iams, A. H. Moawad, M. Miodovnik, et al. 2000. Preterm prediction study: is socioeconomic status a risk factor for bacterial vaginosis in Black or in White women? Am. J. Perinatol. 17: 41 â 45.
dc.identifier.citedreferenceModi, B. P., M. E. Teves, L. N. Pearson, H. I. Parikh, P. Chaemsaithong, N. U. Sheth, et al. 2017. Rare mutations and potentially damaging missense variants in genes encoding fibrillar collagens and proteins involved in their production are candidates for risk for preterm premature rupture of membranes. PLoS ONE 12: e0174356.
dc.identifier.citedreferenceMoore, S., M. Ide, M. Randhawa, J. J. Walker, J. G. Reid, and N. A. Simpson. 2004. An investigation into the association among preterm birth, cytokine gene polymorphisms and periodontal disease. BJOG 111: 125 â 132.
dc.identifier.citedreferenceMoutquin, J. M. 2003. Socioâ economic and psychosocial factors in the management and prevention of preterm labour. BJOG 110 ( Suppl 20 ): 56 â 60.
dc.identifier.citedreferenceMurtha, A. P., and R. Menon. 2015. Regulation of fetal membrane inflammation: a critical step in reducing adverse pregnancy outcome. Am. J. Obstet. Gynecol. 213: 447 â 448.
dc.identifier.citedreferenceNedovic, B., B. Posteraro, E. Leoncini, A. Ruggeri, R. Amore, M. Sanguinetti, et al. 2014. Mannoseâ binding lectin codon 54 gene polymorphism and vulvovaginal candidiasis: a systematic review and metaâ analysis. Biomed. Res. Int. 2014: 738298.
dc.identifier.citedreferenceOosting, M., S. C. Cheng, J. M. Bolscher, R. Vesteringâ Stenger, T. S. Plantinga, I. C. Verschueren, et al. 2014. Human TLR10 is an antiâ inflammatory patternâ recognition receptor. Proc. Natl Acad. Sci. USA 111: E4478 â E4484.
dc.identifier.citedreferencePalomba, S., G. Sereni, A. Falbo, M. Beltrami, S. Lombardini, M. C. Boni, et al. 2014. Inflammatory bowel diseases and human reproduction: a comprehensive evidenceâ based review. World J. Gastroenterol. 20: 7123 â 7136.
dc.identifier.citedreferenceParets, S. E., A. K. Knight, and A. K. Smith. 2015. Insights into genetic susceptibility in the etiology of spontaneous preterm birth. Appl. Clin. Genet. 8: 283 â 290.
dc.identifier.citedreferenceParry, S., and J. F. Strauss III. 1998. Premature rupture of the fetal membranes. NEJM 338: 663 â 670.
dc.identifier.citedreferencePlunkett, J., M. F. Feitosa, M. Trusgnich, M. F. Wangler, L. Palomar, Z. A. Kistka, et al. 2009. Mother’s genome or maternallyâ inherited genes acting in the fetus influence gestational age in familial preterm birth. Hum. Hered. 68: 209 â 219.
dc.identifier.citedreferenceRoberts, A. K., F. Monzonâ Bordonaba, P. G. Van Deerlin, J. Holder, G. A. Macones, M. A. Morgan, et al. 1999. Association of polymorphism within the promoter of the tumor necrosis factor alpha gene with increased risk of preterm premature rupture of the fetal membranes. Am. J. Obstet. Gynecol. 180: 1297 â 1302.
dc.identifier.citedreferenceRomero, R., L. A. Friel, D. R. Velez Edwards, J. P. Kusanovic, S. S. Hassan, S. Mazakiâ Tovi, et al. 2010. A genetic association study of maternal and fetal candidate genes that predispose to preterm prelabor rupture of membranes (PROM). Am. J. Obstet. Gynecol. 203: 361. e1â 361.e30.
dc.identifier.citedreferenceRomero, R., Y. Xu, O. Plazyo, P. Chaemsaithong, T. Chaiworapongsa, R. Unkel, et al. 2016. A role for the inflammasome in spontaneous labor at term. Am. J. Reprod. Immunol. Mar 8. https://doi.org/10.1111/aji.12440. [Epub ahead of print]
dc.identifier.citedreferenceSchaefer, A. S., G. M. Richter, M. Nothnagel, et al. 2010. A 3â ² UTR transition within DEFB1 is associated with chronic and aggressive periodontitis. Genes Immun. 11: 45 â 54.
dc.identifier.citedreferenceShand, A. W., J. S. Chen, W. Selby, M. Solomon, and C. L. Roberts. 2016. Inflammatory bowel disease in pregnancy: a populationâ based study of prevalence and pregnancy outcomes. BJOG 123: 1862 â 1870.
dc.identifier.citedreferenceSheikh, I. A., E. Ahmad, M. S. Jamal, M. Rehan, M. Assidi, I. A. Tayubi, et al. 2016. Spontaneous preterm birth and single nucleotide gene polymorphisms: a recent update. BMC Genom. 17 ( Suppl 9 ): 759.
dc.identifier.citedreferenceShen, T. T., E. A. DeFranco, D. M. Stamilio, J. J. Chang, and L. J. Muglia. 2008. A populationâ based study of raceâ specific risk for preterm premature rupture of membranes. Am. J. Obstet. Gynecol. 199: 373.e1â 7.
dc.identifier.citedreferenceSimhan, H. N., M. A. Krohn, J. M. Roberts, A. Zeevi, and S. N. Caritis. 2003. Interleukinâ 6 promoter â 174 polymorphism and spontaneous preterm birth. Am. J. Obstet. Gynecol. 189: 915 â 918.
dc.identifier.citedreferenceStrauss, J. F. 3rd. 2013. Extracellular matrix dynamics and fetal membrane rupture. Reprod. Sci. 20: 140 â 153.
dc.identifier.citedreferenceSvensson, A. C., S. Sandin, S. Cnattingius, M. Reilly, Y. Pawitan, C. M. Hultman, et al. 2009. Maternal effects for preterm birth: a genetic epidemiologic study of 630,000 families. Am. J. Epidemiol. 170: 1365 â 1372.
dc.identifier.citedreferenceWang, X., B. Zuckerman, C. Pearson, G. Kaufman, C. Chen, G. Wang, et al. 2002. Maternal cigarette smoking, metabolic gene polymorphism, and infant birth weight. JAMA 287: 195 â 202.
dc.identifier.citedreferenceWang, H., S. Parry, G. Macones, M. D. Sammel, P. E. Ferrand, H. Kuivaniemi, et al. 2004. Functionally significant SNP MMP8 promoter haplotypes and preterm premature rupture of membranes (PPROM). Hum. Mol. Genet. 13: 2659 â 2669.
dc.identifier.citedreferenceWang, H., S. Parry, G. Macones, M. D. Sammel, H. Kuivaniemi, G. Tromp, et al. 2006. A functional SNP in the promoter of the SERPINH1 gene increases risk of preterm premature rupture of membranes in African Americans. Proc. Natl Acad. Sci. USA 103: 13463 â 13467.
dc.identifier.citedreferenceWang, H., M. Ogawa, J. R. Wood, M. S. Bartolomei, M. D. Sammel, J. P. Kusanovic, et al. 2008. Genetic and epigenetic mechanisms combine to control MMP1 expression and its association with preterm premature rupture of membranes. Hum. Mol. Genet. 17: 1087 â 1096.
dc.identifier.citedreferenceWitkin, S. S., S. Vardhana, M. Yih, K. Doh, A. M. Bongiovanni, and S. Gerber. 2003. Polymorphism in intron 2 of the fetal interleukinâ 1 receptor antagonist genotype influences midtrimester amniotic fluid concentrations of interleukinâ 1beta and interleukinâ 1 receptor antagonist and pregnancy outcome. Am. J. Obstet. Gynecol. 189: 1413 â 1417.
dc.identifier.citedreferenceYork, T. P., J. F. Strauss 3rd, M. C. Neale, and L. J. Eaves s. 2009. Estimating fetal and maternal genetic contributions to premature birth from multiparous pregnancy histories of twins using MCMC and maximumâ likelihood approaches. Twin Res. Hum. Genet. 12: 333 â 342.
dc.identifier.citedreferenceYork, T. P., J. F. Strauss 3rd, M. C. Neale, and L. J. Eaves. 2010. Racial differences in genetic and environmental risk to preterm birth. PLoS ONE 5: e12391.
dc.identifier.citedreferenceYork, T. P., L. J. Eaves, P. Lichtenstein, M. C. Neale, A. Svensson, S. Latendresse, et al. 2013. Fetal and maternal genesâ influence on gestational age in a quantitative genetic analysis of 244,000 Swedish births. Am. J. Epidemiol. 178: 543 â 550.
dc.identifier.citedreferenceYork, T. P., L. J. Eaves, M. C. Neale, and J. F. Strauss 3rd. 2014. The contribution of genetic and environmental factors to the duration of pregnancy. Am. J. Obstet. Gynecol. 210: 398 â 405.
dc.identifier.citedreferenceYork, T. P., J. F. Strauss 3rd, and L. J. Eaves. 2015. A narrow heritability evaluation of gestational age at birth. Hum. Genet. 134: 809 â 811.
dc.identifier.citedreferenceAhern, J., K. E. Pickett, S. Selvin, and B. Abrams. 2003. Preterm birth among Africanâ American and white women: a multilevel analysis of socioeconomic characteristics and cigarette smoking. J. Epidemiol. Community Health 57: 606 â 611.
dc.identifier.citedreferenceAndreoletti, G., V. Shakhnoich, K. Christenson, T. Coelho, R. Haggarty, N. A. Afzal, et al. 2017. Exome anlysis of rare and common variants within the NOD signaling pathway. Sci. Rep. 7: 46454.
dc.identifier.citedreferenceAnnells, M. F., P. H. Hart, C. G. Mullighan, S. L. Heatley, J. S. Robinson, P. Bardy, et al. 2004. Interleukinsâ 1,â 4,â 6,â 10, tumor necrosis factor, transforming growth factorâ β, FAS, and mannoseâ binding protein C gene polymorphisms in Australian women: risk of preterm birth. Am. J. Obstet. Gynecol. 191: 2056 â 2067.
dc.identifier.citedreferenceAnnells, M. F., P. H. Hart, C. G. Mullighan, S. L. Heatley, J. S. Robinson, and H. M. McDonald. 2005. Polymorphisms in immunoregulatory genes and the risk of histologic chorioamnionitis in Caucasoid women: a case control study. BMC Pregnancy Childbirth 5: 4.
dc.identifier.citedreferenceAnum, E. A., L. D. Hill, A. Pandya, and J. F. Strauss 3rd. 2009a. Connective tissue and related disorders and preterm birth: clues to genes contributing to prematurity. Placenta 30: 207 â 215.
dc.identifier.citedreferenceAnum, E. A., E. H. Springel, M. D. Shriver, and J. F. Strauss 3rd. 2009b. Genetic contributions to disparities in preterm birth. Pediatr. Res. 65: 1 â 9.
dc.identifier.citedreferenceAveyard, P., K. K. Cheng, S. Manaseki, and J. Gardosi. 2002. The risk of preterm delivery in women from different ethnic groups. BJOG 109: 894 â 899.
dc.identifier.citedreferenceAvila, E. E.. 2016. Functions of antimicrobial peptides in vertebrates. Curr. Protein Pept. Sci. https://doi.org/10.2174/1389203717666160813162629. In press.
dc.identifier.citedreferenceBacelis, J., J. Juodakis, V. Sengpiel, G. Zhang, R. Myhre, L. J. Muglia, et al. 2016. Literatureâ informed analysis of a genomeâ wide association study of gestational age in Norwegian women and children suggests involvement of inflammatory pathways. PLoS ONE 11: e0160335. https://doi.org/10.1371/journal.pone.0160335. Erratum. In: PLoS One. 2016 Oct 19;11(10):e0165328.
dc.identifier.citedreferenceBehrman, R. E., and A. S. Bulter. 2007. Preterm birth: causes, consequences and prevention. National Academy Press, Washington, D.C.
dc.identifier.citedreferenceBoyd, H. A., G. Poulsen, J. Wohlfahrt, J. C. Murray, B. Feenstra, and M. Melbye. 2009. Maternal contributions to preterm delivery. Am. J. Epidemiol. 170: 1358 â 1364.
dc.identifier.citedreferenceBröms, G., F. Granath, O. Stephansson, and H. Kieler. 2016. Preterm birth in women with inflammatory bowel disease â the association with disease activity and drug treatment. Scand. J. Gastroenterol. 51: 1462 â 1469.
dc.identifier.citedreferenceBrubaker, S. W., K. S. Bonham, I. Zanoni, and J. C. Kagan. 2015. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33: 257 â 290.
dc.identifier.citedreferenceBrubaker, D., Y. Liu, J. Wang, H. Tan, G. Zhang, B. Jacobsson, et al. 2016. Finding lost genes in GWAS via integrativeâ omics analysis reveals novel subâ networks associated with preterm birth. Hum. Mol. Genet. 25: 5254 â 5264.
dc.identifier.citedreferenceCapece, A., O. Vasieva, S. Meher, Z. Alfirevic, and A. Alfirevic. 2014. Pathway analysis of genetic factors associated with spontaneous preterm birth and prelabor preterm rupture of membranes. PLoS ONE 9: e108578.
dc.identifier.citedreferenceCaruso, R., N. Warner, N. Inohara, and G. Núñez. 2014. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 41: 898 â 908.
dc.identifier.citedreferenceCollinsâ Schramm, H. E., B. Chima, D. J. Operario, L. A. Criswell, and M. F. Seldin. 2003. Markers informative for ancestry demonstrate consistent megabaseâ length linkage disequilibrium in the African American population. Hum. Genet. 113: 211 â 219.
dc.identifier.citedreferenceCourtois, G. 2005. The NFâ kappaB signaling pathway in human genetic diseases. Cell. Mol. Life Sci. 62: 1682 â 1691.
dc.identifier.citedreferenceEisenbarth, S. C., A. Williams, O. R. Colegio, H. Meng, T. Strowig, A. Rongvaux, et al. 2012. NLRP10 is a NODâ like receptor essential to initiate adaptive immunity by dendritic cells. Nature 484: 510 â 513. Erratum in: Nature. 2016 Feb 25;530(7591):504.
dc.identifier.citedreferenceErez, O., R. Romero, A. L. Tarca, T. Chaiworapongsa, Y. M. Kim, N. G. Than, et al. 2009. Differential expression pattern of genes encoding for antiâ microbial peptides in The fetal membranes of patients with spontaneous preterm labor and intact membranes and those with preterm prelabor rupture of the membranes. J. Matern. Fetal Neonatal. Med. 22: 1103 â 1115.
dc.identifier.citedreferenceFerrand, P. E., T. Fujimoto, V. Chennathukuzhi, S. Parry, G. A. Macones, M. Sammel, et al. 2002a. The CARD15 2936insC mutation and TLR4 896 A>G polymorphism in African Americans and risk of preterm premature rupture of membranes (PPROM). Mol. Hum. Reprod. 8: 1031 â 1034.
dc.identifier.citedreferenceFerrand, P. E., S. Parry, M. Sammel, G. A. Macones, H. Kuivaniemi, R. Romero, et al. 2002b. A polymorphism in the matrix metalloproteinaseâ 9 promoter is associated with increased risk of preterm premature rupture of membranes in African Americans. Mol. Hum. Reprod. 8: 494 â 501.
dc.identifier.citedreferenceFujimoto, T., S. Parry, M. Urbanek, M. Sammel, G. Macones, H. Kuivaniemi, et al. 2002. A single nucleotide polymorphism in the matrix metalloproteinaseâ 1 (MMPâ 1) promoter influences amnion cell MMPâ 1 expression and risk for preterm premature rupture of the fetal membranes. J. Biol. Chem. 277: 6296 â 6302.
dc.identifier.citedreferenceGenc, M. R., S. Gerber, M. Nesin, and S. S. Witkin. 2002. Polymorphism in the interleukinâ 1 gene complex and spontaneous preterm delivery. Am. J. Obstet. Gynecol. 187: 157 â 163.
dc.identifier.citedreferenceGetahun, D., M. J. Fassett, G. F. Longstreth, C. Koebnick, A. M. Langerâ Gould, D. Strickland, et al. 2014. Association between maternal inflammatory bowel disease and adverse perinatal outcomes. J. Perinatol. 34: 435 â 440.
dc.identifier.citedreferenceGibson, C. S., A. H. Maclennan, E. A. Haan, K. Priest, and G. A. Dekker. 2011. Fetal MBL2 haplotypes combined with viral exposure are associated with adverse pregnancy outcomes. J. Maternal. Fetal Med. 24: 847 â 854.
dc.identifier.citedreferenceGomezâ Lopez, N., R. Romero, Y. Xu, V. Garciaâ Flores, Y. Leng, B. Panaitescu, et al. 2017a. Inflammasome assembly in the chorioamniotic membranes during spontaneous labor at term. Am. J. Reprod. Immunol. 77: 5. https://doi.org/10.1111/aji.12648. Epub 2017 Feb 24.
dc.identifier.citedreferenceGomezâ Lopez, N., R. Romero, Y. Xu, O. Plazyo, R. Unkel, Y. Leng, et al. 2017b. A role for the inflammasome in spontaneous preterm labor with acute histologic chorioamnionitis. Reprod. Sci. https://doi.org/10.1177/1933719116687656, in press.
dc.identifier.citedreferenceGoto, Y., S. Uematsu, and H. Kiyono. 2016. Epithelial glycosylation in gut homeostasis and inflammation. Nat. Immunol. 17: 1244 â 1251.
dc.identifier.citedreferenceGotsch, F., R. Romero, T. Chaiworapongsa, O. Erez, E. Vaisbuch, J. Espinoza, et al. 2008. Evidence of the involvement of caspaseâ 1 under physiologic and pathologic cellular stress during human pregnancy: a link between the inflammasome and parturition. J. Matern. Fetal Neonatal. Med. 21: 605 â 616.
dc.identifier.citedreferenceHugot, J.â P., M. Chamaillard, H. Zouali, S. Lesage, J. P. Cézard, J. Belaiche, et al. 2001. Association of NOD2 leucineâ rich repeat variants with susceptibility to Chron’s disease. Nature 411: 599 â 603.
dc.identifier.citedreferenceJaffe, S., N. Normand, A. Jayaram, T. Orfanelli, G. Doulaveris, M. Passos, et al. 2013. Unique variation in genetic selection among Black North American women and its potential influence on pregnancy outcomes. Med. Hypotheses 81: 919 â 922.
dc.identifier.citedreferenceKempe, A., P. H. Wise, S. E. Barkan, W. M. Sappenfield, B. Sachs, S. L. Gortmaker, et al. 1992. Clinical determinants of the racial disparity in very low birth weight. N. Engl. J. Med. 327: 969 â 973.
dc.identifier.citedreferenceLi, J., J. Oehlert, M. Snyder, D. K. Stevenson, and G. M. Shaw. 2017. Fetal de novo mutations and preterm birth. PLoS Genet. 13: e1006689.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.