Show simple item record

The IKKâ related kinase TBK1 activates mTORC1 directly in response to growth factors and innate immune agonists

dc.contributor.authorBodur, Cagri
dc.contributor.authorKazyken, Dubek
dc.contributor.authorHuang, Kezhen
dc.contributor.authorEkim Ustunel, Bilgen
dc.contributor.authorSiroky, Kate A
dc.contributor.authorTooley, Aaron Seth
dc.contributor.authorGonzalez, Ian E
dc.contributor.authorFoley, Daniel H
dc.contributor.authorAcosta‐jaquez, Hugo A
dc.contributor.authorBarnes, Tammy M
dc.contributor.authorSteinl, Gabrielle K
dc.contributor.authorCho, Kae‐won
dc.contributor.authorLumeng, Carey N
dc.contributor.authorRiddle, Steven M
dc.contributor.authorMyers, Martin G
dc.contributor.authorFingar, Diane C
dc.date.accessioned2018-02-05T16:26:21Z
dc.date.available2019-03-01T21:00:19Zen
dc.date.issued2018-01-04
dc.identifier.citationBodur, Cagri; Kazyken, Dubek; Huang, Kezhen; Ekim Ustunel, Bilgen; Siroky, Kate A; Tooley, Aaron Seth; Gonzalez, Ian E; Foley, Daniel H; Acosta‐jaquez, Hugo A ; Barnes, Tammy M; Steinl, Gabrielle K; Cho, Kae‐won ; Lumeng, Carey N; Riddle, Steven M; Myers, Martin G; Fingar, Diane C (2018). "The IKKâ related kinase TBK1 activates mTORC1 directly in response to growth factors and innate immune agonists." The EMBO Journal 37(1): 19-38.
dc.identifier.issn0261-4189
dc.identifier.issn1460-2075
dc.identifier.urihttps://hdl.handle.net/2027.42/141029
dc.description.abstractThe innate immune kinase TBK1 initiates inflammatory responses to combat infectious pathogens by driving production of type I interferons. TBK1 also controls metabolic processes and promotes oncogeneâ induced cell proliferation and survival. Here, we demonstrate that TBK1 activates mTOR complex 1 (mTORC1) directly. In cultured cells, TBK1 associates with and activates mTORC1 through siteâ specific mTOR phosphorylation (on S2159) in response to certain growth factor receptors (i.e., EGFâ receptor but not insulin receptor) and pathogen recognition receptors (PRRs) (i.e., TLR3; TLR4), revealing a stimulusâ selective role for TBK1 in mTORC1 regulation. By studying cultured macrophages and those isolated from genome edited mTOR S2159A knockâ in mice, we show that mTOR S2159 phosphorylation promotes mTORC1 signaling, IRF3 nuclear translocation, and IFNâ β production. These data demonstrate a direct mechanistic link between TBK1 and mTORC1 function as well as physiologic significance of the TBK1â mTORC1 axis in control of innate immune function. These data unveil TBK1 as a direct mTORC1 activator and suggest unanticipated roles for mTORC1 downstream of TBK1 in control of innate immunity, tumorigenesis, and disorders linked to chronic inflammation.SynopsisTBK1, an IKKâ related kinase that drives interferon production as well cancer cell proliferation and survival, phosphorylates mTOR to activate mTORC1 in response to EGF and innate immune agonists, suggesting unanticipated roles for mTORC1 downstream of TBK1 in control of innate immunity and tumorigenesis.TBK1 interacts with mTORC1 and phosphorylates mTOR on S2159 to increase its catalytic activity.Cells lacking TBK1 or expressing a mTOR S2159A allele exhibit reduced mTORC1 signaling in response to EGFâ receptor and TLR3/4 activation.Primary macrophages derived from genome edited mTOR S2159A mice exhibit reduced mTORC1 signaling in response to TLR3/4 activation.Primary macrophages treated with rapamycin as well as those derived from mTORS2159A mice produce reduced levels of IFNâ β due to impaired nuclear translocation of the transcription factor IRF3.Innate immune kinase TBK1â dependent activation of mTORC1 occurs in response to pathogen recognition and EGF receptor activation and drives interferon production, thus highlighting the role of mTOR for innate immunity.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermTORC1
dc.subject.otherIFNâ β
dc.subject.othermTOR
dc.subject.otherTBK1
dc.titleThe IKKâ related kinase TBK1 activates mTORC1 directly in response to growth factors and innate immune agonists
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141029/1/embj201696164.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141029/2/embj201696164.reviewer_comments.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141029/3/embj201696164_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141029/4/embj201696164-sup-0001-EVFigs.pdf
dc.identifier.doi10.15252/embj.201696164
dc.identifier.sourceThe EMBO Journal
dc.identifier.citedreferencePanne D, McWhirter SM, Maniatis T, Harrison SC ( 2007 ) Interferon regulatory factor 3 is regulated by a dual phosphorylationâ dependent switch. J Biol Chem 282: 22816 â 22822
dc.identifier.citedreferenceMcWhirter SM, Fitzgerald KA, Rosains J, Rowe DC, Golenbock DT, Maniatis T ( 2004 ) IFNâ regulatory factor 3â dependent gene expression is defective in Tbk1â deficient mouse embryonic fibroblasts. Proc Natl Acad Sci USA 101: 233 â 238
dc.identifier.citedreferenceMogensen TH ( 2009 ) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22: 240 â 273
dc.identifier.citedreferenceMori M, Yoneyama M, Ito T, Takahashi K, Inagaki F, Fujita T ( 2004 ) Identification of Serâ 386 of interferon regulatory factor 3 as critical target for inducible phosphorylation that determines activation. J Biol Chem 279: 9698 â 9702
dc.identifier.citedreferenceMowers J, Uhm M, Reilly SM, Simon J, Leto D, Chiang SH, Chang L, Saltiel AR ( 2013 ) Inflammation produces catecholamine resistance in obesity via activation of PDE3B by the protein kinases IKKepsilon and TBK1. Elife 2: e01119
dc.identifier.citedreferenceO’Neill LA, Golenbock D, Bowie AG ( 2013 ) The history of Tollâ like receptors â redefining innate immunity. Nat Rev Immunol 13: 453 â 460
dc.identifier.citedreferenceOu YH, Torres M, Ram R, Formstecher E, Roland C, Cheng T, Brekken R, Wurz R, Tasker A, Polverino T, Tan SL, White MA ( 2011 ) TBK1 directly engages Akt/PKB survival signaling to support oncogenic transformation. Mol Cell 41: 458 â 470
dc.identifier.citedreferencePearce LR, Komander D, Alessi DR ( 2010 ) The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol 11: 9 â 22
dc.identifier.citedreferencePeters RT, Liao SM, Maniatis T ( 2000 ) IKKepsilon is part of a novel PMAâ inducible IkappaB kinase complex. Mol Cell 5: 513 â 522
dc.identifier.citedreferencePolak P, Cybulski N, Feige JN, Auwerx J, Ruegg MA, Hall MN ( 2008 ) Adiposeâ specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab 8: 399 â 410
dc.identifier.citedreferenceReilly SM, Chiang SH, Decker SJ, Chang L, Uhm M, Larsen MJ, Rubin JR, Mowers J, White NM, Hochberg I, Downes M, Yu RT, Liddle C, Evans RM, Oh D, Li P, Olefsky JM, Saltiel AR ( 2013 ) An inhibitor of the protein kinases TBK1 and IKKâ varepsilon improves obesityâ related metabolic dysfunctions in mice. Nat Med 19: 313 â 321
dc.identifier.citedreferenceRicoult SJ, Manning BD ( 2013 ) The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep 14: 242 â 251
dc.identifier.citedreferenceSancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM ( 2007 ) PRAS40 is an insulinâ regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25: 903 â 915
dc.identifier.citedreferenceSarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjumentâ Bromage H, Tempst P, Sabatini DM ( 2004 ) Rictor, a novel binding partner of mTOR, defines a rapamycinâ insensitive and raptorâ independent pathway that regulates the cytoskeleton. Curr Biol 14: 1296 â 1302
dc.identifier.citedreferenceSarbassov DD, Guertin DA, Ali SM, Sabatini DM ( 2005 ) Phosphorylation and regulation of Akt/PKB by the rictorâ mTOR complex. Science 307: 1098 â 1101
dc.identifier.citedreferenceSaxton RA, Sabatini DM ( 2017 ) mTOR signaling in growth, metabolism, and disease. Cell 169: 361 â 371
dc.identifier.citedreferenceSchmitz F, Heit A, Dreher S, Eisenacher K, Mages J, Haas T, Krug A, Janssen KP, Kirschning CJ, Wagner H ( 2008 ) Mammalian target of rapamycin (mTOR) orchestrates the defense program of innate immune cells. Eur J Immunol 38: 2981 â 2992
dc.identifier.citedreferenceSchneider WM, Chevillotte MD, Rice CM ( 2014 ) Interferonâ stimulated genes: a complex web of host defenses. Annu Rev Immunol 32: 513 â 545
dc.identifier.citedreferenceShen RR, Hahn WC ( 2011 ) Emerging roles for the nonâ canonical IKKs in cancer. Oncogene 30: 631 â 641
dc.identifier.citedreferenceSoliman GA, Acostaâ Jaquez HA, Dunlop EA, Ekim B, Maj NE, Tee AR, Fingar DC ( 2010 ) mTOR Serâ 2481 autophosphorylation monitors mTORCâ specific catalytic activity and clarifies rapamycin mechanism of action. J Biol Chem 285: 7866 â 7879
dc.identifier.citedreferenceStan R, McLaughlin MM, Cafferkey R, Johnson RK, Rosenberg M, Livi GP ( 1994 ) Interaction between FKBP12â rapamycin and TOR involves a conserved serine residue. J Biol Chem 269: 32027 â 32030
dc.identifier.citedreferenceTenOever BR, Sharma S, Zou W, Sun Q, Grandvaux N, Julkunen I, Hemmi H, Yamamoto M, Akira S, Yeh WC, Lin R, Hiscott J ( 2004 ) Activation of TBK1 and IKKepsilon kinases by vesicular stomatitis virus infection and the role of viral ribonucleoprotein in the development of interferon antiviral immunity. J Virol 78: 10636 â 10649
dc.identifier.citedreferenceTenOever BR, Ng SL, Chua MA, McWhirter SM, Garciaâ Sastre A, Maniatis T ( 2007 ) Multiple functions of the IKKâ related kinase IKKepsilon in interferonâ mediated antiviral immunity. Science 315: 1274 â 1278
dc.identifier.citedreferenceThoreen CC, Sabatini DM ( 2009 ) Rapamycin inhibits mTORC1, but not completely. Autophagy 5: 725 â 726
dc.identifier.citedreferenceTu D, Zhu Z, Zhou AY, Yun CH, Lee KE, Toms AV, Li Y, Dunn GP, Chan E, Thai T, Yang S, Ficarro SB, Marto JA, Jeon H, Hahn WC, Barbie DA, Eck MJ ( 2013 ) Structure and ubiquitinationâ dependent activation of TANKâ binding kinase 1. Cell Rep 3: 747 â 758
dc.identifier.citedreferenceUhm M, Bazuine M, Zhao P, Chiang SH, Xiong T, Karunanithi S, Chang L, Saltiel AR ( 2017 ) Phosphorylation of the exocyst protein Exo84 by TBK1 promotes insulinâ stimulated GLUT4 trafficking. Sci Signal 10: eaah5085
dc.identifier.citedreferenceWang F, Alain T, Szretter KJ, Stephenson K, Pol JG, Atherton MJ, Hoang HD, Fonseca BD, Zakaria C, Chen L, Rangwala Z, Hesch A, Chan ES, Tuinman C, Suthar MS, Jiang Z, Ashkar AA, Thomas G, Kozma SC, Gale M Jr et al ( 2016 ) S6Kâ STING interaction regulates cytosolic DNAâ mediated activation of the transcription factor IRF3. Nat Immunol 17: 514 â 522
dc.identifier.citedreferenceWild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C, Dotsch V, Bumann D, Dikic I ( 2011 ) Phosphorylation of the autophagy receptor optineurin restricts salmonella growth. Science 333: 228 â 233
dc.identifier.citedreferenceXie X, Zhang D, Zhao B, Lu MK, You M, Condorelli G, Wang CY, Guan KL ( 2011 ) I{kappa}B kinase varepsilon and TANKâ binding kinase 1 activate AKT by direct phosphorylation. Proc Natl Acad Sci USA 108: 6474 â 6479
dc.identifier.citedreferenceYu T, Yi YS, Yang Y, Oh J, Jeong D, Cho JY ( 2012 ) The pivotal role of TBK1 in inflammatory responses mediated by macrophages. Mediators Inflamm 2012: 979105
dc.identifier.citedreferenceZhao J, Benakanakere MR, Hosur KB, Galicia JC, Martin M, Kinane DF ( 2010 ) Mammalian target of rapamycin (mTOR) regulates TLR3 induced cytokines in human oral keratinocytes. Mol Immunol 48: 294 â 304
dc.identifier.citedreferenceZhu Z, Golay HG, Barbie DA ( 2014 ) Targeting pathways downstream of KRAS in lung adenocarcinoma. Pharmacogenomics 15: 1507 â 1518
dc.identifier.citedreferenceZoncu R, Efeyan A, Sabatini DM ( 2011 ) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12: 21 â 35
dc.identifier.citedreferenceAcostaâ Jaquez HA, Keller JA, Foster KG, Ekim B, Soliman GA, Feener EP, Ballif BA, Fingar DC ( 2009 ) Siteâ specific mTOR phosphorylation promotes mTORC1â mediated signaling and cell growth. Mol Cell Biol 29: 4308 â 4324
dc.identifier.citedreferenceAlain T, Lun X, Martineau Y, Sean P, Pulendran B, Petroulakis E, Zemp FJ, Lemay CG, Roy D, Bell JC, Thomas G, Kozma SC, Forsyth PA, Costaâ Mattioli M, Sonenberg N ( 2010 ) Vesicular stomatitis virus oncolysis is potentiated by impairing mTORC1â dependent type I IFN production. Proc Natl Acad Sci USA 107: 1576 â 1581
dc.identifier.citedreferenceAlessi DR, Pearce LR, Garciaâ Martinez JM ( 2009 ) New insights into mTOR signaling: mTORC2 and beyond. Sci Signal 2: pe27
dc.identifier.citedreferenceBarbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C, Frohling S, Chan EM, Sos ML, Michel K, Mermel C, Silver SJ, Weir BA, Reiling JH, Sheng Q, Gupta PB et al ( 2009 ) Systematic RNA interference reveals that oncogenic KRASâ driven cancers require TBK1. Nature 462: 108 â 112
dc.identifier.citedreferenceBoehm JS, Zhao JJ, Yao J, Kim SY, Firestein R, Dunn IF, Sjostrom SK, Garraway LA, Weremowicz S, Richardson AL, Greulich H, Stewart CJ, Mulvey LA, Shen RR, Ambrogio L, Hirozaneâ Kishikawa T, Hill DE, Vidal M, Meyerson M, Grenier JK et al ( 2007 ) Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell 129: 1065 â 1079
dc.identifier.citedreferenceBoor PP, Metselaar HJ, Mancham S, van der Laan LJ, Kwekkeboom J ( 2013 ) Rapamycin has suppressive and stimulatory effects on human plasmacytoid dendritic cell functions. Clin Exp Immunol 174: 389 â 401
dc.identifier.citedreferenceBrown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber SL ( 1995 ) Control of p70 S6 kinase by kinase activity of FRAP in vivo. Nature 377: 441 â 446
dc.identifier.citedreferenceCao W, Manicassamy S, Tang H, Kasturi SP, Pirani A, Murthy N, Pulendran B ( 2008 ) Tollâ like receptorâ mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycinâ sensitive PI(3)Kâ mTORâ p70S6K pathway. Nat Immunol 9: 1157 â 1164
dc.identifier.citedreferenceChen J, Zheng XF, Brown EJ, Schreiber SL ( 1995 ) Identification of an 11â kDa FKBP12â rapamycinâ binding domain within the 289â kDa FKBP12â rapamycinâ associated protein and characterization of a critical serine residue. Proc Natl Acad Sci USA 92: 4947 â 4951
dc.identifier.citedreferenceChiang SH, Bazuine M, Lumeng CN, Geletka LM, Mowers J, White NM, Ma JT, Zhou J, Qi N, Westcott D, Delproposto JB, Blackwell TS, Yull FE, Saltiel AR ( 2009 ) The protein kinase IKKepsilon regulates energy balance in obese mice. Cell 138: 961 â 975
dc.identifier.citedreferenceChien Y, Kim S, Bumeister R, Loo YM, Kwon SW, Johnson CL, Balakireva MG, Romeo Y, Kopelovich L, Gale M Jr, Yeaman C, Camonis JH, Zhao Y, White MA ( 2006 ) RalB GTPaseâ mediated activation of the IkappaB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell 127: 157 â 170
dc.identifier.citedreferenceClark K, Plater L, Peggie M, Cohen P ( 2009 ) Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkappaB kinase epsilon: a distinct upstream kinase mediates Serâ 172 phosphorylation and activation. J Biol Chem 284: 14136 â 14146
dc.identifier.citedreferenceClark K, Peggie M, Plater L, Sorcek RJ, Young ER, Madwed JB, Hough J, McIver EG, Cohen P ( 2011 ) Novel crossâ talk within the IKK family controls innate immunity. Biochem J 434: 93 â 104
dc.identifier.citedreferenceClement JF, Meloche S, Servant MJ ( 2008 ) The IKKâ related kinases: from innate immunity to oncogenesis. Cell Res 18: 889 â 899
dc.identifier.citedreferenceColina R, Costaâ Mattioli M, Dowling RJ, Jaramillo M, Tai LH, Breitbach CJ, Martineau Y, Larsson O, Rong L, Svitkin YV, Makrigiannis AP, Bell JC, Sonenberg N ( 2008 ) Translational control of the innate immune response through IRFâ 7. Nature 452: 323 â 328
dc.identifier.citedreferenceCornu M, Albert V, Hall MN ( 2013 ) mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 23: 53 â 62
dc.identifier.citedreferenceDibble CC, Manning BD ( 2013 ) Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 15: 555 â 564
dc.identifier.citedreferenceDibble CC, Cantley LC ( 2015 ) Regulation of mTORC1 by PI3K signaling. Trends Cell Biol 25: 545 â 555
dc.identifier.citedreferenceEkim B, Magnuson B, Acostaâ Jaquez HA, Keller JA, Feener EP, Fingar DC ( 2011 ) mTOR kinase domain phosphorylation promotes mTORC1 signaling, cell growth, and cell cycle progression. Mol Cell Biol 31: 2787 â 2801
dc.identifier.citedreferenceErickson AK, Gale M Jr ( 2008 ) Regulation of interferon production and innate antiviral immunity through translational control of IRFâ 7. Cell Res 18: 433 â 435
dc.identifier.citedreferenceFitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T ( 2003 ) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4: 491 â 496
dc.identifier.citedreferenceGrivennikov SI, Greten FR, Karin M ( 2010 ) Immunity, inflammation, and cancer. Cell 140: 883 â 899
dc.identifier.citedreferenceGuertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ, Sabatini DM ( 2006 ) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Aktâ FOXO and PKCalpha, but not S6K1. Dev Cell 11: 859 â 871
dc.identifier.citedreferencevan der Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH ( 2007 ) Insulin signaling to mTOR mediated by the AKT/PKB substrate PRAS40. Nat Cell Biol 9: 316 â 323
dc.identifier.citedreferenceHacker H, Karin M ( 2006 ) Regulation and function of IKK and IKKâ related kinases. Sci STKE 2006: re13
dc.identifier.citedreferenceHagiwara A, Cornu M, Cybulski N, Polak P, Betz C, Trapani F, Terracciano L, Heim MH, Ruegg MA, Hall MN ( 2012 ) Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab 15: 725 â 738
dc.identifier.citedreferenceHara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng QP, Kasuga M, Nishimoto I, Avruch J ( 1997 ) Regulation of eIFâ 4E BP1 phosphorylation by mTOR. J Biol Chem 272: 26457 â 26463
dc.identifier.citedreferenceHara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K ( 2002 ) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110: 177 â 189
dc.identifier.citedreferenceHasan M, Gonugunta VK, Dobbs N, Ali A, Palchik G, Calvaruso MA, DeBerardinis RJ, Yan N ( 2017 ) Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism. Proc Natl Acad Sci USA 114: 746 â 751
dc.identifier.citedreferenceHelgason E, Phung QT, Dueber EC ( 2013 ) Recent insights into the complexity of Tankâ binding kinase 1 signaling networks: the emerging role of cellular localization in the activation and substrate specificity of TBK1. FEBS Lett 587: 1230 â 1237
dc.identifier.citedreferenceHiscott J ( 2007 ) Triggering the innate antiviral response through IRFâ 3 activation. J Biol Chem 282: 15325 â 15329
dc.identifier.citedreferenceHowell JJ, Ricoult SJ, Benâ Sahra I, Manning BD ( 2013 ) A growing role for mTOR in promoting anabolic metabolism. Biochem Soc Trans 41: 906 â 912
dc.identifier.citedreferenceHuang K, Fingar DC ( 2014 ) Growing knowledge of the mTOR signaling network. Semin Cell Dev Biol 36: 79 â 90
dc.identifier.citedreferenceHutti JE, Shen RR, Abbott DW, Zhou AY, Sprott KM, Asara JM, Hahn WC, Cantley LC ( 2009 ) Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKepsilon promotes cell transformation. Mol Cell 34: 461 â 472
dc.identifier.citedreferenceIkushima H, Negishi H, Taniguchi T ( 2013 ) The IRF family transcription factors at the interface of innate and adaptive immune responses. Cold Spring Harb Symp Quant Biol 78: 105 â 116
dc.identifier.citedreferenceInoki K, Li Y, Zhu T, Wu J, Guan KL ( 2002 ) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4: 648 â 657
dc.identifier.citedreferenceJacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J, Su B ( 2006 ) SIN1/MIP1 maintains rictorâ mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127: 125 â 137
dc.identifier.citedreferenceJacinto E, Lorberg A ( 2008 ) TOR regulation of AGC kinases in yeast and mammals. Biochem J 410: 19 â 37
dc.identifier.citedreferenceJoung SM, Park ZY, Rani S, Takeuchi O, Akira S, Lee JY ( 2011 ) Akt contributes to activation of the TRIFâ dependent signaling pathways of TLRs by interacting with TANKâ binding kinase 1. J Immunol 186: 499 â 507
dc.identifier.citedreferenceKarin M ( 2009 ) NFâ kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1: a000141
dc.identifier.citedreferenceKeshwani MM, von Daake S, Newton AC, Harris TK, Taylor SS ( 2011 ) Hydrophobic motif phosphorylation is not required for activation loop phosphorylation of p70 Ribosomal protein S6 kinase 1 (S6K1). J Biol Chem 286: 23552 â 23558
dc.identifier.citedreferenceKim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjumentâ Bromage H, Tempst P, Sabatini DM ( 2002 ) mTOR interacts with raptor to form a nutrientâ sensitive complex that signals to the cell growth machinery. Cell 110: 163 â 175
dc.identifier.citedreferenceKim JK, Jung Y, Wang J, Joseph J, Mishra A, Hill EE, Krebsbach PH, Pienta KJ, Shiozawa Y, Taichman RS ( 2013 ) TBK1 regulates prostate cancer dormancy through mTOR inhibition. Neoplasia 15: 1064 â 1074
dc.identifier.citedreferenceKitajima S, Thummalapalli R, Barbie DA ( 2016 ) Inflammation as a driver and vulnerability of KRAS mediated oncogenesis. Semin Cell Dev Biol 58: 127 â 135.
dc.identifier.citedreferenceKleinert M, Parker BL, Fritzen AM, Knudsen JR, Jensen TE, Kjobsted R, Sylow L, Ruegg M, James DE, Richter EA ( 2017 ) Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice. J Physiol 595: 4845 â 4855
dc.identifier.citedreferenceKumar A, Harris TE, Keller SR, Choi KM, Magnuson MA, Lawrence JC Jr ( 2008 ) Muscleâ specific deletion of rictor impairs insulinâ stimulated glucose transport and enhances Basal glycogen synthase activity. Mol Cell Biol 28: 61 â 70
dc.identifier.citedreferenceKumar A, Lawrence JC Jr, Jung DY, Ko HJ, Keller SR, Kim JK, Magnuson MA, Harris TE ( 2010 ) Fat cellâ specific ablation of rictor in mice impairs insulinâ regulated fat cell and wholeâ body glucose and lipid metabolism. Diabetes 59: 1397 â 1406
dc.identifier.citedreferenceLaplante M, Sabatini DM ( 2012 ) mTOR signaling in growth control and disease. Cell 149: 274 â 293
dc.identifier.citedreferenceLee PS, Wilhelmson AS, Hubner AP, Reynolds SB, Gallacchi DA, Chiou TT, Kwiatkowski DJ ( 2010 ) mTORC1â S6K activation by endotoxin contributes to cytokine upâ regulation and early lethality in animals. PLoS One 5: e14399
dc.identifier.citedreferenceLee PL, Tang Y, Li H, Guertin DA ( 2016 ) Raptor/mTORC1 loss in adipocytes causes progressive lipodystrophy and fatty liver disease. Mol Metab 5: 422 â 432
dc.identifier.citedreferenceLivak KJ, Schmittgen TD ( 2001 ) Analysis of relative gene expression data using realâ time quantitative PCR and the 2 Î Î CT. Methods 25: 402 â 408
dc.identifier.citedreferenceMa XM, Blenis J ( 2009 ) Molecular mechanisms of mTORâ mediated translational control. Nat Rev Mol Cell Biol 10: 307 â 318
dc.identifier.citedreferenceMa X, Helgason E, Phung QT, Quan CL, Iyer RS, Lee MW, Bowman KK, Starovasnik MA, Dueber EC ( 2012 ) Molecular basis of Tankâ binding kinase 1 activation by transautophosphorylation. Proc Natl Acad Sci USA 109: 9378 â 9383
dc.identifier.citedreferenceMagnuson B, Ekim B, Fingar DC ( 2012 ) Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J 441: 1 â 21
dc.identifier.citedreferenceManning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC ( 2002 ) Identification of the tuberous sclerosis complexâ 2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3â kinase/akt pathway. Mol Cell 10: 151 â 162
dc.identifier.citedreferenceMarion JD, Roberts CF, Call RJ, Forbes JL, Nelson KT, Bell JE, Bell JK ( 2013 ) Mechanism of endogenous regulation of the type I interferon response by Suppressor of IKK{epsilon} (SIKE), a novel substrate of TANK binding kinase 1 (TBK1). J Biol Chem 288: 18612 â 18623
dc.identifier.citedreferenceMartin TD, Chen XW, Kaplan RE, Saltiel AR, Walker CL, Reiner DJ, Der CJ ( 2014 ) Ral and Rheb GTPase activating proteins integrate mTOR and GTPase signaling in aging, autophagy, and tumor cell invasion. Mol Cell 53: 209 â 220
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.