Show simple item record

Rapid Guest Exchange and Ultraâ Low Surface Tension Solvents Optimize Metalâ Organic Framework Activation

dc.contributor.authorMa, Jialiu
dc.contributor.authorKalenak, Andre P.
dc.contributor.authorWong‐foy, Antek G.
dc.contributor.authorMatzger, Adam J.
dc.date.accessioned2017-12-15T16:49:20Z
dc.date.available2019-01-07T18:34:38Zen
dc.date.issued2017-11-13
dc.identifier.citationMa, Jialiu; Kalenak, Andre P.; Wong‐foy, Antek G. ; Matzger, Adam J. (2017). "Rapid Guest Exchange and Ultraâ Low Surface Tension Solvents Optimize Metalâ Organic Framework Activation." Angewandte Chemie International Edition 56(46): 14618-14621.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/140054
dc.description.abstractExploratory research into the critical steps in metalâ organic framework (MOF) activation involving solvent exchange and solvent evacuation are reported. It is discovered that solvent exchange kinetics are extremely fast, and minutes rather days are appropriate for solvent exchange in many MOFs. It is also demonstrated that choice of a very low surface tension solvent is critical in successfully activating challenging MOFs. MOFs that have failed to be activated previously can achieve predicted surface areas provided that lower surface tension solvents, such as nâ hexane and perfluoropentane, are applied. The insights herein aid in the efficient activation of MOFs in both laboratory and industrial settings and provide best practices for avoiding structural collapse.An exchange for the better: Activation involving solvent exchange and evacuation is crucial to achieve maximum surface area and gasâ storage properties in metalâ organic frameworks (MOFs). Porosity is preserved when fast solvent exchange kinetics and ultraâ low surface tension solvents are exploited yielding MOFs without structural collapse.
dc.publisherWiley Periodicals, Inc.
dc.subject.othersurface tension
dc.subject.otheractivation
dc.subject.othermetalâ organic frameworks
dc.subject.othermicroporous materials
dc.subject.othersolvent exchange
dc.titleRapid Guest Exchange and Ultraâ Low Surface Tension Solvents Optimize Metalâ Organic Framework Activation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/140054/1/anie201709187_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/140054/2/anie201709187-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/140054/3/anie201709187.pdf
dc.identifier.doi10.1002/anie.201709187
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceH. K. Kim, W. S. Yun, M.-B. Kim, J. Y. Kim, Y.-S. Bae, J. Lee, N. C. Jeong, J. Am. Chem. Soc. 2015, 137, 10009 â 10015.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. S. Kaye, A. Dailly, O. M. Yaghi, J. R. Long, J. Am. Chem. Soc. 2007, 129, 14176 â 14177;
dc.identifier.citedreferenceD. P. Broom, M. Hirscher, Energy Environ. Sci. 2016, 9, 3368 â 3380.
dc.identifier.citedreferenceThe term may be accurate for some materials in which, for example, additional thermal treatment can reveal the full porosity; however, in cases where collapse occurs the issue is not the completeness of the activation but the integrity of the structure post activation. Nonetheless the term is in common usage.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. J. Howarth, A. W. Peters, N. A. Vermeulen, T. C. Wang, J. T. Hupp, O. K. Farha, Chem. Mater. 2017, 29, 26 â 39;
dc.identifier.citedreferenceS. A. Sapchenko, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, Inorg. Chem. 2013, 52, 9702 â 9704.
dc.identifier.citedreferenceA. I. Cooper, M. J. Rosseinsky, Nat. Chem. 2009, 1, 26 â 27.
dc.identifier.citedreferenceA. U. Czaja, N. Trukhan, U. Muller, Chem. Soc. Rev. 2009, 38, 1284 â 1293.
dc.identifier.citedreferenceAmong the major classes of MOFs suitable for exploration, we limit ourselves to the well-established Zn-based structures based on their ubiquity, utility, and relatively long history.
dc.identifier.citedreferenceK. Koh, J. D. Vanâ Oosterhout, S. Roy, A. G. Wong-Foy, A. J. Matzger, Chem. Sci. 2012, 3, 2429 â 2432.
dc.identifier.citedreferenceM. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi, Science 2002, 295, 469 â 472.
dc.identifier.citedreferenceJ. E. Mondloch, O. Karagiaridi, O. K. Farha, J. T. Hupp, CrystEngComm 2013, 15, 9258 â 9264.
dc.identifier.citedreferenceHexanes have also been applied in this case achieving similar results.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. Prestipino, L. Regli, J. G. Vitillo, F. Bonino, A. Damin, C. Lamberti, A. Zecchina, P. L. Solari, K. O. Kongshaug, S. Bordiga, Chem. Mater. 2006, 18, 1337 â 1346;
dc.identifier.citedreferenceM. Haouas, C. Volkringer, T. Loiseau, G. Férey, F. Taulelle, J. Phys. Chem. C 2011, 115, 17934 â 17944.
dc.identifier.citedreferenceL. L. Hench, J. K. West, Chem. Rev. 1990, 90, 33 â 72.
dc.identifier.citedreferenceThe structure is also known as DUT-23(Zn) and SUMOF-1-Zn, see
dc.identifier.citedreferenceN. Klein, I. Senkovska, I. A. Baburin, R. Grünker, U. Stoeck, M. Schlichtenmayer, B. Streppel, U. Mueller, S. Leoni, M. Hirscher, S. Kaskel, Chem. Eur. J. 2011, 17, 13007 â 13016;
dc.identifier.citedreferenceQ. Yao, J. Sun, K. Li, J. Su, M. V. Peskov, X. Zou, Dalton Trans. 2012, 41, 3953 â 3955.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. M. Gür, Chem. Rev. 2013, 113, 6179 â 6206;
dc.identifier.citedreferenceC. S. Cundy, P. A. Cox, Chem. Rev. 2003, 103, 663 â 702;
dc.identifier.citedreferenceN. Stock, S. Biswas, Chem. Rev. 2012, 112, 933 â 969.
dc.identifier.citedreferenceO. K. Farha, J. T. Hupp, Acc. Chem. Res. 2010, 43, 1166 â 1175.
dc.identifier.citedreferenceY.-P. He, Y.-X. Tan, J. Zhang, Inorg. Chem. 2012, 51, 11232 â 11234.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. P. Nelson, O. K. Farha, K. L. Mulfort, J. T. Hupp, J. Am. Chem. Soc. 2009, 131, 458 â 460;
dc.identifier.citedreferenceB. Liu, A. G. Wong-Foy, A. J. Matzger, Chem. Commun. 2013, 49, 1419 â 1421;
dc.identifier.citedreferenceL. Ma, A. Jin, Z. Xie, W. Lin, Angew. Chem. Int. Ed. 2009, 48, 9905 â 9908; Angew. Chem. 2009, 121, 10089 â 10092;
dc.identifier.citedreferenceH. Li, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi, Nature 1999, 402, 276 â 279;
dc.identifier.citedreferenceD. Feng, Z.-Y. Gu, J.-R. Li, H.-L. Jiang, Z. Wei, H.-C. Zhou, Angew. Chem. Int. Ed. 2012, 51, 10307 â 10310; Angew. Chem. 2012, 124, 10453 â 10456.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. I. Feldblyum, A. G. Wong-Foy, A. J. Matzger, Chem. Commun. 2012, 48, 9828 â 9830;
dc.identifier.citedreferenceJ. Kim, D. O. Kim, D. W. Kim, K. Sagong, J. Solid State Chem. 2013, 197, 261 â 265;
dc.identifier.citedreferenceJ. Liu, J. T. Culp, S. Natesakhawat, B. C. Bockrath, B. Zande, S. G. Sankar, G. Garberoglio, J. K. Johnson, J. Phys. Chem. C 2007, 111, 9305 â 9313.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.