Show simple item record

EHRA/HRS/APHRS/SOLAECE expert consensus on Atrial cardiomyopathies: Definition, characterisation, and clinical implication

dc.contributor.authorGoette, Andreas
dc.contributor.authorKalman, Jonathan M.
dc.contributor.authorAguinaga, Luis
dc.contributor.authorAkar, Joseph
dc.contributor.authorCabrera, Jose Angel
dc.contributor.authorChen, Shih Ann
dc.contributor.authorChugh, Sumeet S.
dc.contributor.authorCorradi, Domenico
dc.contributor.authorD’Avila, Andre
dc.contributor.authorDobrev, Dobromir
dc.contributor.authorFenelon, Guilherme
dc.contributor.authorGonzalez, Mario
dc.contributor.authorHatem, Stephane N.
dc.contributor.authorHelm, Robert
dc.contributor.authorHindricks, Gerhard
dc.contributor.authorHo, Siew Yen
dc.contributor.authorHoit, Brian
dc.contributor.authorJalife, Jose
dc.contributor.authorKim, Young‐hoon
dc.contributor.authorLip, Gregory Y.H.
dc.contributor.authorMa, Chang‐sheng
dc.contributor.authorMarcus, Gregory M.
dc.contributor.authorMurray, Katherine
dc.contributor.authorNogami, Akihiko
dc.contributor.authorSanders, Prashanthan
dc.contributor.authorUribe, William
dc.contributor.authorVan Wagoner, David R.
dc.contributor.authorNattel, Stanley
dc.date.accessioned2018-02-05T16:27:03Z
dc.date.available2018-02-05T16:27:03Z
dc.date.issued2016-08
dc.identifier.citationGoette, Andreas; Kalman, Jonathan M.; Aguinaga, Luis; Akar, Joseph; Cabrera, Jose Angel; Chen, Shih Ann; Chugh, Sumeet S.; Corradi, Domenico; D’Avila, Andre; Dobrev, Dobromir; Fenelon, Guilherme; Gonzalez, Mario; Hatem, Stephane N.; Helm, Robert; Hindricks, Gerhard; Ho, Siew Yen; Hoit, Brian; Jalife, Jose; Kim, Young‐hoon ; Lip, Gregory Y.H.; Ma, Chang‐sheng ; Marcus, Gregory M.; Murray, Katherine; Nogami, Akihiko; Sanders, Prashanthan; Uribe, William; Van Wagoner, David R.; Nattel, Stanley (2016). "EHRA/HRS/APHRS/SOLAECE expert consensus on Atrial cardiomyopathies: Definition, characterisation, and clinical implication." Journal of Arrhythmia 32(4): 247-278.
dc.identifier.issn1880-4276
dc.identifier.issn1883-2148
dc.identifier.urihttps://hdl.handle.net/2027.42/141073
dc.publisherChurchill Livingstone
dc.publisherWiley Periodicals, Inc.
dc.titleEHRA/HRS/APHRS/SOLAECE expert consensus on Atrial cardiomyopathies: Definition, characterisation, and clinical implication
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelCardiovascular Medicine
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumUniversity of Michigan, Ann Arbor, MI, USA
dc.contributor.affiliationotherDepartement of Cardiology and Intensive Care Medicine, St. Vincenzâ Hospital Paderborn, Working Group: Molecular Electrophysiology, University Hospital Magdeburg, Germany
dc.contributor.affiliationotherUniversity of Melbourne, Royal Melbourne Hospital, Melbourne, VIC, Australia
dc.contributor.affiliationotherCentro Privado de Cardiología, Tucumán, Argentina
dc.contributor.affiliationotherYale University, New Haven, CT, USA
dc.contributor.affiliationotherEuropean University Quironâ Madrid, Madrid, Spain
dc.contributor.affiliationotherVeterans General Hospital, Taipei, Taiwan
dc.contributor.affiliationotherThe Heart Institute, Cedarsâ Sinai Medical Center, Los Angeles, CA, USA
dc.contributor.affiliationotherUniversity of Parma, Parma, Italy
dc.contributor.affiliationotherMount Sinai School of Medicine, New York, NY, USA
dc.contributor.affiliationotherInstitute of Pharmacology, West German Heart and Vascular Center, University Duisburgâ Essen, Essen, Germany
dc.contributor.affiliationotherFederal University of Sao Paulo, San Paulo, Brazil
dc.contributor.affiliationotherPenn State Heart and Vascular Institute, Penn State University, Hershey, PA, USA
dc.contributor.affiliationotherDepartment of Cardiology, Assistance Publique â Hô pitaux de Paris, Pitiéâ Salpêtrière Hospital, Sorbonne University, INSERM UMR_S1166, Institute of Cardiometabolism and Nutritionâ ICAN, Paris, France
dc.contributor.affiliationotherBoston University School of Medicine, Boston Medical Center, Boston, MA, USA
dc.contributor.affiliationotherUniversity of Leipzig Heart Center, Leipzig, Germany
dc.contributor.affiliationotherRoyal Brompton Hospital and Imperial College London, London, UK
dc.contributor.affiliationotherUH Case Medical Center, Cleveland, OH, USA
dc.contributor.affiliationotherKorea University Medical Center, Seoul, South Korea
dc.contributor.affiliationotherUniversity of Birmingham, Birmingham, UK
dc.contributor.affiliationotherAnzhen Hospital, Beijing, China
dc.contributor.affiliationotherUniversity of California, San Francisco, CA, USA
dc.contributor.affiliationotherVanderbilt University, Nashville, TN, USA
dc.contributor.affiliationotherUniversity of Tsukuba, Ibaraki, Japan
dc.contributor.affiliationotherCentre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
dc.contributor.affiliationotherElectrophysiology Deparment at Centros Especializados de San Vicente Fundació n and Clínica CES. Universidad CES, Universidad Pontificia Bolivariana (UPB), Medellin, Colombia
dc.contributor.affiliationotherDepartment of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
dc.contributor.affiliationotherUniversité de Montréal, Montreal Heart Institute Research Center and McGill University, Montreal, Quebec, Canada
dc.contributor.affiliationotherInstitute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburgâ Essen, Essen, Germany
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141073/1/joa3247.pdf
dc.identifier.doi10.1016/j.joa.2016.05.002
dc.identifier.sourceJournal of Arrhythmia
dc.identifier.citedreferenceB. Hesse, S.U. Schuele, M. Thamilasaran, J. Thomas, L. Rodriguez. A rapid method to quantify left atrial contractile function: Doppler tissue imaging of the mitral annulus during atrial systole. Eur J Echocardiogr. 2004; 5: 86 â 92.
dc.identifier.citedreferenceK. Nademanee, M. Amnueypol, F. Lee, et al. Benefits and risks of catheter ablation in elderly patients with atrial fibrillation. Heart Rhythm. 2015; 12: 44 â 51.
dc.identifier.citedreferenceP. Santangeli, L. Di Biase, P. Mohanty, et al. Catheter ablation of atrial fibrillation in octogenarians: safety and outcomes. J Cardiovasc Electrophysiol. 2012; 23: 687 â 693.
dc.identifier.citedreferenceD.D. Spragg, D. Dalal, A. Cheema, et al. Complications of catheter ablation for atrial fibrillation: incidence and predictors. J Cardiovasc Electrophysiol. 2008; 19: 627 â 631.
dc.identifier.citedreferenceT.C. Tuan, S.L. Chang, H.M. Tsao, et al. The impact of age on the electroanatomical characteristics and outcome of catheter ablation in patients with atrial fibrillation. J Cardiovasc Electrophysiol. 2010; 21: 966 â 972.
dc.identifier.citedreferenceS.C. Hao, T.D. Hunter, C. Gunnarsson, et al. Acute safety outcomes in younger and older patients with atrial fibrillation treated with catheter ablation. J Interv Card Electrophysiol. 2012; 35: 173 â 182.
dc.identifier.citedreferenceA.J. McLellan, M.P. Schlaich, A.J. Taylor, et al. Reverse cardiac remodeling after renal denervation: atrial electrophysiologic and structural changes associated with blood pressure lowering. Heart Rhythm. 2015; 12: 982 â 990.
dc.identifier.citedreferenceE. Pokushalov, A. Romanov, D.G. Katritsis, et al. Renal denervation for improving outcomes of catheter ablation in patients with atrial fibrillation and hypertension: early experience. Heart Rhythm. 2014; 11: 1131 â 1138.
dc.identifier.citedreferenceA. Bortone, S. Boveda, J.L. Pasquie, et al. Sinus rhythm restoration by catheter ablation in patients with longâ lasting atrial fibrillation and congestive heart failure: impact of the left ventricular ejection fraction improvement on the implantable cardioverter defibrillator insertion indication. Europace. 2009; 11: 1018 â 1023.
dc.identifier.citedreferenceL.F. Hsu, P. Jais, P. Sanders, et al. Catheter ablation for atrial fibrillation in congestive heart failure. N Engl J Med. 2004; 351: 2373 â 2383.
dc.identifier.citedreferenceR.J. Hunter, T.J. Berriman, I. Diab, et al. A randomized controlled trial of catheter ablation versus medical treatment of atrial fibrillation in heart failure (the CAMTAF trial). Circ Arrhythm Electrophysiol. 2014; 7: 31 â 38.
dc.identifier.citedreferenceD.G. Jones, S.K. Haldar, W. Hussain, et al. A randomized trial to assess catheter ablation versus rate control in the management of persistent atrial fibrillation in heart failure. J Am Coll Cardiol. 2013; 61, 1894â 03.
dc.identifier.citedreferenceM.R. MacDonald, D.T. Connelly, N.M. Hawkins, et al. Radiofrequency ablation for persistent atrial fibrillation in patients with advanced heart failure and severe left ventricular systolic dysfunction: a randomised controlled trial. Heart. 2011; 97: 740 â 747.
dc.identifier.citedreferenceT. Machinoâ Ohtsuka, Y. Seo, T. Ishizu, et al. Efficacy, safety, and outcomes of catheter ablation of atrial fibrillation in patients with heart failure with preserved ejection fraction. J Am Coll Cardiol. 2013; 62: 1857 â 1865.
dc.identifier.citedreferenceM.D. O’Neill. Heart failure, atrial fibrillation, and catheter ablation: are we there yet?. J Am Coll Cardiol. 2013; 61: 1904 â 1905.
dc.identifier.citedreferenceK.M. Trulock, S.M. Narayan, J.P. Piccini. Rhythm control in heart failure patients with atrial fibrillation: contemporary challenges including the role of ablation. J Am Coll Cardiol. 2014; 64: 710 â 721.
dc.identifier.citedreferenceA.N. Ganesan, S. Nandal, J. Luker, et al. Catheter ablation of atrial fibrillation in patients with concomitant left ventricular impairment: a systematic review of efficacy and effect on ejection fraction. Heart Lung Circ. 2015; 24: 270 â 280.
dc.identifier.citedreferenceS.L. Chang, T.C. Tuan, C.T. Tai, et al. Comparison of outcome in catheter ablation of atrial fibrillation in patients with versus without the metabolic syndrome. Am J Cardiol. 2009; 103: 67 â 72.
dc.identifier.citedreferenceB. Dinov, J. Kosiuk, S. Kircher, et al. Impact of metabolic syndrome on left atrial electroanatomical remodeling and outcomes after radiofrequency ablation of nonvalvular atrial fibrillation. Circ Arrhythm Electrophysiol. 2014; 7: 483 â 489.
dc.identifier.citedreferenceK.J. Lin, S.I. Cho, N. Tiwari, et al. Impact of metabolic syndrome on the risk of atrial fibrillation recurrence after catheter ablation: systematic review and metaâ analysis. J Interv Card Electrophysiol. 2014; 39: 211 â 223.
dc.identifier.citedreferenceS. Mohanty, P. Mohanty, L. Di Biase, et al. Impact of metabolic syndrome on procedural outcomes in patients with atrial fibrillation undergoing catheter ablation. J Am Coll Cardiol. 2012; 59: 1295 â 1301.
dc.identifier.citedreferenceS. Mohanty, P. Mohanty, L. Di Biase, et al. Longâ term outcome of catheter ablation in atrial fibrillation patients with coexistent metabolic syndrome and obstructive sleep apnea: impact of repeat procedures versus lifestyle changes. J Cardiovasc Electrophysiol. 2014; 25: 930 â 938.
dc.identifier.citedreferenceM. Wojcik, A. Berkowitsch, M. Kuniss, et al. Outcomes of atrial fibrillation ablation in patients with metabolic syndrome. J Am Coll Cardiol. 2013; 61: 109 â 110.
dc.identifier.citedreferenceA.S. Fein, A. Shvilkin, D. Shah, et al. Treatment of obstructive sleep apnea reduces the risk of atrial fibrillation recurrence after catheter ablation. J Am Coll Cardiol. 2013; 62: 300 â 305.
dc.identifier.citedreferenceF. D’Ascenzo, A. Corleto, G. Biondiâ Zoccai, et al. Which are the most reliable predictors of recurrence of atrial fibrillation after transcatheter ablation?: a metaâ analysis. Int J Cardiol. 2013; 167: 1984 â 1989.
dc.identifier.citedreferenceS.N. Psychari, T.S. Apostolou, L. Sinos, et al. Relation of elevated Câ reactive protein and interleukinâ 6 levels to left atrial size and duration of episodes in patients with atrial fibrillation. Am J Cardiol. 2005; 95: 764 â 767.
dc.identifier.citedreferenceT. Watanabe, Y. Takeishi, O. Hirono, et al. Câ reactive protein elevation predicts the occurrence of atrial structural remodeling in patients with paroxysmal atrial fibrillation. Heart Vessel. 2005; 20: 45 â 49.
dc.identifier.citedreferenceL. Hak, J. Mysliwska, J. Wieckiewicz, et al. Interleukinâ 2 as a predictor of early postoperative atrial fibrillation after cardiopulmonary bypass graft (CABG). J Interferon Cytokine Res. 2009; 29: 327 â 332.
dc.identifier.citedreferenceA. Frustaci, M. Caldarulo, A. Buffon, et al. Cardiac biopsy in patients with â primaryâ atrial fibrillation. Histologic evidence of occult myocardial diseases. Chest. 1991; 100: 303 â 306.
dc.identifier.citedreferenceA.J. Fuenmayor, A.M. Fuenmayor, H. Carrasco, et al. Results of electrophysiologic studies in patients with acute Chagasic myocarditis. Clin Cardiol. 1997; 20: 1021 â 1024.
dc.identifier.citedreferenceK.K. Talwar, S. Radhakrishnan, P. Chopra. Myocarditis manifesting as persistent atrial standstill. Int J Cardiol. 1988; 20: 283 â 286.
dc.identifier.citedreferenceA. Abdelwahab, J.L. Sapp, R. Parkash, M. Basta, M. Gardner. Mapping and ablation of multiple atrial arrhythmias in a patient with persistent atrial standstill after remote viral myocarditis. Pacing Clin Electrophysiol. 2009; 32: 275 â 277.
dc.identifier.citedreferenceS. Deftereos, G. Giannopoulos, C. Kossyvakis, et al. Colchicine for prevention of early atrial fibrillation recurrence after pulmonary vein isolation: a randomized controlled study. J Am Coll Cardiol. 2012; 60: 1790 â 1796.
dc.identifier.citedreferenceC. Aimeâ Sempe, T. Folliguet, C. Ruckerâ Martin, et al. Myocardial cell death in fibrillating and dilated human right atria. J Am Coll Cardiol. 1999; 34: 1577 â 1586.
dc.identifier.citedreferenceC.B. de Vos, R. Pisters, R. Nieuwlaat, et al. Progression from paroxysmal to persistent atrial fibrillation clinical correlates and prognosis. J Am Coll Cardiol. 2010; 55: 725 â 731.
dc.identifier.citedreferenceP. Reant, S. Lafitte, P. Jais, et al. Reverse remodeling of the left cardiac chambers after catheter ablation after 1 year in a series of patients with isolated atrial fibrillation. Circulation. 2005; 112, 2896â 03.
dc.identifier.citedreferenceD. Dobrev, A. Friedrich, N. Voigt, et al. The G proteinâ gated potassium current I(K,ACh) is constitutively active in patients with chronic atrial fibrillation. Circulation. 2005; 112: 3697 â 3706.
dc.identifier.citedreferenceM. Allessie, J. Ausma, U. Schotten. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res. 2002; 54: 230 â 246.
dc.identifier.citedreferenceT.H. Everett IV, E.E. Wilson, S. Verheule, et al. Structural atrial remodeling alters the substrate and spatiotemporal organization of atrial fibrillation: a comparison in canine models of structural and electrical atrial remodeling. Am J Physiol Heart Circ Physiol. 2006; 291: H2911 â H2923.
dc.identifier.citedreferenceZ. Lu, B.J. Scherlag, J. Lin, et al. Atrial fibrillation begets atrial fibrillation: autonomic mechanism for atrial electrical remodeling induced by shortâ term rapid atrial pacing. Circ Arrhythm Electrophysiol. 2008; 1: 184 â 192.
dc.identifier.citedreferenceP. Jais, M. Hocini, L. Macle, et al. Distinctive electrophysiological properties of pulmonary veins in patients with atrial fibrillation. Circulation. 2002; 106: 2479 â 2485.
dc.identifier.citedreferenceI.E. Hof, B.K. Velthuis, S.M. Chaldoupi, et al. Pulmonary vein antrum isolation leads to a significant decrease of left atrial size. Europace. 2011; 13: 371 â 375.
dc.identifier.citedreferenceA. Pump, L. Di Biase, J. Price, et al. Efficacy of catheter ablation in nonparoxysmal atrial fibrillation patients with severe enlarged left atrium and its impact on left atrial structural remodeling. J Cardiovasc Electrophysiol. 2013; 24: 1224 â 1231.
dc.identifier.citedreferenceS. Nattel, E. Guasch, I. Savelieva, et al. Early management of atrial fibrillation to prevent cardiovascular complications. Eur Heart J. 2014; 35: 1448 â 1456.
dc.identifier.citedreferenceE. Aliot, A. Brandes, L. Eckardt, et al. The EAST study: redefining the role of rhythmcontrol therapy in atrial fibrillation: EAST, the Early treatment of Atrial fibrillation for Stroke prevention Trial. Eur Heart J. 2015; 36: 255 â 256.
dc.identifier.citedreferenceA. Bukowska, U. Lendeckel, D. Hirte, et al. Activation of the calcineurin signaling pathway induces atrial hypertrophy during atrial fibrillation. Cell Mol Life Sci. 2006; 63: 333 â 342.
dc.identifier.citedreferenceA. Goette, U. Lendeckel, A. Kuchenbecker, et al. Cigarette smoking induces atrial fibrosis in humans via nicotine. Heart. 2007; 93: 1056 â 1063.
dc.identifier.citedreferenceF. Gramley, J. Lorenzen, C. Knackstedt, et al. Ageâ related atrial fibrosis. Age. 2009; 31: 27 â 38.
dc.identifier.citedreferenceA. Goette, G. Juenemann, B. Peters, et al. Determinants and consequences of atrial fibrosis in patients undergoing open heart surgery. Cardiovasc Res. 2002; 54: 390 â 396.
dc.identifier.citedreferenceC. Gustafsson, M. Blomback, M. Britton, A. Hamsten, J. Svensson. Coagulation factors and the increased risk of stroke in nonvalvular atrial fibrillation. Stroke. 1990; 21: 47 â 51.
dc.identifier.citedreferenceK. Kumagai, M. Fukunami, M. Ohmori, et al. Increased intracardiovascular clotting in patients with chronic atrial fibrillation. J Am Coll Cardiol. 1990; 16: 377 â 380.
dc.identifier.citedreferenceH. Asakura, S. Hifumi, H. Jokaji, et al. Prothrombin fragment F1 + 2 and thrombinâ antithrombin III complex are useful markers of the hypercoagulable state in atrial fibrillation. Blood Coagul Fibrinolysis. 1992; 3: 469 â 473.
dc.identifier.citedreferenceH. Sohara, K. Miyahara. Effect of atrial fibrillation on the fibrinoâ coagulation systemâ study in patients with paroxysmal atrial fibrillation. Jpn Circ J. 1994; 58: 821 â 826.
dc.identifier.citedreferenceG.Y. Lip, G.D. Lowe, A. Rumley, F.G. Dunn. Increased markers of thrombogenesis in chronic atrial fibrillation: effects of warfarin treatment. Br Heart J. 1995; 73: 527 â 533.
dc.identifier.citedreferenceG.Y. Lip, P.L. Lip, J. Zarifis, et al. Fibrin Dâ dimer and betaâ thromboglobulin as markers of thrombogenesis and platelet activation in atrial fibrillation. Effects of introducing ultraâ lowâ dose warfarin and aspirin. Circulation. 1996; 94: 425 â 431.
dc.identifier.citedreferenceS.R. Kahn, S. Solymoss, K.M. Flegel. Nonvalvular atrial fibrillation: evidence for a prothrombotic state. CMAJ. 1997; 157: 673 â 681.
dc.identifier.citedreferenceR.M. Heppell, K.E. Berkin, J.M. McLenachan, J.A. Davies. Haemostatic and haemodynamic abnormalities associated with left atrial thrombosis in nonâ rheumatic atrial fibrillation. Heart. 1997; 77: 407 â 411.
dc.identifier.citedreferenceH. Shinohara, N. Fukuda, T. Soeki, et al. Relationship between flow dynamics in the left atrium and hemostatic abnormalities in patients with nonvalvular atrial fibrillation. Jpn Heart J. 1998; 39: 721 â 730.
dc.identifier.citedreferenceW.M. Feinberg, L.A. Pearce, R.G. Hart, et al. Markers of thrombin and platelet activity in patients with atrial fibrillation: correlation with stroke among 1531 participants in the stroke prevention in atrial fibrillation III study. Stroke. 1999; 30: 2547 â 2553.
dc.identifier.citedreferenceS. Mondillo, L. Sabatini, E. Agricola, et al. Correlation between left atrial size, prothrombotic state and markers of endothelial dysfunction in patients with lone chronic nonrheumatic atrial fibrillation. Int J Cardiol. 2000; 75: 227 â 232.
dc.identifier.citedreferenceM. Fukuchi, J. Watanabe, K. Kumagai, et al. Increased von Willebrand factor in the endocardium as a local predisposing factor for thrombogenesis in overloaded human atrial appendage. J Am Coll Cardiol. 2001; 37: 1436 â 1442.
dc.identifier.citedreferenceS. Kamath, A.D. Blann, B.S. Chin, et al. A study of platelet activation in atrial fibrillation and the effects of antithrombotic therapy. Eur Heart J. 2002; 23: 1788 â 1795.
dc.identifier.citedreferenceN. Vene, A. Mavri, K. Kosmelj, M. Stegnar. High Dâ dimer levels predict cardiovascular events in patients with chronic atrial fibrillation during oral anticoagulant therapy. Thromb Haemost. 2003; 90: 1163 â 1172.
dc.identifier.citedreferenceY. Nakamura, K. Nakamura, K. Fukushimaâ Kusano, et al. Tissue factor expression in atrial endothelia associated with nonvalvular atrial fibrillation: possible involvement in intracardiac thrombogenesis. Thromb Res. 2003; 111: 137 â 142.
dc.identifier.citedreferenceS. Kamath, A.D. Blann, B.S. Chin, G.Y. Lip. Platelet activation, haemorheology and thrombogenesis in acute atrial fibrillation: a comparison with permanent atrial fibrillation. Heart. 2003; 89: 1093 â 1095.
dc.identifier.citedreferenceK. Sakurai, T. Hirai, K. Nakagawa, et al. Prolonged activation of hemostatic markers following conversion of atrial flutter to sinus rhythm. Circ J. 2004; 68: 1041 â 1044.
dc.identifier.citedreferenceH. Inoue, T. Nozawa, K. Okumura, et al. Prothrombotic activity is increased in patients with nonvalvular atrial fibrillation and risk factors for embolism. Chest. 2004; 126: 687 â 692.
dc.identifier.citedreferenceK. Kumagai, M. Fukuchi, J. Ohta, et al. Expression of the von Willebrand factor in atrial endocardium is increased in atrial fibrillation depending on the extent of structural remodeling. Circ J. 2004; 68: 321 â 327.
dc.identifier.citedreferenceF. Marin, V. Roldan, V.E. Climent, et al. Plasma von Willebrand factor, soluble thrombomodulin, and fibrin Dâ dimer concentrations in acute onset nonâ rheumatic atrial fibrillation. Heart. 2004; 90: 1162 â 1166.
dc.identifier.citedreferenceT. Nozawa, H. Inoue, A. Iwasa, et al. Effects of anticoagulation intensity on hemostatic markers in patients with nonâ valvular atrial fibrillation. Circ J. 2004; 68: 29 â 34.
dc.identifier.citedreferenceB. Freestone, A.Y. Chong, H.S. Lim, A. Blann, G.Y. Lip. Angiogenic factors in atrial fibrillation: a possible role in thrombogenesis?. Ann Med. 2005; 37: 365 â 372.
dc.identifier.citedreferenceB.D. Hoit. Left atrial size and function: role in prognosis. J Am Coll Cardiol. 2014; 63: 493 â 505.
dc.identifier.citedreferenceU. Schotten, S. Verheule, P. Kirchhof, A. Goette. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev. 2011; 91: 265 â 325.
dc.identifier.citedreferenceJ. Andrade, P. Khairy, D. Dobrev, S. Nattel. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ Res. 2014; 114: 1453 â 1468.
dc.identifier.citedreferenceB. Burstein, E. Libby, A. Calderone, S. Nattel. Differential behaviors of atrial versus ventricular fibroblasts: a potential role for plateletâ derived growth factor in atrialâ ventricular remodeling differences. Circulation. 2008; 117: 1630 â 1641.
dc.identifier.citedreferenceM.J. Davies, A. Pomerance. Pathology of atrial fibrillation in man. Br Heart J. 1972; 34: 520 â 525.
dc.identifier.citedreferenceB.A. Sims. Pathogenesis of atrial arrhythmias. Br Heart J. 1972; 34: 336 â 340.
dc.identifier.citedreferenceN.R. Tucker, P.T. Ellinor. Emerging directions in the genetics of atrial fibrillation. Circ Res. 2014; 114: 1469 â 1482.
dc.identifier.citedreferenceA. Goette, A. Bukowska, D. Dobrev, et al. Acute atrial tachyarrhythmia induces angiotensin II type 1 receptorâ mediated oxidative stress and microvascular flow abnormalities in the ventricles. Eur Heart J. 2009; 30: 1411 â 1420.
dc.identifier.citedreferenceD. Corradi. Atrial fibrillation from the pathologist’s perspective. Cardiovasc Pathol. 2014; 23: 71 â 84.
dc.identifier.citedreferenceD. Corradi, S. Callegari, R. Maestri, S. Benussi, O. Alfieri. Structural remodeling in atrial fibrillation. Nat Clin Pract Cardiovasc Med. 2008; 5: 782 â 796.
dc.identifier.citedreferenceD. Corradi, S. Callegari, S. Benussi, et al. Myocyte changes and their left atrial distribution in patients with chronic atrial fibrillation related to mitral valve disease. Hum Pathol. 2005; 36: 1080 â 1089.
dc.identifier.citedreferenceD. Corradi, S. Callegari, R. Maestri, et al. Differential structural remodeling of the leftâ atrial posterior wall in patients affected by mitral regurgitation with or without persistent atrial fibrillation: a morphological and molecular study. J Cardiovasc Electrophysiol. 2012; 23: 271 â 279.
dc.identifier.citedreferenceJ. Ausma, M. Wijffels, F. Thone, et al. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation. 1997; 96: 3157 â 3163.
dc.identifier.citedreferenceA. Frustaci, C. Chimenti, F. Bellocci, et al. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation. 1997; 96: 1180 â 1184.
dc.identifier.citedreferenceJ. Ausma, M. Wijffels, G. van Eys, et al. Dedifferentiation of atrial cardiomyocytes as a result of chronic atrial fibrillation. Am J Pathol. 1997; 151: 985 â 997.
dc.identifier.citedreferenceD. Corradi, S. Callegari, S. Benussi, et al. Regional left atrial interstitial remodeling in patients with chronic atrial fibrillation undergoing mitralâ valve surgery. Virchows Arch. 2004; 445: 498 â 505.
dc.identifier.citedreferenceC. Rocken, B. Peters, G. Juenemann, et al. Atrial amyloidosis: an arrhythmogenic substrate for persistent atrial fibrillation. Circulation. 2002; 106: 2091 â 2097.
dc.identifier.citedreferenceA. Kushnir, S.W. Restaino, M. Yuzefpolskaya. Giant cell arteritis as a cause of myocarditis and atrial fibrillation. Circ Heart Fail. 2016; 9: e002778.
dc.identifier.citedreferenceC.F. Camm, C.A. James, C. Tichnell, et al. Prevalence of atrial arrhythmias in arrhythmogenic right ventricular dysplasia/ cardiomyopathy. Heart Rhythm. 2013; 10: 1661 â 1668.
dc.identifier.citedreferenceJ.A. Cabrera, D. Sanchezâ Quintana. Cardiac anatomy: what the electrophysiologist needs to know. Heart. 2013; 99: 417 â 431.
dc.identifier.citedreferenceS.Y. Ho, J.A. Cabrera, D. Sanchezâ Quintana. Left atrial anatomy revisited. Circ Arrhythm Electrophysiol. 2012; 5: 220 â 228.
dc.identifier.citedreferenceD. Sanchezâ Quintana, R.H. Anderson, J.A. Cabrera, et al. The terminal crest: morphological features relevant to electrophysiology. Heart. 2002; 88: 406 â 411.
dc.identifier.citedreferenceJ.A. Cabrera, S.Y. Ho, V. Climent, D. Sanchezâ Quintana. The architecture of the left lateral atrial wall: a particular anatomic region with implications for ablation of atrial fibrillation. Eur Heart J. 2008; 29: 356 â 362.
dc.identifier.citedreferenceL. Di Biase, P. Santangeli, M. Anselmino, et al. Does the left atrial appendage morphology correlate with the risk of stroke in patients with atrial fibrillation? Results from a multicenter study. J Am Coll Cardiol. 2012; 60: 531 â 538.
dc.identifier.citedreferenceS.Y. Ho, R.H. Anderson, D. Sanchezâ Quintana. Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovasc Res. 2002; 54: 325 â 336.
dc.identifier.citedreferenceM.S. Spach, J.M. Kootsey. The nature of electrical propagation in cardiac muscle. Am J Physiol. 1983; 244, H3â 22.
dc.identifier.citedreferenceJ. Veinot, F. Ghadially, V. Walley. In M. Silver, A. Gotlieb, F. Schoen, eds. Light microscopy and ultrastructure of the blood vessels and heart. New York: Churchill Livingstone. 2001, 30 â 53, Cardiovascular pathology..
dc.identifier.citedreferenceC.A. Beltrami, N. Finato, M. Rocco, et al. Structural basis of endâ stage failure in ischemic cardiomyopathy in humans. Circulation. 1994; 89: 151 â 163.
dc.identifier.citedreferenceR.A. Lannigan, S.A. Zaki. Ultrastructure of the myocardium of the atrial appendage. Br Heart J. 1966; 28: 796 â 807.
dc.identifier.citedreferenceL.C. Armiger, R.N. Seelye, M.A. Morrison, D.G. Holliss. Comparative biochemistry and fine structure of atrial and ventricular myocardium during autolysis in vitro. Basic Res Cardiol. 1984; 79: 218 â 229.
dc.identifier.citedreferenceD. Corradi, R. Maestri, E. Macchi, S. Callegari. The atria: from morphology to function. J Cardiovasc Electrophysiol. 2011; 22: 223 â 235.
dc.identifier.citedreferenceD.W. Kitzman, W.D. Edwards. Ageâ related changes in the anatomy of the normal human heart. J Gerontol. 1990; 45: M33 â M39.
dc.identifier.citedreferenceY. Yamasaki, Y. Furuya, K. Araki, et al. Ultraâ highâ resolution scanning electron microscopy of the sarcoplasmic reticulum of the rat atrial myocardial cells. Anat Rec. 1997; 248: 70 â 75.
dc.identifier.citedreferenceL. Mackenzie, H.L. Roderick, M.J. Berridge, S.J. Conway, M.D. Bootman. The spatial pattern of atrial cardiomyocyte calcium signalling modulates contraction. J Cell Sci. 2004; 117: 6327 â 6337.
dc.identifier.citedreferenceD. Sanchezâ Quintana, J.R. Lopezâ Minguez, Y. Macias, J.A. Cabrera, F. Saremi. Left atrial anatomy relevant to catheter ablation. Cardiol Res Pract. 2014; 2014: 289720.
dc.identifier.citedreferenceJ.R. Ehrlich, P. Biliczki, S.H. Hohnloser, S. Nattel. Atrialâ selective approaches for the treatment of atrial fibrillation. J Am Coll Cardiol. 2008; 51: 787 â 792.
dc.identifier.citedreferenceG. Schram, M. Pourrier, P. Melnyk, S. Nattel. Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res. 2002; 90: 939 â 950.
dc.identifier.citedreferenceA. Burashnikov, J.M. Di Diego, A.C. Zygmunt, L. Belardinelli, C. Antzelevitch. Atriumâ selective sodium channel block as a strategy for suppression of atrial fibrillation: differences in sodium channel inactivation between atria and ventricles and the role of ranolazine. Circulation. 2007; 116: 1449 â 1457.
dc.identifier.citedreferenceJ. Feng, L. Yue, Z. Wang, S. Nattel. Ionic mechanisms of regional action potential heterogeneity in the canine right atrium. Circ Res. 1998; 83: 541 â 551.
dc.identifier.citedreferenceJ. Gemel, A.E. Levy, A.R. Simon, et al. Connexin40 abnormalities and atrial fibrillation in the human heart. J Mol Cell Cardiol. 2014; 76: 159 â 168.
dc.identifier.citedreferenceR. Wakili, N. Voigt, S. Kaab, D. Dobrev, S. Nattel. Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest. 2011; 121: 2955 â 2968.
dc.identifier.citedreferenceY.K. Iwasaki, K. Nishida, T. Kato, S. Nattel. Atrial fibrillation pathophysiology: implications for management. Circulation. 2011; 124: 2264 â 2274.
dc.identifier.citedreferenceT.D. Butters, O.V. Aslanidi, J. Zhao, B. Smaill, H. Zhang. A novel computational sheep atria model for the study of atrial fibrillation. Interface Focus. 2013; 3: 20120067.
dc.identifier.citedreferenceK.S. McDowell, S. Zahid, F. Vadakkumpadan, et al. Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling. PLoS One. 2015; 10: e0117110.
dc.identifier.citedreferenceJ.E. Saffitz, H.L. Kanter, K.G. Green, T.K. Tolley, E.C. Beyer. Tissueâ specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium. Circ Res. 1994; 74: 1065 â 1070.
dc.identifier.citedreferenceP.S. Chen, L.S. Chen, M.C. Fishbein, S.F. Lin, S. Nattel. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res. 2014; 114: 1500 â 1515.
dc.identifier.citedreferenceK. Lemola, D. Chartier, Y.H. Yeh, et al. Pulmonary vein region ablation in experimental vagal atrial fibrillation: role of pulmonary veins versus autoâ nomic ganglia. Circulation. 2008; 117: 470 â 477.
dc.identifier.citedreferenceS. Nattel, A. Shiroshitaâ Takeshita, S. Cardin, P. Pelletier. Mechanisms of atrial remodeling and clinical relevance. Curr Opin Cardiol. 2005; 20: 21 â 25.
dc.identifier.citedreferenceB.D. Hoit, Y. Shao, M. Gabel, R.A. Walsh. In vivo assessment of left atrial contractile performance in normal and pathological conditions using a timeâ varying elastance model. Circulation. 1994; 89: 1829 â 1838.
dc.identifier.citedreferenceP.S. Pagel, F. Kehl, M. Gare, et al. Mechanical function of the left atrium: new insights based on analysis of pressureâ volume relations and Doppler echocardiography. Anesthesiology. 2003; 98: 975 â 994.
dc.identifier.citedreferenceM.J. Vieira, R. Teixeira, L. Goncalves, B.J. Gersh. Left atrial mechanics: echocardiographic assessment and clinical implications. J Am Soc Echocardiogr. 2014; 27: 463 â 478.
dc.identifier.citedreferenceB.D. Hoit, R.A. Walsh. Regional atrial distensibility. Am J Physiol. 1992; 262: H1356 â H1360.
dc.identifier.citedreferenceS.S. Kuppahally, N. Akoum, N.S. Burgon, et al. Left atrial strain and strain rate in patients with paroxysmal and persistent atrial fibrillation: relationship to left atrial structural remodeling detected by delayedâ enhancement MRI. Circ Cardiovasc Imaging. 2010; 3: 231 â 239.
dc.identifier.citedreferenceD.C. Hitch, S.P. Nolan. Descriptive analysis of instantaneous left atrial volume â with special reference to left atrial function. J Surg Res. 1981; 30: 110 â 120.
dc.identifier.citedreferenceM.D. Bootman, D.R. Higazi, S. Coombes, H.L. Roderick. Calcium signalling during excitationâ contraction coupling in mammalian atrial myocytes. J Cell Sci. 2006; 119: 3915 â 3925.
dc.identifier.citedreferenceT. Tanaami, H. Ishida, H. Seguchi, et al. Difference in propagation of Ca 2+ release in atrial and ventricular myocytes. Jpn J Physiol. 2005; 55: 81 â 91.
dc.identifier.citedreferenceP. Boknik, C. Unkel, U. Kirchhefer, et al. Regional expression of phospholamban in the human heart. Cardiovasc Res. 1999; 43: 67 â 76.
dc.identifier.citedreferenceL.S. Maier, P. Barckhausen, J. Weisser, et al. Ca(2+) handling in isolated human atrial myocardium. Am J Physiol Heart Circ Physiol. 2000; 279: H952 â H958.
dc.identifier.citedreferenceI. Luss, P. Boknik, L.R. Jones, et al. Expression of cardiac calcium regulatory proteins in atrium v ventricle in different species. J Mol Cell Cardiol. 1999; 31: 1299 â 1314.
dc.identifier.citedreferenceG.J. Babu, P. Bhupathy, V. Timofeyev, et al. Ablation of sarcolipin enhances sarcoplasmic reticulum calcium transport and atrial contractility. Proc Natl Acad Sci USA. 2007; 104: 17867 â 17872.
dc.identifier.citedreferenceG.R. Li, S. Nattel. Properties of human atrial ICa at physiological temperatures and relevance to action potential. Am J Physiol. 1997; 272: H227 â H235.
dc.identifier.citedreferenceK. Cote, S. Proteau, J. Teijeira, E. Rousseau. Characterization of the sarcoplasmic reticulum k(+) and Ca(2+)â release channelâ ryanodine receptorâ in human atrial cells. J Mol Cell Cardiol. 2000; 32: 2051 â 2063.
dc.identifier.citedreferenceJ. Wang, R.H. Schwinger, K. Frank, et al. Regional expression of sodium pump subunits isoforms and Na +, â Ca ++ exchanger in the human heart. J Clin Invest. 1996; 98: 1650 â 1658.
dc.identifier.citedreferenceM.A. Richards, J.D. Clarke, P. Saravanan, et al. Transverse tubules are a common feature in large mammalian atrial myocytes including human. Am J Physiol Heart Circ Physiol. 2011; 301: H1996 â H2005.
dc.identifier.citedreferenceS.L. Kopecky, B.J. Gersh, M.D. McGoon, et al. The natural history of lone atrial fibrillation. A populationâ based study over three decades. N Engl J Med. 1987; 317: 669 â 674.
dc.identifier.citedreferenceV. Fuster, L.E. Ryden, D.S. Cannom, et al. 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2011; 123: e269 â e367.
dc.identifier.citedreferenceT.S. Potpara, G.Y. Lip. Lone atrial fibrillation: what is known and what is to come. Int J Clin Pract. 2011; 65: 446 â 457.
dc.identifier.citedreferenceT.S. Potpara, G.Y. Lip. Lone atrial fibrillation â an overview. Int J Clin Pract. 2014; 68: 418 â 433.
dc.identifier.citedreferenceB. Weijs, R. Pisters, R. Nieuwlaat, et al. Idiopathic atrial fibrillation revisited in a large longitudinal clinical cohort. Europace. 2012; 14: 184 â 190.
dc.identifier.citedreferenceA.J. Sanfilippo, V.M. Abascal, M. Sheehan, et al. Atrial enlargement as a consequence of atrial fibrillation. A prospective echocardiographic study. Circulation. 1990; 82: 792 â 797.
dc.identifier.citedreferenceT.S. Potpara, G.R. Stankovic, B.D. Beleslin, et al. A 12â year followâ up study of patients with newly diagnosed lone atrial fibrillation: implications of arrhythmia progression on prognosis: the Belgrade Atrial Fibrillation study. Chest. 2012; 141: 339 â 347.
dc.identifier.citedreferenceM. Osranek, F. Bursi, K.R. Bailey, et al. Left atrial volume predicts cardiovascular events in patients originally diagnosed with lone atrial fibrillation: threeâ decade followâ up. Eur Heart J. 2005; 26: 2556 â 2561.
dc.identifier.citedreferenceA. Jahangir, V. Lee, P.A. Friedman, et al. Longâ term progression and outcomes with aging in patients with lone atrial fibrillation: a 30â year followâ up study. Circulation. 2007; 115: 3050 â 3056.
dc.identifier.citedreferenceM.K. Stiles, B. John, C.X. Wong, et al. Paroxysmal lone atrial fibrillation is associated with an abnormal atrial substrate: characterizing the â second factorâ . J Am Coll Cardiol. 2009; 53: 1182 â 1191.
dc.identifier.citedreferenceE.I. Skalidis, M.I. Hamilos, I.K. Karalis, et al. Isolated atrial microvascular dysfunction in patients with lone recurrent atrial fibrillation. J Am Coll Cardiol. 2008; 51: 2053 â 2057.
dc.identifier.citedreferenceD. Corradi, S. Callegari, L. Manotti, et al. Persistent lone atrial fibrillation: clinicopathologic study of 19 cases. Heart Rhythm. 2014; 11: 1250 â 1258.
dc.identifier.citedreferenceM.S. Willis, C. Patterson. Proteotoxicity and cardiac dysfunction. N Engl J Med. 2013; 368: 17.
dc.identifier.citedreferenceI. Steiner, P. Hajkova. Patterns of isolated atrial amyloid: a study of 100 hearts on autopsy. Cardiovasc Pathol. 2006; 15: 287 â 290.
dc.identifier.citedreferenceI. Steiner. The prevalence of isolated atrial amyloid. J Pathol. 1987; 153: 395 â 398.
dc.identifier.citedreferenceL.M. Looi. Isolated atrial amyloidosis: a clinicopathologic study indicating increased prevalence in chronic heart disease. Hum Pathol. 1993; 24: 602 â 607.
dc.identifier.citedreferenceB. Johansson, C. Wernstedt, P. Westermark. Atrial natriuretic peptide deposited as atrial amyloid fibrils. Biochem Biophys Res Commun. 1987; 148: 1087 â 1092.
dc.identifier.citedreferenceN.N. Louros, V.A. Iconomidou, P.L. Tsiolaki, et al. An Nâ terminal proâ atrial natriuretic peptide (NTâ proANP) â aggregationâ proneâ segment involved in isolated atrial amyloidosis. FEBS Lett. 2014; 588: 52 â 57.
dc.identifier.citedreferenceO. Leone, G. Boriani, B. Chiappini, et al. Amyloid deposition as a cause of atrial remodelling in persistent valvular atrial fibrillation. Eur Heart J. 2004; 25: 1237 â 1241.
dc.identifier.citedreferenceI. Steiner, P. Hajkova, J. Kvasnicka, I. Kholova. Myocardial sleeves of pulmonary veins and atrial fibrillation: a postmortem histopathological study of 100 subjects. Virchows Arch. 2006; 449: 88 â 95.
dc.identifier.citedreferenceT.P. Knowles, M. Vendruscolo, C.M. Dobson. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol. 2014; 15: 384 â 396.
dc.identifier.citedreferenceM.S. Willis, C. Patterson. Proteotoxicity and cardiac dysfunction â Alzheimer’s disease of the heart?. N Engl J Med. 2013; 368: 455 â 464.
dc.identifier.citedreferenceP.M. McLendon, J. Robbins. Desminâ related cardiomyopathy: an unfolding story. Am J Physiol Heart Circ Physiol. 2011; 301: H1220 â H1228.
dc.identifier.citedreferenceT.N. Sidorova, L.C. Mace, K.S. Wells, et al. Hypertension is associated with preamyloid oligomers in human atrium: a missing link in atrial pathoâ physiology?. J Am Heart Assoc. 2014; 3: e001384.
dc.identifier.citedreferenceM. Volpe, S. Rubattu, J. Burnett Jr.. Natriuretic peptides in cardiovascular diseases: current use and perspectives. Eur Heart J. 2014; 35: 419 â 425.
dc.identifier.citedreferenceR. Hua, S.L. MacLeod, I. Polina, et al. Effects of wildâ type and mutant forms of atrial natriuretic peptide on atrial electrophysiology and arrhythmogenesis. Circ Arrhythm Electrophysiol. 2015; 8: 1240 â 1254.
dc.identifier.citedreferenceM. Moghtadaei, I. Polina, R.A. Rose. Electrophysiological effects of natriuretic peptides in the heart are mediated by multiple receptor subtypes. Prog Biophys Mol Biol. 2016; 120: 37 â 49.
dc.identifier.citedreferenceD.G. Gardner, S. Chen, D.J. Glenn, C.L. Grigsby. Molecular biology of the natriuretic peptide system: implications for physiology and hypertension. Hypertension. 2007; 49: 419 â 426.
dc.identifier.citedreferenceD.L. Vesely. Atrial natriuretic peptide prohormone gene expression: hormones and diseases that upregulate its expression. IUBMB Life. 2002; 53: 153 â 159.
dc.identifier.citedreferenceA.V. Postma, J.B. van de Meerakker, I.B. Mathijssen, et al. A gainâ ofâ function TBX5 mutation is associated with atypical Holtâ Oram syndrome and paroxysmal atrial fibrillation. Circ Res. 2008; 102: 1433 â 1442.
dc.identifier.citedreferenceD.M. Hodgsonâ Zingman, M.L. Karst, L.V. Zingman, et al. Atrial natriuretic peptide frameshift mutation in familial atrial fibrillation. N Engl J Med. 2008; 359: 158 â 165.
dc.identifier.citedreferenceM.J. Perrin, M.H. Gollob. The role of atrial natriuretic peptide in modulating cardiac electrophysiology. Heart Rhythm. 2012; 9: 610 â 615.
dc.identifier.citedreferenceR.L. Abraham, T. Yang, M. Blair, D.M. Roden, D. Darbar. Augmented potassium current is a shared phenotype for two genetic defects associated with familial atrial fibrillation. J Mol Cell Cardiol. 2010; 48: 181 â 190.
dc.identifier.citedreferenceM.D. Ritchie, S. Rowan, G. Kucera, et al. Chromosome 4q25 variants are genetic modifiers of rare ion channel mutations associated with familial atrial fibrillation. J Am Coll Cardiol. 2012; 60: 1173 â 1181.
dc.identifier.citedreferenceM. Disertori, S. Quintarelli, M. Grasso, et al. Autosomal recessive atrial dilated cardiomyopathy with standstill evolution associated with mutation of Natriuretic Peptide Precursor A. Circ Cardiovasc Genet. 2013; 6: 27 â 36.
dc.identifier.citedreferenceM. Disertori, M. Mase, M. Marini, et al. Electroanatomic mapping and late gadolinium enhancement MRI in a genetic model of arrhythmogenic atrial cardiomyopathy. J Cardiovasc Electrophysiol. 2014; 25: 964 â 970.
dc.identifier.citedreferenceG.Q. Wallace, E.M. McNally. Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. Annu Rev Physiol. 2009; 71: 37 â 57.
dc.identifier.citedreferenceM.C. Hermans, Y.M. Pinto, I.S. Merkies, et al. Hereditary muscular dystrophies and the heart. Neuromuscul Disord. 2010; 20: 479 â 492.
dc.identifier.citedreferenceW.J. Groh. Arrhythmias in the muscular dystrophies. Heart Rhythm. 2012; 9: 1890 â 1895.
dc.identifier.citedreferenceM. Diegoli, M. Grasso, V. Favalli, et al. Diagnostic workâ up and risk stratification in Xâ linked dilated cardiomyopathies caused by dystrophin defects. J Am Coll Cardiol. 2011; 58: 925 â 934.
dc.identifier.citedreferenceD. Townsend, S. Yasuda, E. McNally, J.M. Metzger. Distinct pathophysiological mechanisms of cardiomyopathy in hearts lacking dystrophin or the sarcoglycan complex. FASEB J. 2011; 25: 3106 â 3114.
dc.identifier.citedreferenceJ. Finsterer, C. Stollberger. Stroke in myopathies. Cerebrovasc Dis. 2010; 29: 6 â 13.
dc.identifier.citedreferenceJ. Finsterer, C. Stollberger. Atrial fibrillation/flutter in myopathies. Int J Cardiol. 2008; 128: 304 â 310.
dc.identifier.citedreferenceH. Petri, J. Vissing, N. Witting, H. Bundgaard, L. Kober. Cardiac manifestations of myotonic dystrophy type 1. Int J Cardiol. 2012; 160: 82 â 88.
dc.identifier.citedreferenceD. Bhakta, C. Shen, J. Kron, et al. Pacemaker and implantable cardioverterâ defibrillator use in a US myotonic dystrophy type 1 population. J Cardiovasc Electrophysiol. 2011; 22: 1369 â 1375.
dc.identifier.citedreferenceW.J. Groh, M.R. Groh, C. Saha, et al. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N Engl J Med. 2008; 358: 2688 â 2697.
dc.identifier.citedreferenceG. Boriani, M. Gallina, L. Merlini, et al. Clinical relevance of atrial fibrillation/flutter, stroke, pacemaker implant, and heart failure in Emeryâ Dreifuss muscular dystrophy: a longâ term longitudinal study. Stroke. 2003; 34: 901 â 908.
dc.identifier.citedreferenceC.P. Trevisan, E. Pastorello, M. Armani, et al. Facioscapulohumeral muscular dystrophy and occurrence of heart arrhythmia. Eur Neurol. 2006; 56: 1 â 5.
dc.identifier.citedreferenceD. Li, S. Fareh, T.K. Leung, S. Nattel. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation. 1999; 100: 87 â 95.
dc.identifier.citedreferenceD. Li, P. Melnyk, J. Feng, et al. Effects of experimental heart failure on atrial cellular and ionic electrophysiology. Circulation. 2000; 101: 2631 â 2638.
dc.identifier.citedreferenceY.H. Yeh, R. Wakili, X.Y. Qi, et al. Calciumâ handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ Arrhythm Electrophysiol. 2008; 1: 93 â 102.
dc.identifier.citedreferenceJ. Heijman, N. Voigt, S. Nattel, D. Dobrev. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res. 2014; 114: 1483 â 1499.
dc.identifier.citedreferenceH. Dimitri, M. Ng, A.G. Brooks, et al. Atrial remodeling in obstructive sleep apnea: implications for atrial fibrillation. Heart Rhythm. 2012; 9: 321 â 327.
dc.identifier.citedreferenceK. Maeno, T. Kasai, S. Kasagi, et al. Relationship between atrial conduction delay and obstructive sleep apnea. Heart Vessel. 2013; 28: 639 â 645.
dc.identifier.citedreferenceH.A. Chami, R.B. Devereux, J.S. Gottdiener, et al. Left ventricular morphology and systolic function in sleepâ disordered breathing: the Sleep Heart Health Study. Circulation. 2008; 117: 2599 â 2607.
dc.identifier.citedreferenceK. Maeno, S. Kasagi, A. Ueda, et al. Effects of obstructive sleep apnea and its treatment on signalâ averaged Pâ wave duration in men. Circ Arrhythm Electrophysiol. 2013; 6: 287 â 293.
dc.identifier.citedreferenceY.K. Iwasaki, T. Kato, F. Xiong, et al. Atrial fibrillation promotion with longâ term repetitive obstructive sleep apnea in a rat model. J Am Coll Cardiol. 2014; 64: 2013 â 2023.
dc.identifier.citedreferenceL. Yue, J. Feng, R. Gaspo, et al. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res. 1997; 81: 512 â 525.
dc.identifier.citedreferenceX.Y. Qi, Y.H. Yeh, L. Xiao, et al. Cellular signaling underlying atrial tachycardia remodeling of Lâ type calcium current. Circ Res. 2008; 103: 845 â 854.
dc.identifier.citedreferenceI. Lenaerts, V. Bito, F.R. Heinzel, et al. Ultrastructural and functional remodeling of the coupling between Ca 2+ influx and sarcoplasmic reticulum Ca 2+ release in right atrial myocytes from experimental persistent atrial fibrillation. Circ Res. 2009; 105: 876 â 885.
dc.identifier.citedreferenceH.M. van der Velden, J. Ausma, M.B. Rook, et al. Gap junctional remodeling in relation to stabilization of atrial fibrillation in the goat. Cardiovasc Res. 2000; 46: 476 â 486.
dc.identifier.citedreferenceR.P. Martins, K. Kaur, E. Hwang, et al. Dominant frequency increase rate predicts transition from paroxysmal to longâ term persistent atrial fibrillation. Circulation. 2014; 129: 1472 â 1482.
dc.identifier.citedreferenceM. Harada, X. Luo, X.Y. Qi, et al. Transient receptor potential canonicalâ 3 channelâ dependent fibroblast regulation in atrial fibrillation. Circulation. 2012; 126: 2051 â 2064.
dc.identifier.citedreferenceJ. Du, J. Xie, Z. Zhang, et al. TRPM7â mediated Ca 2+ signals confer fibrogenesis in human atrial fibrillation. Circ Res. 2010; 106: 992 â 1003.
dc.identifier.citedreferenceD. Dobrev, E. Graf, E. Wettwer, et al. Molecular basis of downregulation of Gâ proteinâ coupled inward rectifying K(+) current (I(K,ACh) in chronic human atrial fibrillation: decrease in GIRK4 mRNA correlates with reduced I(K,ACh) and muscarinic receptorâ mediated shortening of action potentials. Circulation. 2001; 104: 2551 â 2557.
dc.identifier.citedreferenceN. Voigt, N. Li, Q. Wang, et al. Enhanced sarcoplasmic reticulum Ca 2+ leak and increased Na +, â Ca 2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation. 2012; 125: 2059 â 2070.
dc.identifier.citedreferenceC.S. van der Hooft, J. Heeringa, G. van Herpen, et al. Drugâ induced atrial fibrillation. J Am Coll Cardiol. 2004; 44: 2117 â 2124.
dc.identifier.citedreferenceJ. Tamargo, R. Caballero, E. Delpon. Drugâ induced atrial fibrillation: does it matter?. Discov Med. 2012; 14: 295 â 299.
dc.identifier.citedreferenceV. Fuster, L.E. Ryden, D.S. Cannom, et al. 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 Guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in partnership with the European Society of Cardiology and in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. J Am Coll Cardiol. 2011; 57: e101 â e198.
dc.identifier.citedreferenceA.J. Camm, G.Y. Lip, R. De Caterina, et al. 2012 focused update of the ESC Guidelines for the management of atrial fibrillation: an update of the 2010 ESC Guidelines for the management of atrial fibrillation. Developed with the special contribution of the European Heart Rhythm Association. Eur Heart J. 2012; 33: 2719 â 2747.
dc.identifier.citedreferenceL. Cooper, K. Knowlton. In D. Mann, R. Bonow, D. Zipes, P. Libby, E. Braunwald, eds. Myocarditis. 10th ed.. Philadelphia, PA: Elsevier. 2015, 1589 â 1602, Braunwald’s heart disease: a textbook of cardiovascular medicine.
dc.identifier.citedreferenceA.L. Caforio, S. Pankuweit, E. Arbustini, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013; 34: 2636 â 2648, 2648aâ 2648d.
dc.identifier.citedreferenceN. Chandra, R. Bastiaenen, M. Papadakis, S. Sharma. Sudden cardiac death in young athletes: practical challenges and diagnostic dilemmas. J Am Coll Cardiol. 2013; 61: 1027 â 1040.
dc.identifier.citedreferenceI. Gore, O. Saphir. Myocarditis; a classification of 1402 cases. Am Heart J. 1947; 34: 827 â 830.
dc.identifier.citedreferenceC. Basso, F. Calabrese, D. Corrado, G. Thiene. Postmortem diagnosis in sudden cardiac death victims: macroscopic, microscopic and molecular findings. Cardiovasc Res. 2001; 50: 290 â 300.
dc.identifier.citedreferenceJ.W. Mason, J.B. O’Connell, A. Herskowitz, et al. A clinical trial of immunosuppressive therapy for myocarditis. The Myocarditis Treatment Trial Investigators. N Engl J Med. 1995; 333: 269 â 275.
dc.identifier.citedreferenceG.M. Felker, W. Hu, J.M. Hare, et al. The spectrum of dilated cardiomyopathy. The Johns Hopkins experience with 1278 patients. Medicine. 1999; 78: 270 â 283.
dc.identifier.citedreferenceO. Leone, J.P. Veinot, A. Angelini, et al. 2011 consensus statement on endomyocardial biopsy from the Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology. Cardiovasc Pathol. 2012; 21: 245 â 274.
dc.identifier.citedreferenceU. Kuhl, M. Pauschinger, M. Noutsias, et al. High prevalence of viral genomes and multiple viral infections in the myocardium of adults with â idiopathicâ left ventricular dysfunction. Circulation. 2005; 111: 887 â 893.
dc.identifier.citedreferenceA. Frustaci, S. Cameli, P. Zeppilli. Biopsy evidence of atrial myocarditis in an athlete developing transient sinoatrial disease. Chest. 1995; 108: 1460 â 1462.
dc.identifier.citedreferenceM. Habara, H. Fujieda, Y. Nakamura. Images in cardiology. Atrial myocarditis: a possible cause of idiopathic enlargement of bilateral atria. Heart. 2006; 92: 842.
dc.identifier.citedreferenceM. Fromer, C. Genton, J. Schlaepfer, J.J. Goy, L. Kappenberger. Is there an isolated arrhythmogenic right atrial myocarditis?. Eur Heart J. 1990; 11: 566 â 571.
dc.identifier.citedreferenceM. Hoyano, M. Ito, S. Kimura, et al. Inducibility of atrial fibrillation depends not on inflammation but on atrial structural remodeling in rat experimental autoimmune myocarditis. Cardiovasc Pathol. 2010; 19: e149 â e157.
dc.identifier.citedreferenceP.C. McCrea, R.W. Childers. Two unusual cases of giant cell myocarditis associated with mitral stenosis and with Wegener’s syndrome. Br Heart J. 1964; 26: 490 â 498.
dc.identifier.citedreferenceB.T. Larsen, J.J. Maleszewski, W.D. Edwards, et al. Atrial giant cell myocarditis: a distinctive clinicopathologic entity. Circulation. 2013; 127: 39 â 47.
dc.identifier.citedreferenceC. Basso, G. Thiene. When giant cell myocarditis affects only the atria. Circulation. 2013; 127: 8 â 9.
dc.identifier.citedreferenceW.A. Groenewegen, M. Firouzi, C.R. Bezzina, et al. A cardiac sodium channel mutation cosegregates with a rare connexin40 genotype in familial atrial standstill. Circ Res. 2003; 92: 14 â 22.
dc.identifier.citedreferenceP. Kirchhof, L. Eckardt, M.R. Franz, et al. Prolonged atrial action potential durations and polymorphic atrial tachyarrhythmias in patients with long QT syndrome. J Cardiovasc Electrophysiol. 2003; 14: 1027 â 1033.
dc.identifier.citedreferenceM.J. Junttila, J.T. Tikkanen, T. Kentta, et al. Early repolarization as a predictor of arrhythmic and nonarrhythmic cardiac events in middleâ aged subjects. Heart Rhythm. 2014; 11: 1701 â 1706.
dc.identifier.citedreferenceJ.T. Delaney, R. Muhammad, M.A. Blair, et al. A KCNJ8 mutation associated with early repolarization and atrial fibrillation. Europace. 2012; 14: 1428 â 1432.
dc.identifier.citedreferenceD.L. Glancy, K.P. O’Brien, H.K. Gold, S.E. Epstein. Atrial fibrillation in patients with idiopathic hypertrophic subaortic stenosis. Br Heart J. 1970; 32: 652 â 659.
dc.identifier.citedreferenceI. Olivotto, F. Cecchi, S.A. Casey, et al. Impact of atrial fibrillation on the clinical course of hypertrophic cardiomyopathy. Circulation. 2001; 104: 2517 â 2524.
dc.identifier.citedreferenceA.F. Chu, E. Zado, F.E. Marchlinski. Atrial arrhythmias in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia and ventricular tachycardia. Am J Cardiol. 2010; 106: 720 â 722.
dc.identifier.citedreferenceL. Eckardt, P. Kirchhof, P. Loh, et al. Brugada syndrome and supraventricular tachyarrhythmias: a novel association?. J Cardiovasc Electrophysiol. 2001; 12: 680 â 685.
dc.identifier.citedreferenceC. Giustetto, N. Cerrato, E. Gribaudo, et al. Atrial fibrillation in a large population with Brugada electrocardiographic pattern: prevalence, management, and correlation with prognosis. Heart Rhythm. 2014; 11: 259 â 265.
dc.identifier.citedreferenceK.H. Haugaa, J.N. Johnson, J.M. Bos, et al. Subclinical cardiomyopathy and long QT syndrome: an echocardiographic observation. Congenit Heart Dis. 2013; 8: 352 â 359.
dc.identifier.citedreferenceM.S. Olesen, A.G. Holst, J.H. Svendsen, S. Haunso, J. Tfeltâ Hansen. SCN1Bb R214Q found in 3 patients: 1 with Brugada syndrome and 2 with lone atrial fibrillation. Heart Rhythm. 2012; 9: 770 â 773.
dc.identifier.citedreferenceM.S. Olesen, L. Yuan, B. Liang, et al. High prevalence of long QT syndromeâ associated SCN5A variants in patients with earlyâ onset lone atrial fibrillation. Circ Cardiovasc Genet. 2012; 5: 450 â 459.
dc.identifier.citedreferenceM.D. Lemoine, J.E. Duverger, P. Naud, et al. Arrhythmogenic left atrial cellular electrophysiology in a murine genetic long QT syndrome model. Cardiovasc Res. 2011; 92: 67 â 74.
dc.identifier.citedreferenceN. Sumitomo, H. Sakurada, K. Taniguchi, et al. Association of atrial arrhythmia and sinus node dysfunction in patients with catecholaminergic polymorphic ventricular tachycardia. Circ J. 2007; 71: 1606 â 1609.
dc.identifier.citedreferenceE.P. Anyukhovsky, E.A. Sosunov, P. Chandra, et al. Ageâ associated changes in electrophysiologic remodeling: a potential contributor to initiation of atrial fibrillation. Cardiovasc Res. 2005; 66: 353 â 363.
dc.identifier.citedreferenceE.P. Anyukhovsky, E.A. Sosunov, A. Plotnikov, et al. Cellular electrophysiologic properties of old canine atria provide a substrate for arrhythmogenesis. Cardiovasc Res. 2002; 54: 462 â 469.
dc.identifier.citedreferenceP.M. Kistler, P. Sanders, S.P. Fynn, et al. Electrophysiologic and electroanatomic changes in the human atrium associated with age. J Am Coll Cardiol. 2004; 44: 109 â 116.
dc.identifier.citedreferenceK.C. Robertsâ Thomson, P.M. Kistler, P. Sanders, et al. Fractionated atrial electrograms during sinus rhythm: relationship to age, voltage, and conduction velocity. Heart Rhythm. 2009; 6: 587 â 591.
dc.identifier.citedreferenceP. Kojodjojo, P. Kanagaratnam, V. Markides, D.W. Davies, N. Peters. Ageâ related changes in human left and right atrial conduction. J Cardiovasc Electrophysiol. 2006; 17: 120 â 127.
dc.identifier.citedreferenceR.R. Huxley, F.L. Lopez, A.R. Folsom, et al. Absolute and attributable risks of atrial fibrillation in relation to optimal and borderline risk factors: the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2011; 123: 1501 â 1508.
dc.identifier.citedreferenceP. Verdecchia, G. Reboldi, R. Gattobigio, et al. Atrial fibrillation in hypertension: predictors and outcome. Hypertension. 2003; 41: 218 â 223.
dc.identifier.citedreferenceS. Ciaroni, L. Cuenoud, A. Bloch. Clinical study to investigate the predictive parameters for the onset of atrial fibrillation in patients with essential hypertension. Am Heart J. 2000; 139: 814 â 819.
dc.identifier.citedreferenceS.J. Kim, S.C. Choisy, P. Barman, et al. Atrial remodeling and the substrate for atrial fibrillation in rat hearts with elevated afterload. Circ Arrhythm Electrophysiol. 2011; 4: 761 â 769.
dc.identifier.citedreferenceP.M. Kistler, P. Sanders, M. Dodic, et al. Atrial electrical and structural abnormalities in an ovine model of chronic blood pressure elevation after prenatal corticosteroid exposure: implications for development of atrial fibrillation. Eur Heart J. 2006; 27: 3045 â 3056.
dc.identifier.citedreferenceD.H. Lau, L. Mackenzie, D.J. Kelly, et al. Hypertension and atrial fibrillation: evidence of progressive atrial remodeling with electrostructural correlate in a conscious chronically instrumented ovine model. Heart Rhythm. 2010; 7: 1282 â 1290.
dc.identifier.citedreferenceD.H. Lau, L. Mackenzie, D.J. Kelly, et al. Shortâ term hypertension is associated with the development of atrial fibrillation substrate: a study in an ovine hypertensive model. Heart Rhythm. 2010; 7: 396 â 404.
dc.identifier.citedreferenceC. Medi, J.M. Kalman, S.J. Spence, et al. Atrial electrical and structural changes associated with longstanding hypertension in humans: implications for the substrate for atrial fibrillation. J Cardiovasc Electrophysiol. 2011; 22: 1317 â 1324.
dc.identifier.citedreferenceD. Conen, U.B. Tedrow, B.A. Koplan, et al. Influence of systolic and diastolic blood pressure on the risk of incident atrial fibrillation in women. Circulation. 2009; 119: 2146 â 2152.
dc.identifier.citedreferenceS. Kimura, M. Ito, M. Tomita, et al. Role of mineralocorticoid receptor on atrial structural remodeling and inducibility of atrial fibrillation in hypertensive rats. Hypertens Res. 2011; 34: 584 â 591.
dc.identifier.citedreferenceN. Matsuyama, T. Tsutsumi, N. Kubota, et al. Direct action of an angiotensin II receptor blocker on angiotensin IIâ induced left atrial conduction delay in spontaneously hypertensive rats. Hypertens Res. 2009; 32: 721 â 726.
dc.identifier.citedreferenceR. Fogari, A. Zoppi, P. Maffioli, et al. Effect of telmisartan on paroxysmal atrial fibrillation recurrence in hypertensive patients with normal or increased left atrial size. Clin Cardiol. 2012; 35: 359 â 364.
dc.identifier.citedreferenceU.B. Tedrow, D. Conen, P.M. Ridker, et al. The longâ and shortâ term impact of elevated body mass index on the risk of new atrial fibrillation the WHS (women’s health study). J Am Coll Cardiol. 2010; 55: 2319 â 2327.
dc.identifier.citedreferenceA.S. Gami, D.O. Hodge, R.M. Herges, et al. Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. J Am Coll Cardiol. 2007; 49: 565 â 571.
dc.identifier.citedreferenceT.J. Wang, H. Parise, D. Levy, et al. Obesity and the risk of newâ onset atrial fibrillation. JAMA. 2004; 292: 2471 â 2477.
dc.identifier.citedreferenceC.X. Wong, M. Sun, R. Mahajan, et al. Obesity and the risk of incident, postâ operative and post ablation atrial fibrillation: a metaâ analysis of 626,603 individuals in 51 studies. JACC Clin Electrophysiol. 2015; 1: 139 â 152.
dc.identifier.citedreferenceG. Di Salvo, G. Pacileo, E.M. Del Giudice, et al. Atrial myocardial deformation properties in obese nonhypertensive children. J Am Soc Echocardiogr. 2008; 21: 151 â 156.
dc.identifier.citedreferenceH.S. Abed, C.S. Samuel, D.H. Lau, et al. Obesity results in progressive atrial structural and electrical remodeling: implications for atrial fibrillation. Heart Rhythm. 2013; 10: 90 â 100.
dc.identifier.citedreferenceR. Mahajan, D.H. Lau, A.G. Brooks, et al. Electrophysiological, electroanatomical and structural remodeling of the atria as a consequence of sustained obesity. J Am Coll Cardiol. 2015; 66: 1 â 11.
dc.identifier.citedreferenceT.M. Munger, Y.X. Dong, M. Masaki, et al. Electrophysiological and hemodynamic characteristics associated with obesity in patients with atrial fibrillation. J Am Coll Cardiol. 2012; 60: 851 â 860.
dc.identifier.citedreferenceR. Mahajan, A. Nelson, C.X. Wong, et al. Epicardial fat depots and atrial remodeling in obese patients with atrial fibrillation: evidence for a direct pathogenic role. Heart Rhythm. 2015; 12: S81 â S82.
dc.identifier.citedreferenceC.X. Wong, H.S. Abed, P. Molaee, et al. Pericardial fat is associated with atrial fibrillation severity and ablation outcome. J Am Coll Cardiol. 2011; 57: 1745 â 1751.
dc.identifier.citedreferenceM.O. Al Chekakie, C.C. Welles, R. Metoyer, et al. Pericardial fat is independently associated with human atrial fibrillation. J Am Coll Cardiol. 2010; 56: 784 â 788.
dc.identifier.citedreferenceB. Maesen, S. Zeemering, C. Afonso, et al. Rearrangement of atrial bundle architecture and consequent changes in anisotropy of conduction constitute the 3â dimensional substrate for atrial fibrillation. Circ Arrhythm Electrophysiol. 2013; 6: 967 â 975.
dc.identifier.citedreferenceJ. Eckstein, S. Zeemering, D. Linz, et al. Transmural conduction is the predominant mechanism of breakthrough during atrial fibrillation: evidence from simultaneous endoâ epicardial highâ density activation mapping. Circ Arrhythm Electrophysiol. 2013; 6: 334 â 341.
dc.identifier.citedreferenceN. Venteclef, V. Guglielmi, E. Balse, et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipofibrokines. Eur Heart J. 2015; 36: 795 â 805a.
dc.identifier.citedreferenceR. Mahajan, A.G. Brooks, N.J. Shipp, et al. Epicardial and endocardial differences in electrophysiological remodeling of atria due to obesity and weight reduction. Heart Rhythm. 2013; 10: 401.
dc.identifier.citedreferenceR.K. Pathak, M.E. Middeldorp, M. Meredith, et al. Aggressive Risk factor REduction STudy: implications for the substrate for Atrial Fibrillation (ARRESTâ AF Substrate Study). Heart Rhythm. 2015; 12: S57 â S96.
dc.identifier.citedreferenceB. Gaborit, A. Jacquier, F. Kober, et al. Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content. J Am Coll Cardiol. 2012; 60: 1381 â 1389.
dc.identifier.citedreferenceR.K. Pathak, M.E. Middeldorp, M. Meredith, et al. Longâ term effect of goalâ directed weight management in an atrial fibrillation cohort: a longâ term followâ up study (LEGACY). J Am Coll Cardiol. 2015; 65: 2159 â 2169.
dc.identifier.citedreferenceR.K. Pathak, M.E. Middeldorp, D.H. Lau, et al. Aggressive risk factor reduction study for atrial fibrillation and implications for the outcome of ablation: the ARRESTâ AF cohort study. J Am Coll Cardiol. 2014; 64: 2222 â 2231.
dc.identifier.citedreferenceH.S. Abed, G.A. Wittert, D.P. Leong, et al. Effect of weight reduction and cardiometabolic risk factor management on symptom burden and severity in patients with atrial fibrillation: a randomized clinical trial. JAMA. 2013; 310: 2050 â 2060.
dc.identifier.citedreferenceR.R. Huxley, K.B. Filion, S. Konety, A. Alonso. Metaâ analysis of cohort and caseâ control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am J Cardiol. 2011; 108: 56 â 62.
dc.identifier.citedreferenceT. Kato, T. Yamashita, A. Sekiguchi, et al. What are arrhythmogenic substrates in diabetic rat atria?. J Cardiovasc Electrophysiol. 2006; 17: 890 â 894.
dc.identifier.citedreferenceT.F. Chao, K. Suenari, S.L. Chang, et al. Atrial substrate properties and outcome of catheter ablation in patients with paroxysmal atrial fibrillation associated with diabetes mellitus or impaired fasting glucose. Am J Cardiol. 2010; 106: 1615 â 1620.
dc.identifier.citedreferenceY. Shigematsu, S. Norimatsu, A. Ogimoto, et al. The influence of insulin resistance and obesity on left atrial size in Japanese hypertensive patients. Hypertens Res. 2009; 32: 500 â 504.
dc.identifier.citedreferenceA. Celentano, O. Vaccaro, P. Tammaro, et al. Early abnormalities of cardiac function in nonâ insulinâ dependent diabetes mellitus and impaired glucose tolerance. Am J Cardiol. 1995; 76: 1173 â 1176.
dc.identifier.citedreferenceE.J. Anderson, A.P. Kypson, E. Rodriguez, et al. Substrateâ specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol. 2009; 54: 1891 â 1898.
dc.identifier.citedreferenceT. Kato, T. Yamashita, A. Sekiguchi, et al. AGEsâ RAGE system mediates atrial structural remodeling in the diabetic rat. J Cardiovasc Electrophysiol. 2008; 19: 415 â 420.
dc.identifier.citedreferenceF.G. Soriano, P. Pacher, J. Mabley, L. Liaudet, C. Szabo. Rapid reversal of the diabetic endothelial dysfunction by pharmacological inhibition of poly(ADPâ ribose) polymerase. Circ Res. 2001; 89: 684 â 691.
dc.identifier.citedreferenceM. Mitasikova, H. Lin, T. Soukup, I. Imanaga, N. Tribulova. Diabetes and thyroid hormones affect connexinâ 43 and PKCâ epsilon expression in rat heart atria. Physiol Res. 2009; 58: 211 â 217.
dc.identifier.citedreferenceR. Candido, J.M. Forbes, M.C. Thomas, et al. A breaker of advanced glycation end products attenuates diabetesâ induced myocardial structural changes. Circ Res. 2003; 92: 785 â 792.
dc.identifier.citedreferenceM. Watanabe, H. Yokoshiki, H. Mitsuyama, et al. Conduction and refractory disorders in the diabetic atrium. Am J Physiol Heart Circ Physiol. 2012; 303: H86 â H95.
dc.identifier.citedreferenceM. Shimano, Y. Tsuji, Y. Inden, et al. Pioglitazone, a peroxisome proliferatorâ activated receptorâ gamma activator, attenuates atrial fibrosis and atrial fibrillation promotion in rabbits with congestive heart failure. Heart Rhythm. 2008; 5: 451 â 459.
dc.identifier.citedreferenceA. Selzer, K.E. Cohn. Natural history of mitral stenosis: a review. Circulation. 1972; 45: 878 â 890.
dc.identifier.citedreferenceB. John, M.K. Stiles, P. Kuklik, et al. Electrical remodelling of the left and right atria due to rheumatic mitral stenosis. Eur Heart J. 2008; 29: 2234 â 2243.
dc.identifier.citedreferenceK.U. Thiedemann, V.J. Ferrans. Left atrial ultrastructure in mitral valvular disease. Am J Pathol. 1977; 89: 575 â 604.
dc.identifier.citedreferenceW. Anne, R. Willems, T. Roskams, et al. Matrix metalloproteinases and atrial remodeling in patients with mitral valve disease and atrial fibrillation. Cardiovasc Res. 2005; 67: 655 â 666.
dc.identifier.citedreferenceB. John, M.K. Stiles, P. Kuklik, et al. Reverse remodeling of the atria after treatment of chronic stretch in humans: implications for the atrial fibrillation substrate. J Am Coll Cardiol. 2010; 55: 1217 â 1226.
dc.identifier.citedreferenceA.W. Teh, P.M. Kistler, G. Lee, et al. Longâ term effects of catheter ablation for lone atrial fibrillation: progressive atrial electroanatomic substrate remodeling despite successful ablation. Heart Rhythm. 2012; 9: 473 â 480.
dc.identifier.citedreferenceW. Carver, M.L. Nagpal, M. Nachtigal, T.K. Borg, L. Terracio. Collagen expression in mechanically stimulated cardiac fibroblasts. Circ Res. 1991; 69: 116 â 122.
dc.identifier.citedreferenceA. Boldt, U. Wetzel, J. Lauschke, et al. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart. 2004; 90: 400 â 405.
dc.identifier.citedreferenceS. Verheule, E. Wilson, T. Everett IV, et al. Alterations in atrial electrophysiology and tissue structure in a canine model of chronic atrial dilatation due to mitral regurgitation. Circulation. 2003; 107: 2615 â 2622.
dc.identifier.citedreferenceJ.P. Chang, T.H. Tsai, Y.L. Chen, et al. Left atrial enlargement induced by pure mitral regurgitation: time frame in a new swine model. Eur Surg Res. 2010; 45: 98 â 104.
dc.identifier.citedreferenceM.C. Chen, J.P. Chang, S.C. Huang, et al. Dedifferentiation of atrial cardiomyocytes in cardiac valve disease: unrelated to atrial fibrillation. Cardiovasc Pathol. 2008; 17: 156 â 165.
dc.identifier.citedreferenceM.C. Chen, J.P. Chang, T.H. Chang, et al. Unraveling regulatory mechanisms of atrial remodeling of mitral regurgitation pigs by gene expression profiling analysis: role of type I angiotensin II receptor antagonist. Transl Res. 2015; 165: 599 â 620.
dc.identifier.citedreferenceJ.P. Chang, M.C. Chen, W.H. Liu, et al. Atrial myocardial nox2 containing NADPH oxidase activity contribution to oxidative stress in mitral regurgitation: potential mechanism for atrial remodeling. Cardiovasc Pathol. 2011; 20: 99 â 106.
dc.identifier.citedreferenceD.C. Le Bihan, D.J. Della Togna, R.B. Barretto, et al. Early improvement in left atrial remodeling and function after mitral valve repair or replacement in organic symptomatic mitral regurgitation assessed by threeâ dimensional echocardiography. Echocardiography. 2015; 32: 1122 â 1130.
dc.identifier.citedreferenceP.S. Dardas, A.A. Pitsis, D.D. Tsikaderis, et al. Left atrial volumes, function and work before and after mitral valve repair in chronic mitral regurgitation. J Heart Valve Dis. 2004; 13: 27 â 32.
dc.identifier.citedreferenceC.R. Kerr, K.H. Humphries, M. Talajic, et al. Progression to chronic atrial fibrillation after the initial diagnosis of paroxysmal atrial fibrillation: results from the Canadian Registry of Atrial Fibrillation. Am Heart J. 2005; 149: 489 â 496.
dc.identifier.citedreferenceF. Triposkiadis, C. Pitsavos, H. Boudoulas, et al. Left atrial volume and function in valvular aortic stenosis. J Heart Valve Dis. 1993; 2: 104 â 113.
dc.identifier.citedreferenceI.L. Gerber, R.A. Stewart, M.E. Legget, et al. Increased plasma natriuretic peptide levels reflect symptom onset in aortic stenosis. Circulation. 2003; 107: 1884 â 1890.
dc.identifier.citedreferenceM.B. Yilmaz, A.R. Erbay, M. Balci, et al. Atrial natriuretic peptide predicts impaired atrial remodeling and occurrence of late postoperative atrial fibrillation after surgery for symptomatic aortic stenosis. Cardiology. 2006; 105: 207 â 212.
dc.identifier.citedreferenceS.S. Chugh, R. Havmoeller, K. Narayanan, et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation. 2014; 129: 837 â 847.
dc.identifier.citedreferenceG.K. Moe, J.A. Abildskov. Atrial fibrillation as a selfâ sustaining arrhythmia independent of focal discharge. Am Heart J. 1959; 58: 59 â 70.
dc.identifier.citedreferenceM.A. Allessie, N.M. de Groot, R.P. Houben, et al. Electropathological substrate of longâ standing persistent atrial fibrillation in patients with structural heart disease: longitudinal dissociation. Circ Arrhythm Electrophysiol. 2010; 3: 606 â 615.
dc.identifier.citedreferenceS.V. Pandit, J. Jalife. Rotors and the dynamics of cardiac fibrillation. Circ Res. 2013; 112: 849 â 862.
dc.identifier.citedreferenceJ. Jalife. Deja vu in the theories of atrial fibrillation dynamics. Cardiovasc Res. 2011; 89: 766 â 775.
dc.identifier.citedreferenceM.C. Wijffels, C.J. Kirchhof, R. Dorland, M.A. Allessie. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995; 92: 1954 â 1968.
dc.identifier.citedreferenceA.J. Workman, K.A. Kane, A.C. Rankin. The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovasc Res. 2001; 52: 226 â 235.
dc.identifier.citedreferenceJ. Jalife, O. Berenfeld, A. Skanes, R. Mandapati. Mechanisms of atrial fibrillation: mother rotors or multiple daughter wavelets, or both?. J Cardiovasc Electrophysiol. 1998; 9: S2 â 12.
dc.identifier.citedreferenceS.M. Narayan, T. Baykaner, P. Clopton, et al. Ablation of rotor and focal sources reduces late recurrence of atrial fibrillation compared with trigger ablation alone: extended followâ up of the CONFIRM trial (Conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation). J Am Coll Cardiol. 2014; 63: 1761 â 1768.
dc.identifier.citedreferenceS.M. Narayan, D.E. Krummen, A. Donsky, V. Swarup, J.M. Miller. Precise rotor elimination without concomitant pulmonary vein isolation for the successful elimination of paroxysmal atrial fibrillation (PRECISEâ PAF). Heart Rhythm. 2013; 10: LBCT4.
dc.identifier.citedreferenceN. Voigt, A. Trausch, M. Knaut, et al. Leftâ toâ right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. Circ Arrhythm Electrophysiol. 2010; 3: 472 â 480.
dc.identifier.citedreferenceX. He, X. Gao, L. Peng, et al. Atrial fibrillation induces myocardial fibrosis through angiotensin II type 1 receptorâ specific Arkadiaâ mediated downregulation of Smad7. Circ Res. 2011; 108: 164 â 175.
dc.identifier.citedreferenceK. Kaur, M. Zarzoso, D. Ponceâ Balbuena, et al. TGFâ beta1, released by myofibroblasts, differentially regulates transcription and function of sodium and potassium channels in adult rat ventricular myocytes. PLoS One. 2013; 8: e55391.
dc.identifier.citedreferenceD. Filgueirasâ Rama, N.F. Price, R.P. Martins, et al. Longâ term frequency gradients during persistent atrial fibrillation in sheep are associated with stable sources in the left atrium. Circ Arrhythm Electrophysiol. 2012; 5: 1160 â 1167.
dc.identifier.citedreferenceH. Hu, F. Sachs. Stretchâ activated ion channels in the heart. J Mol Cell Cardiol. 1997; 29: 1511 â 1523.
dc.identifier.citedreferenceD. Kim. Novel cationâ selective mechanosensitive ion channel in the atrial cell membrane. Circ Res. 1993; 72: 225 â 231.
dc.identifier.citedreferenceS. Rafizadeh, Z. Zhang, R.L. Woltz, et al. Functional interaction with filamin A and intracellular Ca 2+ enhance the surface membrane expression of a smallâ conductance Ca 2+, â activated K + (SK2) channel. Proc Natl Acad Sci USA. 2014; 111: 9989 â 9994.
dc.identifier.citedreferenceS.N. Reilly, R. Jayaram, K. Nahar, et al. Atrial sources of reactive oxygen species vary with the duration and substrate of atrial fibrillation: implications for the antiarrhythmic effect of statins. Circulation. 2011; 124: 1107 â 1117.
dc.identifier.citedreferenceM. Shimano, R. Shibata, Y. Inden, et al. Reactive oxidative metabolites are associated with atrial conduction disturbance in patients with atrial fibrillation. Heart Rhythm. 2009; 6: 935 â 940.
dc.identifier.citedreferenceS. Wagner, A.G. Rokita, M.E. Anderson, L.S. Maier. Redox regulation of sodium and calcium handling. Antioxid Redox Signal. 2013; 18: 1063 â 1077.
dc.identifier.citedreferenceY. Guo, G.Y. Lip, S. Apostolakis. Inflammation in atrial fibrillation. J Am Coll Cardiol. 2012; 60: 2263 â 2270.
dc.identifier.citedreferenceS.I. Dikalov, R.R. Nazarewicz. Angiotensin IIâ induced production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease. Antioxid Redox Signal. 2013; 19: 1085 â 1094.
dc.identifier.citedreferenceP. Haemers, H. Hamdi, K. Guedj, et al. Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria. Eur Heart J. 2015, 10.1093/eurheartj/ehv625.
dc.identifier.citedreferenceR.K. Chilukoti, A. Giese, W. Malenke, et al. Atrial fibrillation and rapid acute pacing regulate adipocyte/adipositasâ related gene expression in the atria. Int J Cardiol. 2015; 187: 604 â 613.
dc.identifier.citedreferenceP. Zymek, M. Bujak, K. Chatila, et al. The role of plateletâ derived growth factor signaling in healing myocardial infarcts. J Am Coll Cardiol. 2006; 48: 2315 â 2323.
dc.identifier.citedreferenceP.L. Page, V.J. Plumb, K. Okumura, A.L. Waldo. A new animal model of atrial flutter. J Am Coll Cardiol. 1986; 8: 872 â 879.
dc.identifier.citedreferenceR.H. Abdelhadi, H.S. Gurm, D.R. Van Wagoner, M.K. Chung. Relation of an exaggerated rise in white blood cells after coronary bypass or cardiac valve surgery to development of atrial fibrillation postoperatively. Am J Cardiol. 2004; 93: 1176 â 1178.
dc.identifier.citedreferenceY. Ishii, R.B. Schuessler, S.L. Gaynor, et al. Inflammation of atrium after cardiac surgery is associated with inhomogeneity of atrial conduction and atrial fibrillation. Circulation. 2005; 111: 2881 â 2888.
dc.identifier.citedreferenceV. Rudolph, R.P. Andrie, T.K. Rudolph, et al. Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nat Med. 2010; 16: 470 â 474.
dc.identifier.citedreferenceR.N. Goldstein, K. Ryu, C. Khrestian, D.R. van Wagoner, A.L. Waldo. Prednisone prevents inducible atrial flutter in the canine sterile pericarditis model. J Cardiovasc Electrophysiol. 2008; 19: 74 â 81.
dc.identifier.citedreferenceJ. Halonen, P. Halonen, O. Jarvinen, et al. Corticosteroids for the prevention of atrial fibrillation after cardiac surgery: a randomized controlled trial. JAMA. 2007; 297: 1562 â 1567.
dc.identifier.citedreferenceF. Mayyas, M. Niebauer, A. Zurick, et al. Association of left atrial endothelinâ 1 with atrial rhythm, size, and fibrosis in patients with structural heart disease. Circ Arrhythm Electrophysiol. 2010; 3: 369 â 379.
dc.identifier.citedreferenceA. Goette, M. Arndt, C. Rocken, et al. Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation. 2000; 101: 2678 â 2681.
dc.identifier.citedreferenceA. Goette, T. Staack, C. Rocken, et al. Increased expression of extracellular signalâ regulated kinase and angiotensinâ converting enzyme in human atria during atrial fibrillation. J Am Coll Cardiol. 2000; 35: 1669 â 1677.
dc.identifier.citedreferenceM.K. Chung, D.O. Martin, D. Sprecher, et al. Câ reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation. 2001; 104: 2886 â 2891.
dc.identifier.citedreferenceR.J. Aviles, D.O. Martin, C. Appersonâ Hansen, et al. Inflammation as a risk factor for atrial fibrillation. Circulation. 2003; 108: 3006 â 3010.
dc.identifier.citedreferenceG.M. Marcus, M.A. Whooley, D.V. Glidden, et al. Interleukinâ 6 and atrial fibrillation in patients with coronary artery disease: data from the Heart and Soul Study. Am Heart J. 2008; 155: 303 â 309.
dc.identifier.citedreferenceJ. Li, J. Solus, Q. Chen, et al. Role of inflammation and oxidative stress in atrial fibrillation. Heart Rhythm. 2010; 7: 438 â 444.
dc.identifier.citedreferenceA. Goette, P. Hoffmanns, W. Enayati, et al. Effect of successful electrical cardioversion on serum aldosterone in patients with persistent atrial fibrillation. Am J Cardiol. 2001; 88: 906 â 909, A908.
dc.identifier.citedreferenceM. Rienstra, J.X. Sun, J.W. Magnani, et al. White blood cell count and risk of incident atrial fibrillation (from the Framingham heart study). Am J Cardiol. 2012; 109: 533 â 537.
dc.identifier.citedreferenceR.B. Schnabel, M.G. Larson, J.F. Yamamoto, et al. Relation of multiple inflammatory biomarkers to incident atrial fibrillation. Am J Cardiol. 2009; 104: 92 â 96.
dc.identifier.citedreferenceR.B. Schnabel, L.M. Sullivan, D. Levy, et al. Development of a risk score for atrial fibrillation (Framingham heart study): a communityâ based cohort study. Lancet. 2009; 373: 739 â 745.
dc.identifier.citedreferenceE.M. Kallergis, E.G. Manios, E.M. Kanoupakis, et al. The role of the postâ cardioversion time course of hsâ CRP levels in clarifying the relationship between inflammation and persistence of atrial fibrillation. Heart. 2008; 94: 200 â 204.
dc.identifier.citedreferenceM. Rotter, P. Jais, M.C. Vergnes, et al. Decline in Câ reactive protein after successful ablation of longâ lasting persistent atrial fibrillation. J Am Coll Cardiol. 2006; 47: 1231 â 1233.
dc.identifier.citedreferenceG.M. Marcus, L.M. Smith, D.V. Glidden, et al. Markers of inflammation before and after curative ablation of atrial flutter. Heart Rhythm. 2008; 5: 215 â 221.
dc.identifier.citedreferenceG.M. Marcus, L.M. Smith, K. Ordovas, et al. Intracardiac and extracardiac markers of inflammation during atrial fibrillation. Heart Rhythm. 2010; 7: 149 â 154.
dc.identifier.citedreferenceF.L. Liâ Sawâ Hee, A.D. Blann, I. Goldsmith, G.Y. Lip. Indexes of hypercoagulability measured in peripheral blood reflect levels in intracardiac blood in patients with atrial fibrillation secondary to mitral stenosis. Am J Cardiol. 1999; 83: 1206 â 1209.
dc.identifier.citedreferenceI. Liuba, H. Ahlmroth, L. Jonasson, et al. Source of inflammatory markers in patients with atrial fibrillation. Europace. 2008; 10: 848 â 853.
dc.identifier.citedreferenceJ.G. Akar, W. Jeske, D.J. Wilber. Acute onset human atrial fibrillation is associated with local cardiac platelet activation and endothelial dysfunction. J Am Coll Cardiol. 2008; 51: 1790 â 1793.
dc.identifier.citedreferenceG.M. Marcus. Predicting incident atrial fibrillation: an important step toward primary prevention. Arch Intern Med. 2010; 170: 1874 â 1875.
dc.identifier.citedreferenceR.B. Schnabel, M.G. Larson, J.F. Yamamoto, et al. Relations of biomarkers of distinct pathophysiological pathways and atrial fibrillation incidence in the community. Circulation. 2010; 121: 200 â 207.
dc.identifier.citedreferenceT.A. Dewland, E. Vittinghoff, M.C. Mandyam, et al. Atrial ectopy as a predictor of incident atrial fibrillation: a cohort study. Ann Intern Med. 2013; 159: 721 â 728.
dc.identifier.citedreferenceA. Alonso, B.P. Krijthe, T. Aspelund, et al. Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: the CHARGEâ AF consortium. J Am Heart Assoc. 2013; 2: e000102.
dc.identifier.citedreferenceM.F. Sinner, K.A. Stepas, C.B. Moser, et al. Bâ type natriuretic peptide and Câ reactive protein in the prediction of atrial fibrillation risk: the CHARGEâ AF Consortium of communityâ based cohort studies. Europace. 2014; 16: 1426 â 1433.
dc.identifier.citedreferenceR.R. Huxley, F.L. Lopez, R.F. MacLehose, et al. Novel association between plasma matrix metalloproteinaseâ 9 and risk of incident atrial fibrillation in a caseâ cohort study: the Atherosclerosis Risk in Communities study. PLoS One. 2013; 8: e59052.
dc.identifier.citedreferenceM. Arndt, U. Lendeckel, C. Rocken, et al. Altered expression of ADAMs (A disintegrin and metalloproteinase) in fibrillating human atria. Circulation. 2002; 105: 720 â 725.
dc.identifier.citedreferenceT. Watson, E. Shantsila, G.Y. Lip. Mechanisms of thrombogenesis in atrial fibrillation: Virchow’s triad revisited. Lancet. 2009; 373: 155 â 166.
dc.identifier.citedreferenceA. Choudhury, I. Chung, A.D. Blann, G.Y. Lip. Elevated platelet microparticle levels in nonvalvular atrial fibrillation: relationship to pâ selectin and antithrombotic therapy. Chest. 2007; 131: 809 â 815.
dc.identifier.citedreferenceK.T. Tan, G.Y. Lip. Atrial fibrillation: should we target platelets or the coagulation pathway?. Card Electrophysiol Rev. 2003; 7: 370 â 371.
dc.identifier.citedreferenceW.E. Wysokinski, W.G. Owen, D.N. Fass, et al. Atrial fibrillation and thrombosis: immunohistochemical differences between in situ and embolized thrombi. J Thromb Haemost. 2004; 2: 1637 â 1644.
dc.identifier.citedreferenceG.Y. Lip. Does atrial fibrillation confer a hypercoagulable state?. Lancet. 1995; 346: 1313 â 1314.
dc.identifier.citedreferenceK. Ohara, H. Inoue, T. Nozawa, et al. Accumulation of risk factors enhances the prothrombotic state in atrial fibrillation. Int J Cardiol. 2008; 126: 316 â 321.
dc.identifier.citedreferenceT. Nozawa, H. Inoue, T. Hirai, et al. Dâ dimer level influences thromboembolic events in patients with atrial fibrillation. Int J Cardiol. 2006; 109: 59 â 65.
dc.identifier.citedreferenceD.S. Conway, L.A. Pearce, B.S. Chin, R.G. Hart, G.Y. Lip. Plasma von Willebrand factor and soluble pâ selectin as indices of endothelial damage and platelet activation in 1321 patients with nonvalvular atrial fibrillation: relationship to stroke risk factors. Circulation. 2002; 106: 1962 â 1967.
dc.identifier.citedreferenceD.S. Conway, L.A. Pearce, B.S. Chin, R.G. Hart, G.Y. Lip. Prognostic value of plasma von Willebrand factor and soluble Pâ selectin as indices of endothelial damage and platelet activation in 994 patients with nonvalvular atrial fibrillation. Circulation. 2003; 107: 3141 â 3145.
dc.identifier.citedreferenceG.Y. Lip, J.V. Patel, E. Hughes, R.G. Hart. Highâ sensitivity Câ reactive protein and soluble CD40 ligand as indices of inflammation and platelet activation in 880 patients with nonvalvular atrial fibrillation: relationship to stroke risk factors, stroke risk stratification schema, and prognosis. Stroke. 2007; 38: 1229 â 1237.
dc.identifier.citedreferenceD.S. Conway, P. Buggins, E. Hughes, G.Y. Lip. Relationship of interleukinâ 6 and Câ reactive protein to the prothrombotic state in chronic atrial fibrillation. J Am Coll Cardiol. 2004; 43: 2075 â 2082.
dc.identifier.citedreferenceG.Y. Lip, D. Lane, C. Van Walraven, R.G. Hart. Additive role of plasma von Willebrand factor levels to clinical factors for risk stratification of patients with atrial fibrillation. Stroke. 2006; 37: 2294 â 2300.
dc.identifier.citedreferenceV. Roldan, F. Marin, B. Muina, et al. Plasma von Willebrand factor levels are an independent risk factor for adverse events including mortality and major bleeding in anticoagulated atrial fibrillation patients. J Am Coll Cardiol. 2011; 57: 2496 â 2504.
dc.identifier.citedreferenceL. Wallentin, Z. Hijazi, U. Andersson, et al. Growth differentiation factor 15, a marker of oxidative stress and inflammation, for risk assessment in patients with atrial fibrillation: insights from the Apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation (ARISTOTLE) trial. Circulation. 2014; 130: 1847 â 1858.
dc.identifier.citedreferenceC. Christersson, L. Wallentin, U. Andersson, et al. Dâ dimer and risk of thromboembolic and bleeding events in patients with atrial fibrillation â observations from the ARISTOTLE trial. J Thromb Haemost. 2014; 12: 1401 â 1412.
dc.identifier.citedreferenceZ. Hijazi, L. Wallentin, A. Siegbahn, et al. Highâ sensitivity troponin T and risk stratification in patients with atrial fibrillation during treatment with apixaban or warfarin. J Am Coll Cardiol. 2014; 63: 52 â 61.
dc.identifier.citedreferenceG.Y. Lip. Stroke and bleeding risk assessment in atrial fibrillation: when, how, and why?. Eur Heart J. 2013; 34: 1041 â 1049.
dc.identifier.citedreferenceA. Bukowska, I. Zacharias, S. Weinert, et al. Coagulation factor Xa induces an inflammatory signalling by activation of proteaseâ activated receptors in human atrial tissue. Eur J Pharmacol. 2013; 718: 114 â 123.
dc.identifier.citedreferenceA. Goette, M. Hammwohner, A. Bukowska, et al. The impact of rapid atrial pacing on ADMA and endothelial NOS. Int J Cardiol. 2012; 154: 141 â 146.
dc.identifier.citedreferenceA. Bukowska, C. Rocken, M. Erxleben, et al. Atrial expression of endothelial nitric oxide synthase in patients with and without atrial fibrillation. Cardiovasc Pathol. 2010; 19: e51 â e60.
dc.identifier.citedreferenceA. Goette, A. Bukowska, U. Lendeckel, et al. Angiotensin II receptor blockade reduces tachycardiaâ induced atrial adhesion molecule expression. Circulation. 2008; 117: 732 â 742.
dc.identifier.citedreferenceM. Hammwohner, A. Ittenson, J. Dierkes, et al. Platelet expression of CD40/CD40 ligand and its relation to inflammatory markers and adhesion molecules in patients with atrial fibrillation. Exp Biol Med. 2007; 232: 581 â 589.
dc.identifier.citedreferenceA. Bouzasâ Mosquera, F.J. Broullon, N. Alvarezâ Garcia, et al. Left atrial size and risk for allâ cause mortality and ischemic stroke. CMAJ. 2011; 183: E657 â E664.
dc.identifier.citedreferenceJ.R. Kizer, J.N. Bella, V. Palmieri, et al. Left atrial diameter as an independent predictor of first clinical cardiovascular events in middleâ aged and elderly adults: the Strong Heart Study (SHS). Am Heart J. 2006; 151: 412 â 418.
dc.identifier.citedreferenceP. Lancellotti, E. Donal, J. Magne, et al. Risk stratification in asymptomatic moderate to severe aortic stenosis: the importance of the valvular, arterial and ventricular interplay. Heart. 2010; 96: 1364 â 1371.
dc.identifier.citedreferenceT. Le Tourneau, D. Messikaâ Zeitoun, A. Russo, et al. Impact of left atrial volume on clinical outcome in organic mitral regurgitation. J Am Coll Cardiol. 2010; 56: 570 â 578.
dc.identifier.citedreferenceT.S. Tsang, M.E. Barnes, B.J. Gersh, K.R. Bailey, J.B. Seward. Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol. 2002; 90: 1284 â 1289.
dc.identifier.citedreferenceT.S. Tsang, M.E. Barnes, B.J. Gersh, et al. Prediction of risk for first ageâ related cardiovascular events in an elderly population: the incremental value of echocardiography. J Am Coll Cardiol. 2003; 42: 1199 â 1205.
dc.identifier.citedreferenceC.P. Appleton, J.M. Galloway, M.S. Gonzalez, M. Gaballa, M.A. Basnight. Estimation of left ventricular filling pressures using twoâ dimensional and Doppler echocardiography in adult patients with cardiac disease. Additional value of analyzing left atrial size, left atrial ejection fraction and the difference in duration of pulmonary venous and mitral flow velocity at atrial contraction. J Am Coll Cardiol. 1993; 22: 1972 â 1982.
dc.identifier.citedreferenceJ.B. Geske, P. Sorajja, R.A. Nishimura, S.R. Ommen. The relationship of left atrial volume and left atrial pressure in patients with hypertrophic cardiomyopathy: an echocardiographic and cardiac catheterization study. J Am Soc Echocardiogr. 2009; 22: 961 â 966.
dc.identifier.citedreferenceC.W. Guron, M. Hartford, A. Rosengren, et al. Usefulness of atrial size inequality as an indicator of abnormal left ventricular filling. Am J Cardiol. 2005; 95: 1448 â 1452.
dc.identifier.citedreferenceC.L. Simek, M.D. Feldman, H.L. Haber, et al. Relationship between left ventricular wall thickness and left atrial size: comparison with other measures of diastolic function. J Am Soc Echocardiogr. 1995; 8: 37 â 47.
dc.identifier.citedreferenceM. Ersboll, M.J. Andersen, N. Valeur, et al. The prognostic value of left atrial peak reservoir strain in acute myocardial infarction is dependent on left ventricular longitudinal function and left atrial size. Circ Cardiovasc Imaging. 2013; 6: 26 â 33.
dc.identifier.citedreferenceJ.T. Lonborg, T. Engstrom, J.E. Moller, et al. Left atrial volume and function in patients following ST elevation myocardial infarction and the association with clinical outcome: a cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging. 2013; 14: 118 â 127.
dc.identifier.citedreferenceM.E. Barnes, Y. Miyasaka, J.B. Seward, et al. Left atrial volume in the prediction of first ischemic stroke in an elderly cohort without atrial fibrillation. Mayo Clin Proc. 2004; 79: 1008 â 1014.
dc.identifier.citedreferenceE.J. Benjamin, R.B. D’Agostino, A.J. Belanger, P.A. Wolf, D. Levy. Left atrial size and the risk of stroke and death. The framingham heart study. Circulation. 1995; 92: 835 â 841.
dc.identifier.citedreferenceO. Bolca, O. Akdemir, M. Eren, et al. Left atrial maximum volume is a recurrence predictor in lone atrial fibrillation: an acoustic quantification study. Jpn Heart J. 2002; 43: 241 â 248.
dc.identifier.citedreferenceM.R. Di Tullio, R.L. Sacco, R.R. Sciacca, S. Homma. Left atrial size and the risk of ischemic stroke in an ethnically mixed population. Stroke. 1999; 30: 2019 â 2024.
dc.identifier.citedreferenceG.C. Flaker, K.A. Fletcher, R.M. Rothbart, J.L. Halperin, R.G. Hart. Clinical and echocardiographic features of intermittent atrial fibrillation that predict recurrent atrial fibrillation. Stroke prevention in atrial fibrillation (SPAF) investigators. Am J Cardiol. 1995; 76: 355 â 358.
dc.identifier.citedreferenceH. Kottkamp. Fibrotic atrial cardiomyopathy: a specific disease/syndrome supplying substrates for atrial fibrillation, atrial tachycardia, sinus node disease, AV node disease, and thromboembolic complications. J Cardiovasc Electrophysiol. 2012; 23: 797 â 799.
dc.identifier.citedreferenceT.S. Tsang, M.E. Barnes, K.R. Bailey, et al. Left atrial volume: important risk marker of incident atrial fibrillation in 1655 older men and women. Mayo Clin Proc. 2001; 76: 467 â 475.
dc.identifier.citedreferenceS.M. Vaziri, M.G. Larson, E.J. Benjamin, D. Levy. Echocardiographic predictors of nonrheumatic atrial fibrillation. The framingham heart study. Circulation. 1994; 89: 724 â 730.
dc.identifier.citedreferenceT.S. Tsang, M.E. Barnes, B.J. Gersh, K.R. Bailey, J.B. Seward. Risks for atrial fibrillation and congestive heart failure in patients./¼65 years of age with abnormal left ventricular diastolic relaxation. Am J Cardiol. 2004; 93: 54 â 58.
dc.identifier.citedreferenceT.S. Tsang, B.J. Gersh, C.P. Appleton, et al. Left ventricular diastolic dysfunction as a predictor of the first diagnosed nonvalvular atrial fibrillation in 840 elderly men and women. J Am Coll Cardiol. 2002; 40: 1636 â 1644.
dc.identifier.citedreferenceR. Beinart, V. Boyko, E. Schwammenthal, et al. Longâ term prognostic significance of left atrial volume in acute myocardial infarction. J Am Coll Cardiol. 2004; 44: 327 â 334.
dc.identifier.citedreferenceJ.E. Moller, G.S. Hillis, J.K. Oh, et al. Left atrial volume: a powerful predictor of survival after acute myocardial infarction. Circulation. 2003; 107: 2207 â 2212.
dc.identifier.citedreferenceF.L. Dini, L. Cortigiani, U. Baldini, et al. Prognostic value of left atrial enlargement in patients with idiopathic dilated cardiomyopathy and ischemic cardiomyopathy. Am J Cardiol. 2002; 89: 518 â 523.
dc.identifier.citedreferenceH. Kim, Y.K. Cho, D.H. Jun, et al. Prognostic implications of the NTâ ProBNP level and left atrial size in nonâ ischemic dilated cardiomyopathy. Circ J. 2008; 72: 1658 â 1665.
dc.identifier.citedreferenceM.G. Modena, N. Muia, F.A. Sgura, et al. Left atrial size is the major predictor of cardiac death and overall clinical outcome in patients with dilated cardiomyopathy: a longâ term followâ up study. Clin Cardiol. 1997; 20: 553 â 560.
dc.identifier.citedreferenceM.A. Quinones, B.H. Greenberg, H.A. Kopelen, et al. Echocardiographic predictors of clinical outcome in patients with left ventricular dysfunction enrolled in the SOLVD registry and trials: significance of left ventricular hypertrophy. Studies of left ventricular dysfunction. J Am Coll Cardiol. 2000; 35: 1237 â 1244.
dc.identifier.citedreferenceN. Sabharwal, R. Cemin, K. Rajan, et al. Usefulness of left atrial volume as a predictor of mortality in patients with ischemic cardiomyopathy. Am J Cardiol. 2004; 94: 760 â 763.
dc.identifier.citedreferenceP.V. Maddukuri, M.L. Vieira, S. DeCastro, et al. What is the best approach for the assessment of left atrial size? Comparison of various unidimensional and twoâ dimensional parameters with threeâ dimensional echocardiographically determined left atrial volume. J Am Soc Echocardiogr. 2006; 19: 1026 â 1032.
dc.identifier.citedreferenceY. Wang, J.M. Gutman, D. Heilbron, D. Wahr, N.B. Schiller. Atrial volume in a normal adult population by twoâ dimensional echocardiography. Chest. 1984; 86: 595 â 601.
dc.identifier.citedreferenceM. Whitlock, A. Garg, J. Gelow, T. Jacobson, C. Broberg. Comparison of left and right atrial volume by echocardiography versus cardiac magnetic resonance imaging using the areaâ length method. Am J Cardiol. 2010; 106: 1345 â 1350.
dc.identifier.citedreferenceE. Aune, M. Baekkevar, J. Roislien, O. Rodevand, J.E. Otterstad. Normal reference ranges for left and right atrial volume indexes and ejection fractions obtained with realâ time threeâ dimensional echocardiography. Eur J Echocardiogr. 2009; 10: 738 â 744.
dc.identifier.citedreferenceD. Peluso, L.P. Badano, D. Muraru, et al. Right atrial size and function assessed with threeâ dimensional and speckleâ tracking echocardiography in 200 healthy volunteers. Eur Heart J Cardiovasc Imaging. 2013; 14: 1106 â 1114.
dc.identifier.citedreferenceM.K. Poulsen, J.S. Dahl, J.E. Henriksen, et al. Left atrial volume index: relation to longâ term clinical outcome in type 2 diabetes. J Am Coll Cardiol. 2013; 62: 2416 â 2421.
dc.identifier.citedreferenceE. Donal, G.Y. Lip, M. Galderisi, et al. EACVI/EHRA expert consensus document on the role of multiâ modality imaging for the evaluation of patients with atrial fibrillation. Eur Heart J Cardiovasc Imaging. 2016; 17: 355 â 383.
dc.identifier.citedreferenceR.M. Lang, L.P. Badano, V. Morâ Avi, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr. 2015; 28: 1 â 39, e14.
dc.identifier.citedreferenceB. Olshansky, E.N. Heller, L.B. Mitchell, et al. Are transthoracic echocardiographic parameters associated with atrial fibrillation recurrence or stroke? Results from the Atrial fibrillation followâ up investigation of rhythm management (AFFIRM) study. J Am Coll Cardiol. 2005; 45: 2026 â 2033.
dc.identifier.citedreferenceD. Rusinaru, C. Tribouilloy, F. Grigioni, et al. Left atrial size is a potent predictor of mortality in mitral regurgitation due to flail leaflets: results from a large international multicenter study. Circ Cardiovasc Imaging. 2011; 4: 473 â 481.
dc.identifier.citedreferenceM.R. Wade, P.A. Chandraratna, C.L. Reid, S.L. Lin, S.H. Rahimtoola. Accuracy of nondirected and directed Mâ mode echocardiography as an estimate of left atrial size. Am J Cardiol. 1987; 60: 1208 â 1211.
dc.identifier.citedreferenceS.J. Lester, E.W. Ryan, N.B. Schiller, E. Foster. Best method in clinical practice and in research studies to determine left atrial size. Am J Cardiol. 1999; 84: 829 â 832.
dc.identifier.citedreferenceF. Loperfido, F. Pennestri, A. Digaetano, et al. Assessment of left atrial dimensions by cross sectional echocardiography in patients with mitral valve disease. Br Heart J. 1983; 50: 570 â 578.
dc.identifier.citedreferenceH. Vyas, K. Jackson, A. Chenzbraun. Switching to volumetric left atrial measurements: impact on routine echocardiographic practice. Eur J Echocardiogr. 2011; 12: 107 â 111.
dc.identifier.citedreferenceJ.S. Gottdiener, D.W. Kitzman, G.P. Aurigemma, A.M. Arnold, T.A. Manolio. Left atrial volume, geometry, and function in systolic and diastolic heart failure of persons or ¼ 65 years of age (the cardiovascular health study). Am J Cardiol. 2006; 97: 83 â 89.
dc.identifier.citedreferenceA. Rossi, M. Cicoira, L. Zanolla, et al. Determinants and prognostic value of left atrial volume in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2002; 40: 1425.
dc.identifier.citedreferenceY. Takemoto, M.E. Barnes, J.B. Seward, et al. Usefulness of left atrial volume in predicting first congestive heart failure in patients or ¼ 65 years of age with wellâ preserved left ventricular systolic function. Am J Cardiol. 2005; 96: 832 â 836.
dc.identifier.citedreferenceT. Tani, K. Tanabe, M. Ono, et al. Left atrial volume and the risk of paroxysmal atrial fibrillation in patients with hypertrophic cardiomyopathy. J Am Soc Echocardiogr. 2004; 17: 644 â 648.
dc.identifier.citedreferenceT.S. Tsang, W.P. Abhayaratna, M.E. Barnes, et al. Prediction of cardiovascular outcomes with left atrial size: is volume superior to area or diameter?. J Am Coll Cardiol. 2006; 47: 1018 â 1023.
dc.identifier.citedreferenceA.M. Pritchett, S.J. Jacobsen, D.W. Mahoney, et al. Left atrial volume as an index of left atrial size: a populationâ based study. J Am Coll Cardiol. 2003; 41: 1036 â 1043.
dc.identifier.citedreferenceC. Jenkins, K. Bricknell, T.H. Marwick. Use of realâ time threeâ dimensional echocardiography to measure left atrial volume: comparison with other echocardiographic techniques. J Am Soc Echocardiogr. 2005; 18: 991 â 997.
dc.identifier.citedreferenceA.M. Maceira, J. Cosinâ Sales, M. Roughton, S.K. Prasad, D.J. Pennell. Reference left atrial dimensions and volumes by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010; 12: 65.
dc.identifier.citedreferenceO. Rodevan, R. Bjornerheim, M. Ljosland, et al. Left atrial volumes assessed by threeâ and twoâ dimensional echocardiography compared to MRI estimates. Int J Card Imaging. 1999; 15: 397 â 410.
dc.identifier.citedreferenceJ. Stojanovska, P. Cronin, S. Patel, et al. Reference normal absolute and indexed values from ECGâ gated MDCT: left atrial volume, function, and diameter. AJR Am J Roentgenol. 2011; 197: 631 â 637.
dc.identifier.citedreferenceK. Ujino, M.E. Barnes, S.S. Cha, et al. Twoâ dimensional echocardiographic methods for assessment of left atrial volume. Am J Cardiol. 2006; 98: 1185 â 1188.
dc.identifier.citedreferenceG.P. Aurigemma, J.S. Gottdiener, A.M. Arnold, et al. Left atrial volume and geometry in healthy aging: the Cardiovascular Health Study. Circ Cardiovasc Imaging. 2009; 2: 282 â 289.
dc.identifier.citedreferenceL. Thomas, K. Levett, A. Boyd, et al. Compensatory changes in atrial volumes with normal aging: is atrial enlargement inevitable?. J Am Coll Cardiol. 2002; 40: 1630 â 1635.
dc.identifier.citedreferenceK. Yamaguchi, K. Tanabe, T. Tani, et al. Left atrial volume in normal Japanese adults. Circ J. 2006; 70: 285 â 288.
dc.identifier.citedreferenceY. Miyasaka, S. Tsujimoto, H. Maeba, et al. Left atrial volume by realâ time threeâ dimensional echocardiography: validation by 64â slice multidetector computed tomography. J Am Soc Echocardiogr. 2011; 24: 680 â 686.
dc.identifier.citedreferenceA. Rohner, M. Brinkert, N. Kawel, et al. Functional assessment of the left atrium by realâ time threeâ dimensional echocardiography using a novel dedicated analysis tool: initial validation studies in comparison with computed tomography. Eur J Echocardiogr. 2011; 12: 497 â 505.
dc.identifier.citedreferenceR. Artang, R.Q. Migrino, L. Harmann, M. Bowers, T.D. Woods. Left atrial volume measurement with automated border detection by 3â dimensional echocardiography: comparison with Magnetic Resonance Imaging. Cardiovasc Ultrasound. 2009; 7: 16.
dc.identifier.citedreferenceV. Morâ Avi, C. Yodwut, C. Jenkins, et al. Realâ time 3D echocardiographic quantification of left atrial volume: multicenter study for validation with CMR. JACC Cardiovasc Imaging. 2012; 5: 769 â 777.
dc.identifier.citedreferenceS. Caselli, E. Canali, M.L. Foschi, et al. Longâ term prognostic significance of threeâ dimensional echocardiographic parameters of the left ventricle and left atrium. Eur J Echocardiogr. 2010; 11: 250 â 256.
dc.identifier.citedreferenceI.W. Suh, J.M. Song, E.Y. Lee, et al. Left atrial volume measured by realâ time 3â dimensional echocardiography predicts clinical outcomes in patients with severe left ventricular dysfunction and in sinus rhythm. J Am Soc Echocardiogr. 2008; 21: 439 â 445.
dc.identifier.citedreferenceR.S. Vasan, M.G. Larson, D. Levy, et al. Doppler transmitral flow indexes and risk of atrial fibrillation (the Framingham heart study). Am J Cardiol. 2003; 91: 1079 â 1083.
dc.identifier.citedreferenceA.V. Mattioli, E. Tarabini Castellani, D. Vivoli, R. Molinari, G. Mattioli. Restoration of atrial function after atrial fibrillation of different etiological origins. Cardiology. 1996; 87: 205 â 211.
dc.identifier.citedreferenceS. Yuda, S. Nakatani, F. Isobe, Y. Kosakai, K. Miyatake. Comparative efficacy of the maze procedure for restoration of atrial contraction in patients with and without giant left atrium associated with mitral valve disease. J Am Coll Cardiol. 1998; 31: 1097 â 1102.
dc.identifier.citedreferenceY. Shizukuda, C.D. Bolan, D.J. Tripodi, et al. Significance of left atrial contractile function in asymptomatic subjects with hereditary hemochromatosis. Am J Cardiol. 2006; 98: 954 â 959.
dc.identifier.citedreferenceW.J. Manning, D.E. Leeman, P.J. Gotch, P.C. Come. Pulsed Doppler evaluation of atrial mechanical function after electrical cardioversion of atrial fibrillation. J Am Coll Cardiol. 1989; 13: 617 â 623.
dc.identifier.citedreferenceT. Oki, N. Fukuda, A. Iuchi, et al. Left atrial systolic performance in the presence of elevated left ventricular endâ diastolic pressure: evaluation by transesophageal pulsed Doppler echocardiography of left ventricular inflow and pulmonary venous flow velocities. Echocardiography. 1997; 14: 23 â 32.
dc.identifier.citedreferenceT. Oki, A. Iuchi, T. Tabata, et al. Transesophageal pulsed Doppler echocardiographic evaluation of left atrial systolic performance in hypertrophic cardiomyopathy: combined analysis of transmitral and pulmonary venous flow velocities. Clin Cardiol. 1997; 20: 47 â 54.
dc.identifier.citedreferenceH. Sakai, H. Kunichika, K. Murata, et al. Improvement of afterload mismatch of left atrial booster pump function with positive inotropic agent. J Am Coll Cardiol. 2001; 37: 270 â 277.
dc.identifier.citedreferenceA. Iuchi, T. Oki, T. Tabata, et al. Changes in pulmonary venous and transmitral flow velocity patterns after cardioversion of atrial fibrillation. J Cardiol. 1995; 25: 317 â 324.
dc.identifier.citedreferenceL. Thomas, K. Levett, A. Boyd, et al. Changes in regional left atrial function with aging: evaluation by Doppler tissue imaging. Eur J Echocardiogr. 2003; 4: 92 â 100.
dc.identifier.citedreferenceY. Inaba, S. Yuda, N. Kobayashi, et al. Strain rate imaging for noninvasive functional quantification of the left atrium: comparative studies in controls and patients with atrial fibrillation. J Am Soc Echocardiogr. 2005; 18: 729 â 736.
dc.identifier.citedreferenceR. Viannaâ Pinton, C.A. Moreno, C.M. Baxter, et al. Twoâ dimensional speckleâ tracking echocardiography of the left atrium: feasibility and regional contraction and relaxation differences in normal subjects. J Am Soc Echocardiogr. 2009; 22: 299 â 305.
dc.identifier.citedreferenceD.G. Kim, K.J. Lee, S. Lee, et al. Feasibility of twoâ dimensional global longitudinal strain and strain rate imaging for the assessment of left atrial function: a study in subjects with a low probability of cardiovascular disease and normal exercise capacity. Echocardiography. 2009; 26: 1179 â 1187.
dc.identifier.citedreferenceM. Cameli, M. Caputo, S. Mondillo, et al. Feasibility and reference values of left atrial longitudinal strain imaging by twoâ dimensional speckle tracking. Cardiovasc Ultrasound. 2009; 7: 6.
dc.identifier.citedreferenceT.F. Cianciulli, M.C. Saccheri, J.A. Lax, A.M. Bermann, D.E. Ferreiro. Twoâ dimensional speckle tracking echocardiography for the assessment of atrial function. World J Cardiol. 2010; 2: 163 â 170.
dc.identifier.citedreferenceM. Cameli, M. Lisi, M. Focardi, et al. Left atrial deformation analysis by speckle tracking echocardiography for prediction of cardiovascular outcomes. Am J Cardiol. 2012; 110: 264 â 269.
dc.identifier.citedreferenceL. Thomas, T. McKay, K. Byth, T.H. Marwick. Abnormalities of left atrial function after cardioversion: an atrial strain rate study. Heart. 2007; 93: 89 â 95.
dc.identifier.citedreferenceT. Wang, M. Wang, J.W. Fung, et al. Atrial strain rate echocardiography can predict success or failure of cardioversion for atrial fibrillation: a combined transthoracic tissue Doppler and transoesophageal imaging study. Int J Cardiol. 2007; 114: 202 â 209.
dc.identifier.citedreferenceC. Schneider, R. Malisius, K. Krause, et al. Strain rate imaging for functional quantification of the left atrium: atrial deformation predicts the maintenance of sinus rhythm after catheter ablation of atrial fibrillation. Eur Heart J. 2008; 29: 1397 â 1409.
dc.identifier.citedreferenceM. Mirza, G. Caracciolo, U. Khan, et al. Left atrial reservoir function predicts atrial fibrillation recurrence after catheter ablation: a twoâ dimensional speckle strain study. J Interv Card Electrophysiol. 2011; 31: 197 â 206.
dc.identifier.citedreferenceS.K. Saha, P.L. Anderson, G. Caracciolo, et al. Global left atrial strain correlates with CHADS2 risk score in patients with atrial fibrillation. J Am Soc Echocardiogr. 2011; 24: 506 â 512.
dc.identifier.citedreferenceK. O’Connor, J. Magne, M. Rosca, L.A. Pierard, P. Lancellotti. Left atrial function and remodelling in aortic stenosis. Eur J Echocardiogr. 2011; 12: 299 â 305.
dc.identifier.citedreferenceK. O’Connor, J. Magne, M. Rosca, L.A. Pierard, P. Lancellotti. Impact of aortic valve stenosis on left atrial phasic function. Am J Cardiol. 2010; 106: 1157 â 1162.
dc.identifier.citedreferenceM.C. Todaro, I. Choudhuri, M. Belohlavek, et al. New echocardiographic techniques for evaluation of left atrial mechanics. Eur Heart J Cardiovasc Imaging. 2012; 13: 973 â 984.
dc.identifier.citedreferenceN.P. Nikitin, K.K. Witte, S.D. Thackray, et al. Effect of age and sex on left atrial morphology and function. Eur J Echocardiogr. 2003; 4: 36 â 42.
dc.identifier.citedreferenceW.C. Tsai, C.H. Lee, C.C. Lin, et al. Association of left atrial strain and strain rate assessed by speckle tracking echocardiography with paroxysmal atrial fibrillation. Echocardiography. 2009; 26: 1188 â 1194.
dc.identifier.citedreferenceZ. Wang, H. Tan, M. Zhong, et al. Strain rate imaging for noninvasive functional quantification of the left atrium in hypertensive patients with paroxysmal atrial fibrillation. Cardiology. 2008; 109: 15 â 24.
dc.identifier.citedreferenceK.M. Modesto, A. Dispenzieri, S.A. Cauduro, et al. Left atrial myopathy in cardiac amyloidosis: implications of novel echocardiographic techniques. Eur Heart J. 2005; 26: 173 â 179.
dc.identifier.citedreferenceG. Di Salvo, P. Caso, R. Lo Piccolo, et al. Atrial myocardial deformation properties predict maintenance of sinus rhythm after external cardioversion of recentâ onset lone atrial fibrillation: a color Doppler myocardial imaging and transthoracic and transesophageal echocardiographic study. Circulation. 2005; 112: 387 â 395.
dc.identifier.citedreferenceA. D’Andrea, P. Caso, S. Romano, et al. Association between left atrial myocardial function and exercise capacity in patients with either idiopathic or ischemic dilated cardiomyopathy: a twoâ dimensional speckle strain study. Int J Cardiol. 2009; 132: 354 â 363.
dc.identifier.citedreferenceA. D’Andrea, P. Caso, S. Romano, et al. Different effects of cardiac resynchronization therapy on left atrial function in patients with either idiopathic or ischaemic dilated cardiomyopathy: a twoâ dimensional speckle strain study. Eur Heart J. 2007; 28: 2738 â 2748.
dc.identifier.citedreferenceJ.D. Kaplan, G.T. Evans Jr, E. Foster, D. Lim, N.B. Schiller. Evaluation of electrocardiographic criteria for right atrial enlargement by quantitative twoâ dimensional echocardiography. J Am Coll Cardiol. 1994; 23: 747 â 752.
dc.identifier.citedreferenceD. Quraini, N.G. Pandian, A.R. Patel. Threeâ dimensional echocardiographic analysis of right atrial volume in normal and abnormal hearts: comparison of biplane and multiplane methods. Echocardiography. 2012; 29: 608 â 613.
dc.identifier.citedreferenceS. Nedios, M. Tang, M. Roser, et al. Characteristic changes of volume and threeâ dimensional structure of the left atrium in different forms of atrial fibrillation: predictive value after ablative treatment. J Interv Card Electrophysiol. 2011; 32: 87 â 94.
dc.identifier.citedreferenceT. Kurotobi, K. Iwakura, K. Inoue, et al. The significance of the shape of the left atrial roof as a novel index for determining the electrophysiological and structural characteristics in patients with atrial fibrillation. Europace. 2011; 13: 803 â 808.
dc.identifier.citedreferenceJ. Romero, S.A. Husain, I. Kelesidis, et al. Detection of left atrial appendage thrombus by cardiac computed tomography in patients with atrial fibrillation: a metaâ analysis. Circ Cardiovasc Imaging. 2013; 6: 185 â 194.
dc.identifier.citedreferenceA. Hamdan, K. Charalampos, R. Roettgen, et al. Magnetic resonance imaging versus computed tomography for characterization of pulmonary vein morphology before radiofrequency catheter ablation of atrial fibrillation. Am J Cardiol. 2009; 104: 1540 â 1546.
dc.identifier.citedreferenceR.S. Oakes, T.J. Badger, E.G. Kholmovski, et al. Detection and quantification of left atrial structural remodeling with delayedâ enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation. 2009; 119: 1758 â 1767.
dc.identifier.citedreferenceL.H. Ling, A.J. McLellan, A.J. Taylor, et al. Magnetic resonance postâ contrast T1 mapping in the human atrium: validation and impact on clinical outcome after catheter ablation for atrial fibrillation. Heart Rhythm. 2014; 11: 1551 â 1559.
dc.identifier.citedreferenceR. Beinart, I.M. Khurram, S. Liu, et al. Cardiac magnetic resonance T1 mapping of left atrial myocardium. Heart Rhythm. 2013; 10: 1325 â 1331.
dc.identifier.citedreferenceJ.L. Harrison, C. Sohns, N.W. Linton, et al. Repeat left atrial catheter ablation: cardiac magnetic resonance prediction of endocardial voltage and gaps in ablation lesion sets. Circ Arrhythm Electrophysiol. 2015; 8: 270 â 278.
dc.identifier.citedreferenceN.F. Marrouche, D. Wilber, G. Hindricks, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA. 2014; 311: 498 â 506.
dc.identifier.citedreferenceN. Akoum, C. McGann, G. Vergara, et al. Atrial fibrosis quantified using late gadolinium enhancement MRI is associated with sinus node dysfunction requiring pacemaker implant. J Cardiovasc Electrophysiol. 2012; 23: 44 â 50.
dc.identifier.citedreferenceM. Daccarett, T.J. Badger, N. Akoum, et al. Association of left atrial fibrosis detected by delayedâ enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. J Am Coll Cardiol. 2011; 57: 831 â 838.
dc.identifier.citedreferenceC. Mahnkopf, T.J. Badger, N.S. Burgon, et al. Evaluation of the left atrial substrate in patients with lone atrial fibrillation using delayedâ enhanced MRI: implications for disease progression and response to catheter ablation. Heart Rhythm. 2010; 7: 1475 â 1481.
dc.identifier.citedreferenceJ.J. Bax, N.A. Marsan, V. Delgado. Nonâ invasive imaging in atrial fibrillation: focus on prognosis and catheter ablation. Heart. 2015; 101: 94 â 100.
dc.identifier.citedreferenceP. Bhagirath, A.W. van der Graaf, R. Karim, et al. Multimodality imaging for patient evaluation and guidance of catheter ablation for atrial fibrillation â current status and future perspective. Int J Cardiol. 2014; 175: 400 â 408.
dc.identifier.citedreferenceD.C. Peters, J.V. Wylie, T.H. Hauser, et al. Recurrence of atrial fibrillation correlates with the extent of postâ procedural late gadolinium enhancement: a pilot study. JACC Cardiovasc Imaging. 2009; 2: 308 â 316.
dc.identifier.citedreferenceC.J. McGann, E.G. Kholmovski, R.S. Oakes, et al. New magnetic resonance imagingâ based method for defining the extent of left atrial wall injury after the ablation of atrial fibrillation. J Am Coll Cardiol. 2008; 52: 1263 â 1271.
dc.identifier.citedreferenceD.C. Peters, J.V. Wylie, T.H. Hauser, et al. Detection of pulmonary vein and left atrial scar after catheter ablation with threeâ dimensional navigatorâ gated delayed enhancement MR imaging: initial experience. Radiology. 2007; 243: 690 â 695.
dc.identifier.citedreferenceA. Arujuna, R. Karim, D. Caulfield, et al. Acute pulmonary vein isolation is achieved by a combination of reversible and irreversible atrial injury after catheter ablation: evidence from magnetic resonance imaging. Circ Arrhythm Electrophysiol. 2012; 5: 691 â 700.
dc.identifier.citedreferenceC. Sohns, R. Karim, J. Harrison, et al. Quantitative magnetic resonance imaging analysis of the relationship between contact force and left atrial scar formation after catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2014; 25: 138 â 145.
dc.identifier.citedreferenceF. Bisbal, E. Guiu, A. Berruezo, et al. MRI guided approach to localize and ablate gaps in repeated AF ablation procedure: a pilot study. J Am Coll Cardiol. 2013; 61: E365.
dc.identifier.citedreferenceK. Rajappan, P.M. Kistler, M.J. Earley, et al. Acute and chronic pulmonary vein reconnection after atrial fibrillation ablation: a prospective characterization of anatomical sites. Pacing Clin Electrophysiol. 2008; 31: 1598 â 1605.
dc.identifier.citedreferenceR.J. Hunter, D.A. Jones, R. Boubertakh, et al. Diagnostic accuracy of cardiac magnetic resonance imaging in the detection and characterization of left atrial catheter ablation lesions: a multicenter experience. J Cardiovasc Electrophysiol. 2013; 24: 396 â 403.
dc.identifier.citedreferenceC. Piorkowski, G. Hindricks, D. Schreiber, et al. Electroanatomic reconstruction of the left atrium, pulmonary veins, and esophagus compared with the â true anatomyâ on multislice computed tomography in patients undergoing catheter ablation of atrial fibrillation. Heart Rhythm. 2006; 3: 317 â 327.
dc.identifier.citedreferenceJ.B. Morton, P. Sanders, J.K. Vohra, et al. Effect of chronic right atrial stretch on atrial electrical remodeling in patients with an atrial septal defect. Circulation. 2003; 107: 1775 â 1782.
dc.identifier.citedreferenceP. Sanders, J.B. Morton, P.M. Kistler, et al. Electrophysiological and electroanatomic characterization of the atria in sinus node disease: evidence of diffuse atrial remodeling. Circulation. 2004; 109: 1514 â 1522.
dc.identifier.citedreferenceP. Sanders, J.B. Morton, N.C. Davidson, et al. Electrical remodeling of the atria in congestive heart failure: electrophysiological and electroanatomic mapping in humans. Circulation. 2003; 108: 1461 â 1468.
dc.identifier.citedreferenceA. Verma, O.M. Wazni, N.F. Marrouche, et al. Preâ existent left atrial scarring in patients undergoing pulmonary vein antrum isolation: an independent predictor of procedural failure. J Am Coll Cardiol. 2005; 45: 285 â 292.
dc.identifier.citedreferenceL.W. Lo, C.T. Tai, Y.J. Lin, et al. Progressive remodeling of the atrial substrateâ a novel finding from consecutive voltage mapping in patients with recurrence of atrial fibrillation after catheter ablation. J Cardiovasc Electrophysiol. 2007; 18: 258 â 265.
dc.identifier.citedreferenceA.G. Brooks, M.K. Stiles, J. Laborderie, et al. Outcomes of longâ standing persistent atrial fibrillation ablation: a systematic review. Heart Rhythm. 2010; 7: 835 â 846.
dc.identifier.citedreferenceT.J. Bunch, H.T. May, T.L. Bair, et al. Fiveâ year outcomes of catheter ablation in patients with atrial fibrillation and left ventricular systolic dysfunction. J Cardiovasc Electrophysiol. 2015; 26: 363 â 370.
dc.identifier.citedreferenceT.F. Chao, Y.J. Lin, H.M. Tsao, et al. CHADS(2) and CHA(2)DS(2)â VASc scores in the prediction of clinical outcomes in patients with atrial fibrillation after catheter ablation. J Am Coll Cardiol. 2011; 58: 2380 â 2385.
dc.identifier.citedreferenceT.F. Chao, H.M. Tsao, Y.J. Lin, et al. Clinical outcome of catheter ablation in patients with nonparoxysmal atrial fibrillation: results of 3â year followâ up. Circ Arrhythm Electrophysiol. 2012; 5: 514 â 520.
dc.identifier.citedreferenceS. Combes, S. Jacob, N. Combes, et al. Predicting favourable outcomes in the setting of radiofrequency catheter ablation of longâ standing persistent atrial fibrillation: a pilot study assessing the value of left atrial appendage peak flow velocity. Arch Cardiovasc Dis. 2013; 106: 36 â 43.
dc.identifier.citedreferenceD.H. Cooper, M.N. Faddis. Catheter ablation of atrial fibrillation: longâ term outcomes. Expert Rev Cardiovasc Ther. 2011; 9: 567 â 570.
dc.identifier.citedreferenceA.A. Hussein, W.I. Saliba, D.O. Martin, et al. Natural history and longâ term outcomes of ablated atrial fibrillation. Circ Arrhythm Electrophysiol. 2011; 4: 271 â 278.
dc.identifier.citedreferenceV. Jacobs, H.T. May, T.L. Bair, et al. The impact of risk score (CHADS2 versus CHA2DS2â VASc) on longâ term outcomes after atrial fibrillation ablation. Heart Rhythm. 2015; 12: 681 â 686.
dc.identifier.citedreferenceJ. Kornej, G. Hindricks, J. Kosiuk, et al. Comparison of CHADS2, R2CHADS2, and CHA2DS2â VASc scores for the prediction of rhythm outcomes after catheter ablation of atrial fibrillation: the Leipzig Heart Center AF Ablation Registry. Circ Arrhythm Electrophysiol. 2014; 7: 281 â 287.
dc.identifier.citedreferenceJ. Kornej, G. Hindricks, M.B. Shoemaker, et al. The APPLE score: a novel and simple score for the prediction of rhythm outcomes after catheter ablation of atrial fibrillation. Clin Res Cardiol. 2015; 104: 871 â 876.
dc.identifier.citedreferenceJ. Kosiuk, O.A. Breithardt, K. Bode, et al. The predictive value of echocardiographic parameters associated with left ventricular diastolic dysfunction on shortâ and longâ term outcomes of catheter ablation of atrial fibrillation. Europace. 2014; 16: 1168 â 1174.
dc.identifier.citedreferenceD.G. Wyse, I.C. Van Gelder, P.T. Ellinor, et al. Lone atrial fibrillation: does it exist?. J Am Coll Cardiol. 2014; 63: 1715 â 1723.
dc.identifier.citedreferenceK. Chilukuri, D. Dalal, S. Gadrey, et al. A prospective study evaluating the role of obesity and obstructive sleep apnea for outcomes after catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2010; 21: 521 â 525.
dc.identifier.citedreferenceK. Jongnarangsin, A. Chugh, E. Good, et al. Body mass index, obstructive sleep apnea, and outcomes of catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2008; 19: 668 â 672.
dc.identifier.citedreferenceK. Lemola, B. Desjardins, M. Sneider, et al. Effect of left atrial circumferential ablation for atrial fibrillation on left atrial transport function. Heart Rhythm. 2005; 2: 923 â 928.
dc.identifier.citedreferenceK.E. Steel, J. Romanâ Gonzalez, C.L. O’Bryan IV. Images in cardiovascular medicine. Severe left atrial edema and heart failure after atrial fibrillation ablation. Circulation. 2006; 113: e659.
dc.identifier.citedreferenceS. Kumar, A.W. Teh, C. Medi, et al. Atrial remodeling in varying clinical substrates within beating human hearts: relevance to atrial fibrillation. Prog Biophys Mol Biol. 2012; 110: 278 â 294.
dc.identifier.citedreferenceA.W. Teh, P.M. Kistler, G. Lee, et al. Electroanatomic remodeling of the left atrium in paroxysmal and persistent atrial fibrillation patients without structural heart disease. J Cardiovasc Electrophysiol. 2012; 23: 232 â 238.
dc.identifier.citedreferenceC. McGann, N. Akoum, A. Patel, et al. Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circ Arrhythm Electrophysiol. 2014; 7: 23 â 30.
dc.identifier.citedreferenceA.W. Teh, J.M. Kalman, G. Lee, et al. Electroanatomic remodelling of the pulmonary veins associated with age. Europace. 2012; 14: 46 â 51.
dc.identifier.citedreferenceT.J. Bunch, J.P. Weiss, B.G. Crandall, et al. Longâ term clinical efficacy and risk of catheter ablation for atrial fibrillation in octogenarians. Pacing Clin Electrophysiol. 2010; 33: 146 â 152.
dc.identifier.citedreferenceR. Kennedy, H. Oral. Catheter ablation of atrial fibrillation in the elderly: does the benefit outweigh the risk?. Expert Rev Cardiovasc Ther. 2013; 11: 697 â 704.
dc.identifier.citedreferenceF. Kusumoto, K. Prussak, M. Wiesinger, T. Pullen, C. Lynady. Radiofrequency catheter ablation of atrial fibrillation in older patients: outcomes and complications. J Interv Card Electrophysiol. 2009; 25: 31 â 35.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.