Show simple item record

Capturing Proteins that Bind Polyunsaturated Fatty Acids: Demonstration Using Arachidonic Acid and Eicosanoids

dc.contributor.authorBrock, Thomas G.
dc.date.accessioned2018-02-05T16:25:35Z
dc.date.available2018-02-05T16:25:35Z
dc.date.issued2008-02
dc.identifier.citationBrock, Thomas G. (2008). "Capturing Proteins that Bind Polyunsaturated Fatty Acids: Demonstration Using Arachidonic Acid and Eicosanoids." Lipids 43(2): 161-169.
dc.identifier.issn0024-4201
dc.identifier.issn1558-9307
dc.identifier.urihttps://hdl.handle.net/2027.42/140992
dc.description.abstractPolyunsaturated fatty acids (PUFA) and their biological derivatives, including the eicosanoids, have numerous roles in physiology and pathology. Although some eicosanoids are known to act through receptors, the molecular actions of many PUFA remain obscure. As the three‐dimensional structure of eicosanoids allows them to specifically bind and activate their receptors, we hypothesized that the same structure would allow other proteins to associate with PUFA and eicosanoids. Here, we demonstrate that biotinylation of arachidonic acid and its oxygenated derivatives 5‐hydroxyeicosatetraenoic acid (5‐HETE) and leukotriene (LT) B4 can be used to pull down associated proteins. Separation of proteins by two‐dimensional gel electrophoresis indicated that a large number of proteins bound each lipid and that proteins could distinguish between two enantiomers of 5‐HETE. Individual proteins, identified by matrix assisted laser desorption/ionization‐time of flight mass spectrometry, included proteins that are known to bind lipids, including albumin and phosphatidylethanolamine‐binding protein, as well as several novel proteins. These include cytoskeletal proteins, such as actin, moesin, stathmin and coactosin‐like protein, and G protein signaling proteins, such as Rho GDP dissociation inhibitor 1 and nucleoside diphosphate kinase B. This method, then, represents a relatively simple and straightforward way to screen for proteins that directly associate with, and are potentially modulated by, PUFA and their derivatives.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer‐Verlag
dc.subject.otherRho GDP dissociation inhibitor 1
dc.subject.otherNucleoside diphosphate kinase B
dc.subject.otherLeukotrienes
dc.subject.other5‐Hydroxyeicosatetraenoic acid
dc.subject.otherMoesin
dc.subject.otherStathmin
dc.subject.otherCoactosin‐like protein
dc.titleCapturing Proteins that Bind Polyunsaturated Fatty Acids: Demonstration Using Arachidonic Acid and Eicosanoids
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelScience (General)
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/140992/1/lipd0161.pdf
dc.identifier.doi10.1007/s11745-007-3136-3
dc.identifier.sourceLipids
dc.identifier.citedreferenceZeke T, Morrice N, Vázquez‐Martin C, Cohen PT ( 2005 ) Human protein phosphatase 5 dissociates from heat‐shock proteins and is proteolytically activated in response to arachidonic acid and the microtubule‐depolymerizing drug nocodazole. Biochem J 385: 45 – 56
dc.identifier.citedreferenceO’Flaherty J, Rossi A ( 1993 ) 5‐Hydroxyicosatetraenoate stimulates neutrophils by a stereospecific, G protein‐linked mechanism. J Biol Chem 268: 14708 – 14714
dc.identifier.citedreferenceEk‐Von Mentzer BA, Zhang F, Hamilton JA ( 2001 ) Binding of 13‐HODE and 15‐HETE to phospholipid bilayers, albumin, and intracellular fatty acid binding proteins. Implications for transmembrane and intracellular transport and for protection from lipid peroxidation. J Biol Chem 276: 15575 – 15580
dc.identifier.citedreferenceKakinuma K ( 1974 ) Effects of fatty acids on the oxidative metabolism of leukocytes. Biochim Biophys Acta 348: 76 – 85
dc.identifier.citedreferenceBadwey J, Curnutte J, Karnovsky M ( 1981 ) cis ‐polyunsaturated fatty acids induce high levels of superoxide production by human neutrophils. J Biol Chem 256: 12640 – 12643
dc.identifier.citedreferenceHeyworth PG, Knaus UG, Xu X, Uhlinger DJ, Conroy L, Bokoch GM, Curnutte JT ( 1993 ) Requirement for posttranslational processing of Rac GTP‐binding proteins for activation of human neutrophil NADPH oxidase. Mol Biol Cell 4: 261 – 269
dc.identifier.citedreferenceChuang TH, Bohl BP, Bokoch GM ( 1993 ) Biologically active lipids are regulators of Rac.GDI complexation. J Biol Chem 268: 26206 – 26211
dc.identifier.citedreferenceStamatakis K, Sánchez‐Gómez FJ, Pérez‐Sala D ( 2006 ) Identification of novel protein targets for modification by 15‐deoxy‐Delta12,14‐prostaglandin J 2 in mesangial cells reveals multiple interactions with the cytoskeleton. J Am Soc Nephrol 17: 89 – 98
dc.identifier.citedreferenceAldini G, Carini M, Vistoli G, Shibata T, Kusano Y, Gamberoni L, Dalle‐Donne I, Milzani A, Uchida K ( 2007 ) Identification of actin as a 15‐deoxy‐Delta12,14‐prostaglandin J 2 target in neuroblastoma cells: mass spectrometric, computational, and functional approaches to investigate the effect on cytoskeletal derangement. Biochemistry 46: 2707 – 2718
dc.identifier.citedreferenceLandar A, Shiva S, Levonen AL, Oh J‐Y, Zaragoza C, Johnson MS, Darley‐Usmar VM ( 2006 ) Induction of the permeability transition and cytochrome c release by 15‐deoxy‐Delta12,14‐prostaglandin J 2 in mitochondria. Biochem J 394: 185 – 195
dc.identifier.citedreferenceSekiya F, Bae YS, Jhon DY, Hwang SC, Rhee SG ( 1999 ) AHNAK, a protein that binds and activates phospholipase C‐γ1 in the presence of arachidonic acid. J Biol Chem 274: 13900 – 13907
dc.identifier.citedreferenceSellmayer A, Obermeier H, Danesch U, Aepfelbacher M, Weber PC ( 1996 ) Arachidonic acid increases activation of NADPH oxidase in monocytic U937 cells by accelerated translocation of p47‐phox and co‐stimulation of protein kinase C. Cell Signal 8: 397 – 402
dc.identifier.citedreferenceUhlinger DJ, Tyagi SR, Inge KL, Lambeth JD ( 1993 ) The respiratory burst oxidase of human neutrophils. Guanine nucleotides and arachidonate regulate the assembly of a multicomponent complex in a semirecombinant cell‐free system. J Biol Chem 268: 8624 – 8631
dc.identifier.citedreferenceReiber DC, Murphy RC ( 2000 ) Covalent binding of LTA 4 to nucleosides and nucleotides. Arch Biochem Biophys 379: 119 – 26
dc.identifier.citedreferenceHankin JA, Jones DN, Murphy RC ( 2003 ) Covalent binding of leukotriene A 4 to DNA and RNA. Chem Res Toxicol 16: 551 – 561
dc.identifier.citedreferenceLee SH, Oe T, Blair IA ( 2001 ) Vitamin C‐induced decomposition of lipid hydroperoxides to endogenous genotoxins. Science 292: 2083 – 2086
dc.identifier.citedreferenceKang LT, Vanderhoek JY ( 1997 ) Synthesis and use of a novel biotinylated probe for the chemiluminescent detection of proteins that bind 15‐hydroxyeicosatetraenoic acid. Anal Biochem 250: 119 – 122
dc.identifier.citedreferenceIkeda M, Busto R, Yoshida S, Santiso M, Martinez E, Ginsberg MD ( 1988 ) Cerebral phosphoinositide, triacylglycerol and energy metabolism during severe hypoxia and recovery. Brain Res 459: 344 – 350
dc.identifier.citedreferenceKatayama Y, Shimizu J, Suzuki S, Perrier H, Prasit P, Wang Z, Vickers PJ ( 1990 ) Role of arachidonic acid metabolism on ischemic brain edema and metabolism. Adv Neurol 52: 105 – 108
dc.identifier.citedreferenceZimmerman AW, van Moerkerk HT, Veerkamp JH ( 2001 ) Ligand specificity and conformational stability of human fatty acid‐binding proteins. Int J Biochem Cell Biol 33: 865 – 876
dc.identifier.citedreferenceCharleson S, Evans JF, Léger S, Perrier H, Prasit P, Wang Z, Vickers PJ ( 1994 ) Structural requirements for the binding of fatty acids to 5‐lipoxygenase‐activating protein. Eur J Pharmacol 267: 275 – 280
dc.identifier.citedreferenceHohoff C, Börchers T, Rüstow B, Spener F, van Tilbeurgh H ( 1999 ) Expression, purification, and crystal structure determination of recombinant human epidermal‐type fatty acid binding protein. Biochemistry 38: 12229 – 12239
dc.identifier.citedreferenceSimopoulos AP, Leaf A, Salem NJ ( 1999 ) Workshop on the essentiality of and recommended dietary intakes for omega‐6 and omega‐3 fatty acids. J Am Coll Nutr 18: 487 – 489
dc.identifier.citedreferencede Deckere EAM, Korver O, Verschuren PM, Katan MB ( 1998 ) Health aspects of fish and n‐3 polyunsaturated fatty acids from plant and marine origin. Eur J Clin Nutr 52: 749 – 753
dc.identifier.citedreferenceHirafuji M, Machida T, Hamaue N, Minami M ( 2003 ) Cardiovascular protective effects of n‐3 polyunsaturated fatty acids with special emphasis on docosahexaenoic acid. J Pharmacol Sci 92: 308 – 316
dc.identifier.citedreferenceBurr ML, Fehily AM, Rogers S, Welsby E, King S, Sandham S ( 1989 ) Diet and reinfarction trial (DART): design, recruitment, and compliance. Eur Heart J 10: 558 – 567
dc.identifier.citedreferenceMarchioli R, Barzi F, Bomba E, Chieffo C, di Gregorio D, di Mascio R, Franzosi MG, Geraci E, Levantesi G, Maggioni AP, Mantini L, Marfisi R, Mastrogiuseppe G, Mininni N, Nicolosi GL, Santini M, Schweiger C, Tavazzi L, Tognoni G, Tucci C, Valagussa F, Investigators G‐P ( 2002 ) Early protection against sudden death by n‐3 polyunsaturated fatty acids after myocardial infarction: time‐course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)‐Prevenzione. Circulation 105: 1897 – 1903
dc.identifier.citedreferenceKang JX, Leaf A ( 1994 ) Effects of long‐chain polyunsaturated fatty acids on the contraction of neonatal rat cardiac myocyte. Proc Natl Acad Sci USA 91: 9886 – 9890
dc.identifier.citedreferenceXiao Y‐F, Gomez AM, Morgan JP, Lederer WJ, Leaf A ( 1997 ) Suppression of voltage‐gated L‐type Ca 2+ currents by polyunsaturated fatty acids in adult and neonatal rat ventricular myocytes. Proc Natl Acad Sci USA 94: 4182 – 4187
dc.identifier.citedreferenceFramework MGPR ( 1998 ) Thrombosis prevention trial: randomised trial of low‐intensity oral anticoagulation with warfarin and low‐dose aspirin in the primary prevention of ischemic heart disease in men at increased risk. Lancet 351: 233 – 241
dc.identifier.citedreferenceRidker PM, Manson JE, Buring JE, Goldhaber SZ, Hennekens CH ( 1991 ) The effect of chronic platelet inhibition with low‐dose aspirin on atherosclerotic progression and acute thrombosis: clinical evidence from the Physicians’ Health Study. Am Heart J 122: 1588 – 1592
dc.identifier.citedreferenceSteering Committee PHSRG ( 1989 ) Final report on the aspirin component of the ongoing Physicians’ Health Study. N Engl J Med 321: 129 – 135
dc.identifier.citedreferenceMurphy RC, Gijón MA ( 2007 ) Biosynthesis and metabolism of leukotrienes. Biochem J 405: 379 – 395
dc.identifier.citedreferenceBaskin DS, Ngo H, Didenko V ( 2003 ) Thimerosal induces DNA breaks, caspase‐3 activation, membrane damage, and cell death in cultured human neurons and fibroblasts. Toxicol Sci 74: 361 – 368
dc.identifier.citedreferenceWoo KJ, Lee TJ, Bae JH, Jang BC, Song DK, Cho JW, Suh SI, Park JW, Kwon TK ( 2006 ) Thimerosal induces apoptosis and G2/M phase arrest in human leukemia cells. Mol Carcinog 45: 657 – 666
dc.identifier.citedreferenceCao Y, Pearman AT, Zimmerman GA, McIntyre TM, Prescott SM ( 2000 ) Intracellular unesterified arachidonic acid signals apoptosis. Proc Natl Acad Sci USA 97: 11280 – 11285
dc.identifier.citedreferenceTinel H, Wehner F, Kinne RK ( 1997 ) Arachidonic acid as a second messenger for hypotonicity‐induced calcium transients in rat IMCD cells. Pflugers Arch 433: 245 – 253
dc.identifier.citedreferencevan der Zee L, Nelemans A, den Hertog A ( 1995 ) Arachidonic acid is functioning as a second messenger in activating the Ca 2+ entry process on H1‐histaminoceptor stimulation in DDT1 MF‐2 cells. Biochem J 305: 859 – 864
dc.identifier.citedreferenceFlamand N, Mancuso P, Serezani CHC, Brock TG ( 2007 ) Leukotrienes: mediators that have been typecast as villains. Cell Mol Life Sci 64: 2657 – 2670
dc.identifier.citedreferenceYokomizo T, Izumi T, Chang K, Takuwa Y, Shimizu T ( 1997 ) A G‐protein‐coupled receptor for leukotriene B 4 that mediates chemotaxis. Nature 387: 620 – 624
dc.identifier.citedreferenceYokomizo T, Kato K, Terawaki K, Izumi T, Shimizu T ( 2000 ) A second leukotriene B(4) receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J Exp Med 192: 421 – 432
dc.identifier.citedreferenceSkinner J, Sinclair C, Romeo C, Armstrong D, Charbonneau H, Rossie S ( 1997 ) Purification of a fatty acid‐stimulated proteinserine/threonine phosphatase from bovine brain and its identification as a homolog of protein phosphatase 5. J Biol Chem 272: 22464 – 22471
dc.identifier.citedreferenceSiegenthaler G, Roulin K, Chatellard‐Gruaz D, Holtz R, Saurat JH, Hellman U, Hagens G ( 1997 ) A heterocomplex formed by the calcium‐binding proteins MRP8 (S100‐A8) and MRP‐14 (S100A9) binds unsaturated fatty acids with high affinity. J Biol Chem 272: 9371 – 9377
dc.identifier.citedreferenceBouzidi F, Doussiere J ( 2004 ) Binding of arachidonic acid to myeloid‐related proteins (S100A8/A9) enhances phagocytic NADPH oxidase activation. Biochem Biophys Res Commun 325: 1060 – 1065
dc.identifier.citedreferenceAbramson SB, Leszczynska‐Piziak J, Weissmann G ( 1991 ) Arachidonic acid as a second messenger. Interactions with a GTP‐binding protein of human neutrophils. J Immunol 147: 231 – 236
dc.identifier.citedreferenceBittleman DB, Casale TB ( 1995 ) 5‐Hydroxyeicosatetraenoic acid (HETE)‐induced neutrophil transcellular migration is dependent upon enantiomeric structure. Am J Respir Cell Mol Biol 12: 260 – 267
dc.identifier.citedreferenceRossi AG, Thomas MJ, O’Flaherty JT ( 1988 ) Stereospecific bio‐actions of 5‐hydroxyeicosatetraenoate. FEBS Lett 240: 163 – 166
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.