Show simple item record

Methodological Bias in Estimates of Strain Composition and Straying of Hatchery‐Produced Steelhead in Lake Michigan Tributaries

dc.contributor.authorBartron, Meredith L.
dc.contributor.authorSwank, Dave R.
dc.contributor.authorRutherford, Edward S.
dc.contributor.authorScribner, Kim T.
dc.date.accessioned2018-02-05T16:26:12Z
dc.date.available2018-02-05T16:26:12Z
dc.date.issued2004-11
dc.identifier.citationBartron, Meredith L.; Swank, Dave R.; Rutherford, Edward S.; Scribner, Kim T. (2004). "Methodological Bias in Estimates of Strain Composition and Straying of Hatchery‐Produced Steelhead in Lake Michigan Tributaries." North American Journal of Fisheries Management 24(4): 1288-1299.
dc.identifier.issn0275-5947
dc.identifier.issn1548-8675
dc.identifier.urihttps://hdl.handle.net/2027.42/141020
dc.description.abstractSteelhead Oncorhynchus mykiss were first introduced into the Great Lakes in the late 1800s. Subsequently, natural recruitment of steelhead from spawning runs in streams across the basin has been regularly supplemented by hatchery production of strains derived from widely dispersed locales within the species’ native range. Estimates of hatchery contributions to the spawning runs of naturalized populations may be underrepresented by observations of marked fish, as not all hatchery fish are marked prior to release. To assess the potential bias in estimates of the hatchery contribution to steelhead spawning runs in four major rivers in Michigan, we used scale pattern analysis (SPA) to identify nonmarked hatchery fish and multilocus genotypes to estimate the proportional contributions of each hatchery strain to spawning runs. The four hatchery strains currently stocked are significantly genetically distinct (mean FST = 0.077), making it possible to identify specific strains by use of likelihood‐based assignment tests. The differences between direct (mark observations) and indirect (SPA and genetic analysis) estimates of hatchery contribution were mainly due to variations in the percentage of hatchery fish marked by states prior to release and the potential for confusion between certain marks and injuries. By combining direct and indirect assessment methodologies, we estimated that the percentage of hatchery fish returning to the four rivers ranged from 13% to 31% of total spawning runs. The large contribution of hatchery fish to nonstocked rivers differed significantly from expectations of strain‐specific stocking rates across the Lake Michigan basin and for individual streams, indicating high amounts of straying into Michigan streams.
dc.publisherTaylor & Francis Group
dc.publisherWiley Periodicals, Inc.
dc.titleMethodological Bias in Estimates of Strain Composition and Straying of Hatchery‐Produced Steelhead in Lake Michigan Tributaries
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141020/1/nafm1288.pdf
dc.identifier.doi10.1577/M03-083.1
dc.identifier.sourceNorth American Journal of Fisheries Management
dc.identifier.citedreferenceK. T. Scribner, J. R. Gust and R. L. Fields, 1996 Isolation and characterization of novel salmon microsatellite loci: Cross‐species amplification and population genetic applications, Canadian Journal of Fisheries and Aquatic Sciences, 53, Pages 833 – 841.
dc.identifier.citedreferenceC. Potvin and L. Bernatchez, 2001 Lacustrine spatial distribution of landlocked Atlantic salmon populations assessed across generations by multilocus individual assignment and mixed‐stock analyses, Molecular Ecology, 10, Pages 2375 – 2388.
dc.identifier.citedreferenceJ. K. Pritchard, M. Stephens and P. Donnelly, 2000 Inference of population structure using multilocus genotype data, Genetics, 155, Pages 945 – 959.
dc.identifier.citedreferenceT. P. Quinn, 1993 A review of homing and straying of wild and hatchery‐produced salmon, Fisheries Research, 18, Pages 29 – 44.
dc.identifier.citedreferenceP. S. Rand, D. J. Stewart, P. W. Seelbach, M. L. Jones and L. R. Wedge, 1993 Modeling steelhead population energetics in Lakes Michigan and Ontario, Transactions of the American Fisheries Society, 122, Pages 977 – 1001.
dc.identifier.citedreferenceB. Rannala and J. L. Mountain, 1997 Detecting immigration using multilocus genotypes, Proceedings of the National Academy of Sciences of the USA, 94, Pages 9197 – 9201.
dc.identifier.citedreferenceR. R. Reisenbichler and S. R. Phelps, 1989 Genetic variation in steelhead (Salmo gairdneri) from the north coast of Washington, Canadian Journal of Fisheries and Aquatic Sciences, 46, Pages 66 – 73.
dc.identifier.citedreferenceW. R. Rice, 1989 Analyzing tables of statistical tests, Evolution, 43, Pages 223 – 225.
dc.identifier.citedreferenceSAS Institute, 1999. In SAS/STAT, version 8. 0, SAS Institute, Cary, North Carolina.
dc.identifier.citedreferenceK. T. Scribner, P. A. Crane, W. J. Spearman and L. W. Seeb, 1998 DNA and allozyme markers provide concordant estimates of population differentiation: Analyses of U.S. and Canadian populations of Yukon River fall‐run chum salmon (Oncorhynchus keta), Canadian Journal of Fisheries and Aquatic Sciences, 55, Pages 1748 – 1758.
dc.identifier.citedreferenceP. W. Seelbach, 1987 Smolting success of hatchery‐raised steelhead planted in a Michigan tributary of Lake Michigan, North American Journal of Fisheries Management, 7, Pages 223 – 231.
dc.identifier.citedreferenceP. W. Seelbach, 1986. In Population characteristics and dynamics of wild steelhead in a Michigan tributary of Lake Michigan. Doctoral dissertation, University of Michigan, Ann Arbor.
dc.identifier.citedreferenceP. W. Seelbach and B. R. Miller, 1993. In Dynamics in Lake Superior of hatchery and wild steelhead emigrating from the Huron River, Michigan, Michigan Department of Natural Resources, Fisheries Division, Ann Arbor, Research Report 1993.
dc.identifier.citedreferenceP. W. Seelbach and G. E. Whelan, 1988 Identification and contribution of wild and hatchery steelhead stocks in Lake Michigan tributaries, Transactions of the American Fisheries Society, 117, Pages 444 – 451.
dc.identifier.citedreferenceR. R. Sokal and F. J. Rohlf, 1995. In Biometry,, Freeman, San Francisco, 3rd edition.
dc.identifier.citedreferenceT. M. Stauffer, 1955. In Migration and growth of tagged, immature rainbow trout in the Black River, Mackinac County, and in Lake Michigan, 1951–1954, Michigan Department of Conservation, Ann Arbor, Institute of Fisheries Research Report 1441.
dc.identifier.citedreferenceJ. F. Thedinga, A. C. Wertheimer, R. A. Heintz, J. M. Maselko and S. D. Rice, 2000 Effects of stock, coded‐wire tagging, and transplant on straying of pink salmon (Oncorhynchus gorbuscha) in southeastern Alaska, Canadian Journal of Fisheries and Aquatic Sciences, 57, Pages 2076 – 2085.
dc.identifier.citedreferenceR. S. Waples, 1991 Genetic interactions between hatchery and wild salmonids: Lessons from the Pacific Northwest, Canadian Journal of Fisheries and Aquatic Sciences, 48 (Supplement 1), Pages 124 – 133.
dc.identifier.citedreferenceM. A. Banks, M. S. Blouin, B. A. Baldwin, V. K. Rashbrook, H. A. Fitzgerald, S. M. Blankenship and D. Hedgecock, 1999 Isolation and inheritance of novel microsatellites in Chinook salmon (Oncorhynchus tshawytscha), Journal of Heredity, 90, Pages 281 – 288.
dc.identifier.citedreferenceM. L. Bartron and K. T. Scribner, 2004 Temporal comparisons of genetic diversity in Lake Michigan steelhead (Oncorhynchus mykiss) populations: Effects of hatchery supplementation, Environmental Biology of Fishes, 69, Pages 395 – 407.
dc.identifier.citedreferenceT. D. Beacham, S. Pollard and K. D. Le, 2000 Microsatellite DNA population structure and stock identification of steelhead trout (Oncorhynchus mykiss) in the Nass and Skeena rivers in northern British Columbia, Marine Biotechnology, 2, Pages 587 – 600.
dc.identifier.citedreferenceR. M. Biette, D. P. Dodge, R. L. Hassinger and T. M. Stauffer, 1981 Life history and timing of migrations and spawning behavior of rainbow trout (Salmo gairdneri) populations of the Great Lakes, Canadian Journal of Fisheries and Aquatic Sciences, 38, Pages 1759 – 1771.
dc.identifier.citedreferenceJ. A. Blanchong, K. T. Scribner and S. R. Winterstein, 2002 Assignment of individuals to populations: Bayesian methods and multilocus genotypes, Journal of Wildlife Management, 66, Pages 321 – 329.
dc.identifier.citedreferenceT. Burzynski, 1999. In Wisconsin’s Lake Michigan salmonid stocking program, Wisconsin Department of Natural Resources, Great Lakes Research Facility, Milwaukee.
dc.identifier.citedreferenceJ. R. Candy and T. D. Beacham, 2000 Patterns of homing and straying in southern British Columbia coded‐wire tagged Chinook salmon (Oncorhynchus tshawytscha) populations, Fisheries Research, 47, Pages 41 – 56.
dc.identifier.citedreferenceJ. M. Cornuet, S. Piry, G. Luikart, A. Estoup and M. Solignac, 1999 Comparison of methods employing multilocus genotypes to select or exclude populations as origins of individuals, Genetics, 153, Pages 1989 – 2000.
dc.identifier.citedreferenceD. P. Dodge, 1972. In Comparative bio‐ecology of rainbow trout (Salmo gairdneri, Richardson) of three tributaries to the Owen Sound, Lake Huron, University of Guelph, Doctoral dissertation, Guelph, Ontario.
dc.identifier.citedreferenceB. Efron, 1983 Estimating the error rate of a prediction rule: Improvement on cross‐validation, Journal of the American Statistical Association, 78, Pages 316 – 320.
dc.identifier.citedreferenceM. M. Hansen, E. Kenchington and E. E. Nielsen, 2001 Assigning individual fish to populations using microsatellite DNA markers, Fish and Fisheries, 2, Pages 93 – 112.
dc.identifier.citedreferenceJ. J. Hard and W. R. Heard, 1999 Analysis of straying variation in Alaskan hatchery Chinook salmon (Oncorhynchus tshawytscha) following transplantation, Canadian Journal of Fisheries and Aquatic Sciences, 56, Pages 578 – 589.
dc.identifier.citedreferenceA. R. Marshall, M. Miller, C. Busack and S. R. Phelps, 1991. In Genetic stock identification analysis of three 1990 Washington ocean and Strait of Juan de Fuca Chinook salmon fisheries, Washington Department of Fisheries, Olympia, GSI Summary Report 91‐ 1.
dc.identifier.citedreferenceD. B. Morris, K. R. Richard and J. M. Wright, 1996 Microsatellites from rainbow trout (Oncorhynchus mykiss) and their use for genetic study of salmonids, Canadian Journal of Fisheries and Aquatic Sciences, 53, Pages 120 – 126.
dc.identifier.citedreferenceR. J. Nelson, T. D. Beacham and M. P. Small, 1998 Microsatellite analysis of the population structure of a Vancouver Island sockeye salon (Oncorhynchus nerka) stock complex using nondenaturing gel electrophoresis, Molecular Marine Biology and Biotechnology, 7, Pages 312 – 319.
dc.identifier.citedreferenceJ. B. Olsen, P. Bentzen and J. E. Seeb, 1998 Characterization of seven microsatellite loci derived from pink salmon, Molecular Ecology, 7, Pages 1087 – 1089.
dc.identifier.citedreferenceM. A. Pascual, T. P. Quinn and H. Fuss, 1995 Factors affecting the homing of fall Chinook salmon from Columbia River hatcheries, Transactions of the American Fisheries Society, 124, Pages 308 – 320.
dc.identifier.citedreferenceJ. J. Pella and G. B. Milner, 1987, “ Use of genetic marks in stock composition analysis ”, Pages 247 – 276. Edited by: N. Ryman, F. Utter. In Population Genetics and Fishery Management, Washington Sea Grant, Seattle.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.