Room‐Temperature‐Phosphorescence‐Based Dissolved Oxygen Detection by Core‐Shell Polymer Nanoparticles Containing Metal‐Free Organic Phosphors
dc.contributor.author | Yu, Youngchang | |
dc.contributor.author | Kwon, Min Sang | |
dc.contributor.author | Jung, Jaehun | |
dc.contributor.author | Zeng, Yingying | |
dc.contributor.author | Kim, Mounggon | |
dc.contributor.author | Chung, Kyeongwoon | |
dc.contributor.author | Gierschner, Johannes | |
dc.contributor.author | Youk, Ji Ho | |
dc.contributor.author | Borisov, Sergey M. | |
dc.contributor.author | Kim, Jinsang | |
dc.date.accessioned | 2018-02-05T16:25:39Z | |
dc.date.available | 2019-01-07T18:34:38Z | en |
dc.date.issued | 2017-12-18 | |
dc.identifier.citation | Yu, Youngchang; Kwon, Min Sang; Jung, Jaehun; Zeng, Yingying; Kim, Mounggon; Chung, Kyeongwoon; Gierschner, Johannes; Youk, Ji Ho; Borisov, Sergey M.; Kim, Jinsang (2017). "Room‐Temperature‐Phosphorescence‐Based Dissolved Oxygen Detection by Core‐Shell Polymer Nanoparticles Containing Metal‐Free Organic Phosphors." Angewandte Chemie 129(51): 16425-16429. | |
dc.identifier.issn | 0044-8249 | |
dc.identifier.issn | 1521-3757 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/140993 | |
dc.description.abstract | The highly sensitive optical detection of oxygen including dissolved oxygen (DO) is of great interest in various applications. We devised a novel room‐temperature‐phosphorescence (RTP)‐based oxygen detection platform by constructing core–shell nanoparticles with water‐soluble polymethyloxazoline shells and oxygen‐permeable polystyrene cores crosslinked with metal‐free purely organic phosphors. The resulting nanoparticles show a very high sensitivity for DO with a limit of detection (LOD) of 60 nm and can be readily used for oxygen quantification in aqueous environments as well as the gaseous phase.O2 als Leuchtmittel: Ein Nachweissystem für gelösten Sauerstoff beruht auf Nanopartikeln mit wasserlöslicher Polymethyloxazolin‐Schale und sauerstoffdurchlässigem Polystyrolkern, vernetzt über metallfreie, rein organische Phosphore. Die Kern‐Schale‐Nanopartikel eignen sich für die hoch empfindliche Sauerstoffquantifizierung in zahlreichen Umgebungen. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | Gelöster Sauerstoff | |
dc.subject.other | Metallfreie organische Phosphore | |
dc.subject.other | Polymernanopartikel | |
dc.subject.other | Raumtemperatur-Phosphoreszenz | |
dc.subject.other | Vernetzung | |
dc.title | Room‐Temperature‐Phosphorescence‐Based Dissolved Oxygen Detection by Core‐Shell Polymer Nanoparticles Containing Metal‐Free Organic Phosphors | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Chemistry | |
dc.subject.hlbsecondlevel | Materials Science and Engineering | |
dc.subject.hlbsecondlevel | Chemical Engineering | |
dc.subject.hlbtoplevel | Engineering | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/140993/1/ange201708606-sup-0001-misc_information.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/140993/2/ange201708606.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/140993/3/ange201708606_am.pdf | |
dc.identifier.doi | 10.1002/ange.201708606 | |
dc.identifier.source | Angewandte Chemie | |
dc.identifier.citedreference | D. Chaudhuri, E. Sigmund, A. Meyer, L. Rock, P. Klemm, S. Lautenschlager, A. Schmid, S. R. Yost, T. V. Voorhis, S. Bange, S. Hoger, J. M. Lupton, Angew. Chem. Int. Ed. 2013, 52, 13449 – 13452; Angew. Chem. 2013, 125, 13691 – 13694. | |
dc.identifier.citedreference | Y. Xie, Y. Ge, Q. Peng, C. Li, Q. Li, Z. Li, Adv. Mater. 2017, 29, 1606829. | |
dc.identifier.citedreference | Z. Yang, Z. Mao, X. Zhang, D. Ou, Y. Mu, Y. Zhang, C. Zhao, S. Liu, Z. Chi, J. Xu, Y. Wu, P. Lu, A. Lien, M. R. Bryce, Angew. Chem. Int. Ed. 2016, 55, 2181 – 2185; Angew. Chem. 2016, 128, 2221 – 2225. | |
dc.identifier.citedreference | J. Xu, A. Takai, Y. Kobayashi, M. Takeuchi, Chem. Commun. 2013, 49, 8447 – 8449. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | S. Hirata, K. Totani, J. Zhang, T. Yamashita, H. Kaji, S. R. Marder, T. Watanabe, C. Adachi, Adv. Funct. Mater. 2013, 23, 3386 – 3397; | |
dc.identifier.citedreference | R. Kabe, N. Notsuka, K. Yoshida, C. Adachi, Adv. Mater. 2016, 28, 655 – 660. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | Z. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R. Deng, X. Liu, W. Huang, Nat. Mater. 2015, 14, 685 – 690; | |
dc.identifier.citedreference | X. Zhen, Y. Tao, Z. An, P. Chen, C. Xu, R. Chen, W. Huang, K. Pu, Adv. Mater. 2017, 29, 1606665; | |
dc.identifier.citedreference | S. Cai, H. Shi, J. Li, L. Gu, Y. Ni, Z. Cheng, S. Wang, W. Xiong, L. Li, Z. An, W. Huang, Adv. Mater. 2017, 29, 1701244. | |
dc.identifier.citedreference | Y. Shoji, Y. Ikabata, Q. Wang, D. Nemoto, A. Sakamoto, N. Tanaka, J. Seino, H. Nakai, T. Fukushima, J. Am. Chem. Soc. 2017, 139, 2728 – 2733. | |
dc.identifier.citedreference | X. Chen, C. Xu, T. Wang, C. Zhou, J. Du, Z. Wang, H. Xu, T. Xie, G. Bi, J. Jiang, X. Zhang, J. N. Demas, C. O. Trindle, Y. Luo, G. Zhang, Angew. Chem. Int. Ed. 2016, 55, 9872 – 9876; Angew. Chem. 2016, 128, 10026 – 10030. | |
dc.identifier.citedreference | Z. Mao, Z. Yang, Y. Mu, Y. Zhang, Y. Wang, Z. Chi, C. Lo, S. Liu, A. Lien, J. Xu, Angew. Chem. Int. Ed. 2015, 54, 6270 – 6273; Angew. Chem. 2015, 127, 6368 – 6371. | |
dc.identifier.citedreference | S. Reineke, M. A. Baldo, Sci. Rep. 2014, 4, 3797. | |
dc.identifier.citedreference | R. A. Petros, J. M. DeSimone, Nat. Rev. Drug Discovery 2010, 9, 615 – 627. | |
dc.identifier.citedreference | Y. C. Yu, H. S. Cho, W. Yu, J. H. Youk, Polymer 2014, 55, 5986 – 5990. | |
dc.identifier.citedreference | X. Zhang, S. Boisse, W. Zhang, P. Beaunier, F. D’Agosto, J. Rieger, B. Charleux, Macromolecules 2011, 44, 4149 – 4158. | |
dc.identifier.citedreference | Without incorporation of the PAAm block, RAFT polymerization of styrene was not successful because of a few possible problems such as low conversion, homopolymer formation, and broad size distribution of nanoparticles. | |
dc.identifier.citedreference | O. S. Wolfbeis, BioEssays 2015, 37, 921 – 928. | |
dc.identifier.citedreference | E. R. Carraway, J. N. Demas, B. A. DeGraff, J. R. Bacon, Anal. Chem. 1991, 63, 337 – 342. | |
dc.identifier.citedreference | S. M. Borisov, P. Lehner, I. Klimant, Anal. Chim. Acta 2011, 690, 108 – 115. | |
dc.identifier.citedreference | N. Revsbech, L. H. Larsen, J. Gundersen, T. Dalsgaard, O. Ulloa, Limnol. Oceanogr. Methods 2009, 7, 371 – 381. | |
dc.identifier.citedreference | S. M. Borisov, I. Klimant, Anal. Chem. 2007, 79, 7501 – 7509. | |
dc.identifier.citedreference | K. Eaton, P, Douglas, Sens. Actuators B 2002, 82, 94 – 104. | |
dc.identifier.citedreference | M. Schäferling, Angew. Chem. Int. Ed. 2012, 51, 3532 – 3554; Angew. Chem. 2012, 124, 3590 – 3614. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | M. Larsen, S. M. Borisov, B. Grunwald, I. Klimant, R. N. Guld, Limnol. Oceanogr. Methods 2011, 9, 348 – 360; | |
dc.identifier.citedreference | X. Wang, R. J. Meier, M. Link, O. S. Wolfbeis, Angew. Chem. Int. Ed. 2010, 49, 4907 – 4909; Angew. Chem. 2010, 122, 5027 – 5029; | |
dc.identifier.citedreference | R. J. Meier, L. H. Fischer, O. S. Wolfbeis, M. Schaferling, Sens. Actuators B 2013, 177, 500 – 506. | |
dc.identifier.citedreference | The photostability of our optical sensor system is discussed in detail in the Supporting Information. | |
dc.identifier.citedreference | K. Tanno, Bull. Chem. Soc. Jpn. 1964, 37, 804 – 810. | |
dc.identifier.citedreference | T. Nakano, K. Hoshi, S. Baba, Vacuum 2008, 83, 467 – 469. | |
dc.identifier.citedreference | H. Berger, Microelectron. Eng. 1991, 10, 259 – 267. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | D. A. Stolper, N. P. Revsbech, D. E. Canfield, Proc. Natl. Acad. Sci. USA 2010, 107, 18755 – 18760; | |
dc.identifier.citedreference | D. Shevela, K. Beckmann, J. Clausen, W. Junge, J. Messinger, Proc. Natl. Acad. Sci. USA 2011, 108, 3602 – 3607. | |
dc.identifier.citedreference | X. Wang, O. S. Wolfbeis, Chem. Soc. Rev. 2014, 43, 3666 – 3761. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | M. Quaranta, S. M. Borisov, I. Klimant, Bioanal. Rev. 2012, 4, 115 – 157; | |
dc.identifier.citedreference | R. Briñas, T. Troxler, R. M. Hochstrasser, S. A. Vinogradov, J. Am. Chem. Soc. 2005, 127, 11851 – 11862; | |
dc.identifier.citedreference | J. A. Spencer, F. Ferraro, E. Roussakis, A. Klein, J. Wu, J. M. Runnels, W. Zaher, L. J. Mortensen, C. Alt, R. Turcotte, R. Yusuf, D. Cote, S. A. Vinogradov, D. T. Scadden, C. P. Lin, Nature 2014, 508, 269 – 273; | |
dc.identifier.citedreference | Y. Feng, J. Cheng, L. Zhou, X. Zhou, H. Xiang, Analyst 2012, 137, 4885 – 4901; | |
dc.identifier.citedreference | S. M. Borisov, R. Fischer, R. Saf, I. Klimant, Adv. Funct. Mater. 2014, 24, 6548 – 6560. | |
dc.identifier.citedreference | For recent reviews on metal-free organic phosphors, see: | |
dc.identifier.citedreference | S. Mukherjee, P. Thilagar, Chem. Commun. 2015, 51, 109988 – 111003; | |
dc.identifier.citedreference | S. Xu, R. Chen, C. Zheng, W. Huang, Adv. Mater. 2016, 28, 9920 – 9940; | |
dc.identifier.citedreference | M. Baroncini, G. Bergamini, P. Ceroni, Chem. Commun. 2017, 53, 2081 – 2093; | |
dc.identifier.citedreference | S. Hirata, Adv. Opt. Mater. 2017, 5, 1700116. | |
dc.identifier.citedreference | It should be noted that a certain type of RTP emitters having high structural rigidity and small singlet–triplet energy gaps, such as benzophenone analogues, exhibits rather small Stokes shift. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | P. Lehner, C. Staudinger, S. M. Borisov, I. Klimant, Nat. Commun. 2014, 5, 4460; | |
dc.identifier.citedreference | S. Nagl, C. Baleizão, S. M. Borisov, I. Klimant, Angew. Chem. Int. Ed. 2007, 46, 2317 – 2319; Angew. Chem. 2007, 119, 2368 – 2371. | |
dc.identifier.citedreference | S. Banerjee, R. T. Kuznetsova, D. B. Pankovsky, Sens. Actuators B 2015, 212, 229 – 234. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | G. Zhang, J. Chen, S. J. Payn, S. E. Kooi, J. N. Demas, C. L. Fraser, J. Am. Chem. Soc. 2007, 129, 8942 – 8943; | |
dc.identifier.citedreference | G. Zhang, G. M. Palmer, M. W. Dewhirst, C. L. Fraser, Nat. Mater. 2009, 8, 747 – 751; | |
dc.identifier.citedreference | G. Zhang, J. Lu, M. Sabat, C. L. Fraser, J. Am. Chem. Soc. 2010, 132, 2160 – 2162. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | O. Bolton, K. Lee, H. J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3, 205 – 210; | |
dc.identifier.citedreference | D. Lee, O. Bolton, B. C. Kim, J. H. Youk, S. Takayama, J. Kim, J. Am. Chem. Soc. 2013, 135, 6325 – 6329; | |
dc.identifier.citedreference | M. S. Kwon, D. Lee, S. Seo, J. Jung, J. Kim, Angew. Chem. Int. Ed. 2014, 53, 11177 – 11181; Angew. Chem. 2014, 126, 11359 – 11363; | |
dc.identifier.citedreference | M. S. Kwon, Y. Yu, C. Coburn, A. W. Phillips, K. Chung, A. Shanker, J. Jung, G. Kim, K. Pipe, S. R. Forrest, J. H. Youk, J. Gierschner, J. Kim, Nat. Commun. 2015, 6, 8947; | |
dc.identifier.citedreference | O. Bolton, D. Lee, J. Jung, J. Kim, Chem. Mater. 2014, 26, 6644 – 6649. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | W. Z. Yuan, X. Y. Shen, H. Zhao, J. W. Y. Lam, L. Tang, P. Lu, C. Wang, Y. Liu, Z. Wang, Q. Zheng, J. Z. Sun, Y. Ma, B. Z. Tang, J. Phys. Chem. C 2010, 114, 6090 – 6099; | |
dc.identifier.citedreference | Y. Gong, G. Chen, Q. Peng, W. Z. Yuan, Y. Xie, S. Li, Y. Zhang, B. Z. Tang, Adv. Mater. 2015, 27, 6195 – 6201. | |
dc.identifier.citedreference | M. Koch, K. Perumal, O. Blacque, J. A. Garg, R. Saiganesh, S. Kabilan, K. K. Balasubramanian, K. Venkatesan, Angew. Chem. Int. Ed. 2014, 53, 6378 – 6382; Angew. Chem. 2014, 126, 6496 – 6500. | |
dc.identifier.citedreference | A. Fermi, G. Bergamini, M. Roy, M. Gingras, P. Ceroni, J. Am. Chem. Soc. 2014, 136, 6395 – 6400. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.