Show simple item record

Effects of Activity and Energy Budget Balancing Algorithm on Laboratory Performance of a Fish Bioenergetics Model

dc.contributor.authorMadenjian, Charles P.
dc.contributor.authorDavid, Solomon R.
dc.contributor.authorPothoven, Steven A.
dc.date.accessioned2018-02-05T16:25:50Z
dc.date.available2018-02-05T16:25:50Z
dc.date.issued2012-09
dc.identifier.citationMadenjian, Charles P.; David, Solomon R.; Pothoven, Steven A. (2012). "Effects of Activity and Energy Budget Balancing Algorithm on Laboratory Performance of a Fish Bioenergetics Model." Transactions of the American Fisheries Society 141(5): 1328-1337.
dc.identifier.issn0002-8487
dc.identifier.issn1548-8659
dc.identifier.urihttps://hdl.handle.net/2027.42/141002
dc.description.abstractWe evaluated the performance of the Wisconsin bioenergetics model for lake trout Salvelinus namaycush that were fed ad libitum in laboratory tanks under regimes of low activity and high activity. In addition, we compared model performance under two different model algorithms: (1) balancing the lake trout energy budget on day t based on lake trout energy density on day t and (2) balancing the lake trout energy budget on day t based on lake trout energy density on day t + 1. Results indicated that the model significantly underestimated consumption for both inactive and active lake trout when algorithm 1 was used and that the degree of underestimation was similar for the two activity levels. In contrast, model performance substantially improved when using algorithm 2, as no detectable bias was found in model predictions of consumption for inactive fish and only a slight degree of overestimation was detected for active fish. The energy budget was accurately balanced by using algorithm 2 but not by using algorithm 1. Based on the results of this study, we recommend the use of algorithm 2 to estimate food consumption by fish in the field. Our study results highlight the importance of accurately accounting for changes in fish energy density when balancing the energy budget; furthermore, these results have implications for the science of evaluating fish bioenergetics model performance and for more accurate estimation of food consumption by fish in the field when fish energy density undergoes relatively rapid changes.
dc.publisherTaylor & Francis Group
dc.publisherWiley Periodicals, Inc.
dc.titleEffects of Activity and Energy Budget Balancing Algorithm on Laboratory Performance of a Fish Bioenergetics Model
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141002/1/tafs1328.pdf
dc.identifier.doi10.1080/00028487.2012.692346
dc.identifier.sourceTransactions of the American Fisheries Society
dc.identifier.citedreferenceJ. J. Ney, 1993 Bioenergetics modeling today: growing pains on the cutting edge, Transactions of the American Fisheries Society, 122: Pages 736 – 748.
dc.identifier.citedreferenceB. F. Lantry, L. G. Rudstam, J. L. Forney, A. J. VanDeValk, E. L. Mills, D. J. Stewart and J. V. Adams, 2008 Comparisons between consumption estimates from bioenergetics simulations and field measurements for walleyes from Oneida Lake, New York, Transactions of the American Fisheries Society, 137: Pages 1406 – 1421.
dc.identifier.citedreferenceJ. C. Liao, 2007 A review of fish swimming mechanics and behaviour in altered flows, Philosophical Transactions of the Royal Society of London B, 362: Pages 1973 – 1993.
dc.identifier.citedreferenceC. P. Madenjian, 2011, “ Bioenergetics in ecosystems ”, Pages 1675 – 1680. Edited by: A. P. Farrell. In Encyclopedia of fish physiology: from genome to environment, Elsevier, Oxford, UK.
dc.identifier.citedreferenceC. P. Madenjian, T. J. DeSorcie and R. M. Stedman, 1998 Ontogenic and spatial patterns in diet and growth of lake trout in Lake Michigan, Transactions of the American Fisheries Society, 127: Pages 236 – 252.
dc.identifier.citedreferenceC. P. Madenjian, R. F. Elliott, T. J. DeSorcie, R. M. Stedman, D. V. O’Connor and D. V. Rottiers, 2000 Lipid concentrations in Lake Michigan fishes: seasonal, spatial, ontogenetic, and long‐term trends, Journal of Great Lakes Research, 26: Pages 427 – 444.
dc.identifier.citedreferenceC. P. Madenjian and D. V. O’Connor, 1999 Laboratory evaluation of a lake trout bioenergetics model, Transactions of the American Fisheries Society, 128: Pages 802 – 814.
dc.identifier.citedreferenceC. P. Madenjian, S. A. Pothoven, J. M. Dettmers and J. D. Holuszko, 2006 Changes in seasonal energy dynamics of alewife ( Alosa pseudoharengus ) in Lake Michigan after invasion of dreissenid mussels, Canadian Journal of Fisheries and Aquatic Sciences, 63: Pages 891 – 902.
dc.identifier.citedreferenceJ. Neter, W. Wasserman and M. H. Kutner, 1983, “ Applied linear statistical models ”, Irwin, Homewood, Illinois.
dc.identifier.citedreferenceD. J. Stewart, 1980, “ Salmonid predators and their forage base in Lake Michigan: a bioenergetics‐modeling synthesis. Doctoral dissertation ”, University of Wisconsin, Madison.
dc.identifier.citedreferenceD. J. Stewart and F. P. Binkowski, 1986 Dynamics of consumption and food conversion by Lake Michigan alewives: an energetics‐modeling synthesis, Transactions of the American Fisheries Society, 115: Pages 643 – 661.
dc.identifier.citedreferenceD. J. Stewart and M. Ibarra, 1991 Predation and production by salmonine fishes in Lake Michigan, 1978–88, Canadian Journal of Fisheries and Aquatic Sciences, 48: Pages 909 – 922.
dc.identifier.citedreferenceD. J. Stewart, J. F. Kitchell and L. B. Crowder, 1981 Forage fishes and their salmonid predators in Lake Michigan, Transactions of the American Fisheries Society, 110: Pages 751 – 763.
dc.identifier.citedreferenceD. J. Stewart, D. Weininger, D. V. Rottiers and T. A. Edsall, 1983 An energetics model for lake trout, Salvelinus namaycush: application to the Lake Michigan population, Canadian Journal of Fisheries and Aquatic Sciences, 40: Pages 681 – 698.
dc.identifier.citedreferenceC. A. Stow, S. R. Carpenter, C. P. Madenjian, L. A. Eby and L. J. Jackson, 1995 Fisheries management to reduce contaminant consumption, BioScience, 45: Pages 752 – 758.
dc.identifier.citedreferenceM. Trudel and J. B. Rasmussen, 2006 Bioenergetics and mercury dynamics in fish: a modelling perspective, Canadian Journal of Fisheries and Aquatic Sciences, 63: Pages 1890 – 1902.
dc.identifier.citedreferenceD. Weininger, 1978 Accumulation of PCBs by lake trout in Lake Michigan, Doctoral dissertation. University of Wisconsin, Madison.
dc.identifier.citedreferenceP. G. Bajer, G. W. Whitledge and R. S. Hayward, 2004 Widespread consumption‐dependent systematic error in fish bioenergetics models and its implications, Canadian Journal of Fisheries and Aquatic Sciences, 61: Pages 2158 – 2167.
dc.identifier.citedreferenceP. G. Bajer, G. W. Whitledge, R. S. Hayward and R. D. Zweifel, 2003 Laboratory evaluation of two bioenergetics models applied to yellow perch: identification of a major source of systematic error, Journal of Fish Biology, 62: Pages 436 – 454.
dc.identifier.citedreferenceJ. R. Bence and K. D. Smith, 1999, “ An overview of recreational fisheries of the Great Lakes ”, Pages 259 – 306. Edited by: W. W. Taylor, C. P. Ferreri. In Great Lakes fisheries policy and management: a binational perspective, Michigan State University Press, East Lansing.
dc.identifier.citedreferenceR. A. Bergstedt, R. L. Argyle, J. G. Seelye, K. T. Scribner and G. L. Curtis, 2003 In situ determination of the annual thermal habitat use by lake trout ( Salvelinus namaycush ) in Lake Huron, Journal of Great Lakes Research, 29 Supplement 1, Pages 347 – 361.
dc.identifier.citedreferenceR. W. Blake, 2004 Fish functional design and swimming performance, Journal of Fish Biology, 65: Pages 1193 – 1222.
dc.identifier.citedreferenceD. B. Bunnell, T. B. Johnson and C. T. Knight, 2005 The impact of introduced round gobies ( Neogobius melanostomus ) on phosphorus cycling in central Lake Erie, Canadian Journal of Fisheries and Aquatic Sciences, 62: Pages 15 – 29.
dc.identifier.citedreferenceS. R. Chipps and D. H. Wahl, 2004 Development and evaluation of a western mosquitofish bioenergetics model, Transactions of the American Fisheries Society, 133: Pages 1150 – 1162.
dc.identifier.citedreferenceJ. S. Christiansen and M. Jobling, 1990 The behaviour and the relationship between food intake and growth of juvenile Arctic charr, Salvelinus alpinus L., subjected to sustained exercise, Canadian Journal of Zoology, 68: Pages 2185 – 2191.
dc.identifier.citedreferenceR. M. Claramunt, T. L. Kolb, D. F. Clapp, D. B. Hayes, J. L. Dexter Jr. and D. M. Warner, 2009 Effects of increasing Chinook salmon bag limits on alewife abundance: implications for Lake Michigan management goals, North American Journal of Fisheries Management, 29: Pages 829 – 842.
dc.identifier.citedreferenceM. J. Hansen, D. Boisclair, S. B. Brandt, S. W. Hewett, J. F. Kitchell, M. C. Lucas and J. J. Ney, 1993 Applications of bioenergetics models to fish ecology and management: where do we go from here?, Transactions of the American Fisheries Society, 122: Pages 1019 – 1030.
dc.identifier.citedreferenceP. C. Hanson, T. B. Johnson, D. E. Schindler and J. F. Kitchell, 1997, “ Fish bioenergetics 3.0 ”, University of Wisconsin, Sea Grant Institute, Technical Report WIS‐CU‐T‐97‐001, Madison.
dc.identifier.citedreferenceR. S. Hayward and F. J. Margraf, 1987 Eutrophication effects on prey size and food available to yellow perch in Lake Erie, Transactions of the American Fisheries Society, 116: Pages 210 – 223.
dc.identifier.citedreferenceS. W. Hewett and B. L. Johnson, 1987, “ A generalized bioenergetics model of fish growth for microcomputers ”, University of Wisconsin, Sea Grant Institute, Technical Report WIS‐CG‐87‐245, Madison.
dc.identifier.citedreferenceC. E. Kraft, 1993 Phosphorus regeneration by Lake Michigan alewives in the mid‐1970s, Transactions of the American Fisheries Society, 122: Pages 749 – 755.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.