Show simple item record

Tyrosine kinase 2 promotes sepsis‐associated lethality by facilitating production of interleukin‐27

dc.contributor.authorBosmann, Markus
dc.contributor.authorStrobl, Birgit
dc.contributor.authorKichler, Nadia
dc.contributor.authorRigler, Doris
dc.contributor.authorGrailer, Jamison J.
dc.contributor.authorPache, Florence
dc.contributor.authorMurray, Peter J.
dc.contributor.authorMüller, Mathias
dc.contributor.authorWard, Peter A.
dc.date.accessioned2018-02-05T16:26:49Z
dc.date.available2018-02-05T16:26:49Z
dc.date.issued2014-07
dc.identifier.citationBosmann, Markus; Strobl, Birgit; Kichler, Nadia; Rigler, Doris; Grailer, Jamison J.; Pache, Florence; Murray, Peter J.; Müller, Mathias ; Ward, Peter A. (2014). "Tyrosine kinase 2 promotes sepsis‐associated lethality by facilitating production of interleukin‐27." Journal of Leukocyte Biology 96(1): 123-131.
dc.identifier.issn0741-5400
dc.identifier.issn1938-3673
dc.identifier.urihttps://hdl.handle.net/2027.42/141056
dc.publisherWiley Periodicals, Inc.
dc.subject.otherinflammation
dc.subject.otherinterferon
dc.subject.othershock
dc.subject.otherlipopolysaccharide
dc.subject.othermacrophages
dc.titleTyrosine kinase 2 promotes sepsis‐associated lethality by facilitating production of interleukin‐27
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
dc.contributor.affiliationotherCenter for Thrombosis and Hemostasis, Mainz, Germany
dc.contributor.affiliationotherDepartments of Infectious Diseases and Immunology, St. Jude Childrenˈs Research Hospital, Memphis, Tennessee, USA
dc.contributor.affiliationotherInstitute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
dc.contributor.affiliationotherDepartment of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141056/1/jlb0123-sup-0001.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141056/2/jlb0123.pdf
dc.identifier.doi10.1189/jlb.3A1013-541R
dc.identifier.sourceJournal of Leukocyte Biology
dc.identifier.citedreferenceTokumasa, N., Suto, A., Kagami, S., Furuta, S., Hirose, K., Watanabe, N., Saito, Y., Shimoda, K., Iwamoto, I., Nakajima, H. ( 2007 ) Expression of Tyk2 in dendritic cells is required for IL‐12, IL‐23, and IFN‐ γ production and the induction of Th1 cell differentiation. Blood 110, 553 – 560.
dc.identifier.citedreferenceCox, J. H., Kljavin, N. M., Ramamoorthi, N., Diehl, L., Batten, M., Ghilardi, N. ( 2011 ) IL‐27 promotes T cell‐dependent colitis through multiple mechanisms. J. Exp. Med. 208, 115 – 123.
dc.identifier.citedreferenceCao, Y., Doodes, P. D., Glant, T. T., Finnegan, A. ( 2008 ) IL‐27 induces a Th1 immune response and susceptibility to experimental arthritis. J. Immunol. 180, 922 – 930.
dc.identifier.citedreferenceVillarino, A., Hibbert, L., Lieberman, L., Wilson, E., Mak, T., Yoshida, H., Kastelein, R. A., Saris, C., Hunter, C. A. ( 2003 ) The IL‐27R (WSX‐1) is required to suppress T cell hyperactivity during infection. Immunity 19, 645 – 655.
dc.identifier.citedreferenceStumhofer, J. S., Laurence, A., Wilson, E. H., Huang, E., Tato, C. M., Johnson, L. M., Villarino, A. V., Huang, Q., Yoshimura, A., Sehy, D., Saris, C. J., O’Shea, J. J., Hennighausen, L., Ernst, M., Hunter, C. A. ( 2006 ) Interleukin 27 negatively regulates the development of interleukin 17‐producing T helper cells during chronic inflammation of the central nervous system. Nat. Immunol. 7, 937 – 945.
dc.identifier.citedreferenceBatten, M., Li, J., Yi, S., Kjavin, N. M., Danilenko, D. M., Lucas, S., Lee, J., de Sauvage, F. J., Ghilardi, N. ( 2006 ) Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17‐producing T cells. Nat. Immunol. 7, 929 – 936.
dc.identifier.citedreferenceGafa, V., Lande, R., Gagliardi, M. C., Severa, M., Giacomini, E., Remoli, M. E., Nisini, R., Ramoni, C., Di Francesco, P., Aldebert, D., Grillot, R., Coccia, E. M. ( 2006 ) Human dendritic cells following Aspergillus fumigatus infection express the CCR7 receptor and a differential pattern of interleukin‐12 (IL‐12), IL‐23, and IL‐27 cytokines, which lead to a Th1 response. Infect. Immun. 74, 1480 – 1489.
dc.identifier.citedreferenceBosmann, M., Haggadone, M. D., Hemmila, M. R., Zetoune, F. S., Sarma, J. V., Ward, P. A. ( 2012 ) Complement activation product C5a is a selective suppressor of TLR4‐induced, but not TLR3‐induced, production of IL‐27(p28) from macrophages. J. Immunol. 188, 5086 – 5093.
dc.identifier.citedreferenceMolle, C., Nguyen, M., Flamand, V., Renneson, J., Trottein, F., De Wit, D., Willems, F., Goldman, M., Goriely, S. ( 2007 ) IL‐27 synthesis induced by TLR ligation critically depends on IFN regulatory factor 3. J. Immunol. 178, 7607 – 7615.
dc.identifier.citedreferenceLiu, J. G., Guan, X. Q., Ma, X. J. ( 2007 ) Regulation of IL‐27 p28 gene expression in macrophages through MyD88‐ and interferon‐ γ ‐mediated pathways. J. Exp. Med. 204, 141 – 152.
dc.identifier.citedreferenceMolle, C., Goldman, M., Goriely, S. ( 2010 ) Critical role of the IFN‐stimulated gene factor 3 complex in TLR‐mediated IL‐27p28 gene expression revealing a two‐step activation process. J. Immunol. 184, 1784 – 1792.
dc.identifier.citedreferenceKaraghiosoff, M., Neubauer, H., Lassnig, C., Kovarik, P., Schindler, H., Pircher, H., McCoy, B., Bogdan, C., Decker, T., Brem, G., Pfeffer, K., Muller, M. ( 2000 ) Partial impairment of cytokine responses in Tyk2‐deficient mice. Immunity 13, 549 – 560.
dc.identifier.citedreferenceBosmann, M., Russkamp, N. F., Patel, V. R., Zetoune, F. S., Sarma, J. V., Ward, P. A. ( 2011 ) The outcome of polymicrobial sepsis is independent of T and B cells. Shock 36, 396 – 401.
dc.identifier.citedreferenceHerzig, D., Fang, G., Toliver‐Kinsky, T. E., Guo, Y., Bohannon, J., Sherwood, E. R. ( 2012 ) STAT1‐deficient mice are resistant to cecal ligation and puncture‐induced septic shock. Shock 38, 395 – 402.
dc.identifier.citedreferenceRadwan, M., Miller, I., Grunert, T., Marchetti‐Deschmann, M., Vogl, C., O’Donoghue, N., Dunn, M. J., Kolbe, T., Allmaier, G., Gemeiner, M., Muller, M., Strobl, B. ( 2008 ) The impact of tyrosine kinase 2 (Tyk2) on the proteome of murine macrophages and their response to lipopolysac‐ charide (LPS). Proteomics 8, 3469 – 3485.
dc.identifier.citedreferenceVogl, C., Flatt, T., Fuhrmann, B., Hofmann, E., Wallner, B., Stiefvater, R., Kovarik, P., Strobl, B., Muller, M. ( 2010 ) Transcriptome analysis re‐veals a major impact of JAK protein tyrosine kinase 2 (Tyk2) on the expression of interferon‐responsive and metabolic genes. BMC Genomics 11, 199.
dc.identifier.citedreferenceStrobl, B., Bubic, I., Bruns, U., Steinborn, R., Lajko, R., Kolbe, T., Karaghiosoff, M., Kalinke, U., Jonjic, S., Muller, M. ( 2005 ) Novel functions of tyrosine kinase 2 in the antiviral defense against murine cytomegalovirus. J. Immunol. 175, 4000 – 4008.
dc.identifier.citedreferenceKanda, N., Watanabe, S. ( 2008 ) IL‐12, IL‐23, and IL‐27 enhance human β ‐defensin‐2 production in human keratinocytes. Eur. J. Immunol. 38, 1287 – 1296.
dc.identifier.citedreferenceKamiya, S., Owaki, T., Morishima, N., Fukai, F., Mizuguchi, J., Yoshimoto, T. ( 2004 ) An indispensable role for STAT1 in IL‐27‐induced T‐bet expression but not proliferation of naive CD4+ T cells. J. Immunol. 173, 3871 – 3877.
dc.identifier.citedreferenceStahl, N., Boulton, T. G., Farruggella, T., Ip, N. Y., Davis, S., Witthuhn, B. A., Quelle, F. W., Silvennoinen, O., Barbieri, G., Pellegrini, S., et al. ( 1994 ) Association and activation of Jak‐Tyk kinases by CNTF‐LIF‐OSM‐ IL‐6 β receptor components. Science 263, 92 – 95.
dc.identifier.citedreferenceShimoda, K., Kato, K., Aoki, K., Matsuda, T., Miyamoto, A., Shibamori, M., Yamashita, M., Numata, A., Takase, K., Kobayashi, S., Shibata, S., Asano, Y., Gondo, H., Sekiguchi, K., Nakayama, K., Nakayama, T., Okamura, T., Okamura, S., Niho, Y. ( 2000 ) Tyk2 plays a restricted role in IFN α signaling, although it is required for IL‐12‐mediated T cell function. Immunity 13, 561 – 571.
dc.identifier.citedreferenceChung, B. M., Kang, H. C., Han, S. Y., Heo, H. S., Lee, J. J., Jeon, J., Lim, J. Y., Shin, I., Hong, S. H., Cho, Y. S., Kim, C. G. ( 2006 ) Jak2 and Tyk2 are necessary for lineage‐specific differentiation, but not for the maintenance of self‐renewal of mouse embryonic stem cells. Biochem. Biophys. Res. Commun. 351, 682 – 688.
dc.identifier.citedreferenceCrabe, S., Guay‐Giroux, A., Tormo, A. J., Duluc, D., Lissilaa, R., Guilhot, F., Mavoungou‐Bigouagou, U., Lefouili, F., Cognet, I., Ferlin, W., Elson, G., Jeannin, P., Gauchat, J. F. ( 2009 ) The IL‐27 p28 subunit binds cytokine‐like factor 1 to form a cytokine regulating NK and T cell activities requiring IL‐6R for signaling. J. Immunol. 183, 7692 – 7702.
dc.identifier.citedreferenceStumhofer, J. S., Tait, E. D., Quinn III, W. J., Hosken, N., Spudy, B., Goenka, R., Fielding, C. A., O’Hara, A. C., Chen, Y., Jones, M. L., Saris, C. J., Rose‐John, S., Cua, D. J., Jones, S. A., Elloso, M. M., Grotzinger, J., Cancro, M. P., Levin, S. D., Hunter, C. A. ( 2010 ) A role for IL‐27p28 as an antagonist of gp130‐mediated signaling. Nat. Immunol. 11, 1119 – 1126.
dc.identifier.citedreferenceAdhikari, N. K., Fowler, R. A., Bhagwanjee, S., Rubenfeld, G. D. ( 2010 ) Critical care and the global burden of critical illness in adults. Lancet 376, 1339 – 1346.
dc.identifier.citedreferenceVincent, J. L., Sakr, Y., Sprung, C. L., Ranieri, V. M., Reinhart, K., Gerlach, H., Moreno, R., Carlet, J., Le Gall, J. R., Payen, D. ( 2006 ) Sepsis in European intensive care units: results of the SOAP study. Crit. Care Med. 34, 344 – 353.
dc.identifier.citedreferenceRittirsch, D., Flierl, M. A., Ward, P. A. ( 2008 ) Harmful molecular mechanisms in sepsis. Nat. Rev. Immunol. 8, 776 – 787.
dc.identifier.citedreferenceBoomer, J. S., To, K., Chang, K. C., Takasu, O., Osborne, D. F., Walton, A. H., Bricker, T. L., Jarman II, S. D., Kreisel, D., Krupnick, A. S., Srivastava, A., Swanson, P. E., Green, J. M., Hotchkiss, R. S. ( 2011 ) Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 306, 2594 – 2605.
dc.identifier.citedreferenceHotchkiss, R. S., Coopersmith, C. M., McDunn, J. E., Ferguson, T. A. ( 2009 ) The sepsis seesaw: tilting toward immunosuppression. Nat. Med. 15, 496 – 497.
dc.identifier.citedreferenceWong, H. R., Cvijanovich, N. Z., Hall, M., Allen, G. L., Thomas, N. J., Freishtat, R. J., Anas, N., Meyer, K., Checchia, P. A., Lin, R., Bigham, M. T., Sen, A., Nowak, J., Quasney, M., Henricksen, J. W., Chopra, A., Banschbach, S., Beckman, E., Harmon, K., Lahni, P., Shanley, T. P. ( 2012 ) Interleukin‐27 is a novel candidate diagnostic biomarker for bacterial infection in critically ill children. Crit. Care 16, R213.
dc.identifier.citedreferenceWong, H. R., Lindsell, C. J., Lahni, P., Hart, K. W., Gibot, S. ( 2013 ) Interleukin 27 as a sepsis diagnostic biomarker in critically ill adults. Shock 40, 382 – 386.
dc.identifier.citedreferenceHotchkiss, R. S., Karl, I. E. ( 2003 ) The pathophysiology and treatment of sepsis. N. Engl. J. Med. 348, 138 – 150.
dc.identifier.citedreferenceSlade, E., Tamber, P. S., Vincent, J. L. ( 2003 ) The surviving sepsis campaign: raising awareness to reduce mortality. Crit. Care 7, 1 – 2.
dc.identifier.citedreferenceWard, P. A., Bosmann, M. ( 2012 ) A historical perspective on sepsis. Am. J. Pathol. 181, 2 – 7.
dc.identifier.citedreferenceBosmann, M., Ward, P. A. ( 2013 ) The inflammatory response in sepsis. Trends Immunol. 34, 129 – 136.
dc.identifier.citedreferenceKaraghiosoff, M., Steinborn, R., Kovarik, P., Kriegshauser, G., Baccarini, M., Donabauer, B., Reichart, U., Kolbe, T., Bogdan, C., Leanderson, T., Levy, D., Decker, T., Muller, M. ( 2003 ) Central role for type I interferons and Tyk2 in lipopolysaccharide‐induced endotoxin shock. Nat. Im‐munol. 4, 471 – 477.
dc.identifier.citedreferenceStrobl, B., Stoiber, D., Sexl, V., Mueller, M. ( 2011 ) Tyrosine kinase 2 (TYK2) in cytokine signalling and host immunity. Front. Biosci. 17, 3214 – 3232.
dc.identifier.citedreferenceMinegishi, Y., Saito, M., Morio, T., Watanabe, K., Agematsu, K., Tsuchiya, S., Takada, H., Hara, T., Kawamura, N., Ariga, T., Kaneko, H., Kondo, N., Tsuge, I., Yachie, A., Sakiyama, Y., Iwata, T., Bessho, F., Ohishi, T., Joh, K., Imai, K., Kogawa, K., Shinohara, M., Fujieda, M., Wakiguchi, H., Pasic, S., Abinun, M., Ochs, H. D., Renner, E. D., Jansson, A., Belohradsky, B. H., Metin, A., Shimizu, N., Mizutani, S., Miyawaki, T., Nonoyama, S., Karasuyama, H. ( 2006 ) Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25, 745 – 755.
dc.identifier.citedreferenceO’Shea, J. J., Holland, S. M., Staudt, L. M. ( 2013 ) JAKs and STATs in immunity, immunodeficiency, and cancer. N. Engl. J. Med. 368, 161 – 170.
dc.identifier.citedreferenceAizu, K., Li, W., Yajima, T., Arai, T., Shimoda, K., Nimura, Y., Yoshikai, Y. ( 2006 ) An important role of Tyk2 in APC function of dendritic cells for priming CD8+ T cells producing IFN‐ γ. Eur. J. Immunol. 36, 3060 – 3070.
dc.identifier.citedreferenceYap, G. S., Ortmann, R., Shevach, E., Sher, A. ( 2001 ) A heritable defect in IL‐12 signaling in B10.Q/J mice. II. Effect on acute resistance to Toxoplasma gondii and rescue by IL‐18 treatment. J. Immunol. 166, 5720 – 5725.
dc.identifier.citedreferenceWirtz, S., Tubbe, I., Galle, P. R., Schild, H. J., Birkenbach, M., Blumberg, R. S., Neurath, M. F. ( 2006 ) Protection from lethal septic peritonitis by neutralizing the biological function of interleukin 27. J. Exp. Med. 203, 1875 – 1881.
dc.identifier.citedreferencePflanz, S., Timans, J. C., Cheung, J., Rosales, R., Kanzler, H., Gilbert, J., Hibbert, L., Churakova, T., Travis, M., Vaisberg, E., Blumenschein, W. M., Mattson, J. D., Wagner, J. L., To, W., Zurawski, S., McClanahan, T. K., Gorman, D. M., Bazan, J. F., de Waal Malefyt, R., Rennick, D., Kastelein, R. A. ( 2002 ) IL‐27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells. Immunity 16, 779 – 790.
dc.identifier.citedreferenceBosmann, M., Ward, P. A. ( 2013 ) Modulation of inflammation by interleukin‐27. J. Leukoc. Biol. 94, 1159 – 1165.
dc.identifier.citedreferenceVignali, D. A., Kuchroo, V. K. ( 2012 ) IL‐12 family cytokines: immunological playmakers. Nat. Immunol. 13, 722 – 728.
dc.identifier.citedreferenceBatten, M., Kljavin, N. M., Li, J., Walter, M. J., de Sauvage, F. J., Ghilardi, N. ( 2008 ) Cutting edge: IL‐27 is a potent inducer of IL‐10 but not FoxP3 in murine T cells. J. Immunol. 180, 2752 – 2756.
dc.identifier.citedreferenceStumhofer, J. S., Silver, J. S., Laurence, A., Porrett, P. M., Harris, T. H., Turka, L. A., Ernst, M., Saris, C. J., O’Shea, J. J., Hunter, C. A. ( 2007 ) Interleukins 27 and 6 induce STAT3‐mediated T cell production of interleukin 10. Nat. Immunol. 8, 1363 – 1371.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.