Show simple item record

Hormonal and Metabolic Response to Operative Stress in the Neonate

dc.contributor.authorSchmeling, David J.
dc.contributor.authorCoran, Arnold G.
dc.date.accessioned2018-02-05T16:27:06Z
dc.date.available2018-02-05T16:27:06Z
dc.date.issued1991-03
dc.identifier.citationSchmeling, David J.; Coran, Arnold G. (1991). "Hormonal and Metabolic Response to Operative Stress in the Neonate." Journal of Parenteral and Enteral Nutrition 15(2): 215-238.
dc.identifier.issn0148-6071
dc.identifier.issn1941-2444
dc.identifier.urihttps://hdl.handle.net/2027.42/141075
dc.publisherWiley Periodicals, Inc.
dc.publisherSAGE Publications
dc.titleHormonal and Metabolic Response to Operative Stress in the Neonate
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbsecondlevelPediatrics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumSection of Pediatric Surgery, Mott Children’s Hospital and University of Michigan Medical School, Ann Arbor, Michigan
dc.contributor.affiliationumSection of Pediatric Surgery, Mott Children’s Hospital and University of Michigan Medical School, Ann Arbor, Michigan
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141075/1/jpen0215.pdf
dc.identifier.doi10.1177/0148607191015002215
dc.identifier.sourceJournal of Parenteral and Enteral Nutrition
dc.identifier.citedreferenceMcMenamy RM, Shoemaker WC, Richmond JE, et al: Uptake and metabolism of amino acids by the dog liver perfused in situ. Am J Physiol 202: 407 – 414, 1962
dc.identifier.citedreferenceWilliamson JR: IN Gluconeogenesis, Its Regulation in Mammalian Species, Hanson RW, Mehlman MA (eds). Wiley, New York, 1976, pp 165 – 220
dc.identifier.citedreferenceShelley HJ: Carbohydrate reserves in the newborn infant. Br Med J 1: 273 – 275, 1964
dc.identifier.citedreferenceHeard CRC, Stewart RJC: Protein malnutrition and disorders of the endocrine glands: Biochemical changes. Acta Endocrinol Suppl 51: 1277, 1960
dc.identifier.citedreferenceBaird JD, Farquhar JW: Insulin‐secreting capacity in newborn infants of normal and diabetic women. Lancet 1: 71 – 74, 1962
dc.identifier.citedreferenceBowie MD, Mulligan PB, Schwartz R.: Intravenous glucose tolerance in the normal newborn infant: The effects of a double dose of glucose and insulin. Pediatrics 31: 590, 1963
dc.identifier.citedreferenceHahn P., Kddovsky O.: Utilization of Nutrients during Postnatal Development. Oxford. 1966, p 78
dc.identifier.citedreferenceMcCance RA, Strangeways WMB: Protein catabolism and oxygen consumption during starvation in infants, young adults, and old men. Br J Nutr 8: 21 – 32, 1954
dc.identifier.citedreferenceDole VP: A relation between nonesterified fatty acids in plasma and the metabolism of glucose. J Clin Invest 35: 150 – 154, 1956
dc.identifier.citedreferenceRandle PJ, Garland PB, Hales CN, et al: The glucose fatty‐acid cycle: Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1: 785 – 789, 1963
dc.identifier.citedreferenceElphick MC: Some aspects of fat and carbohydrate metabolism in the newborn. PhD Thesis, London, 1972
dc.identifier.citedreferenceWadstrom LB: Plasma lipids and surgical trauma: A methodological, experimental and clinical study. Acta Chir Scand Suppl 238: 1 – 19, 1959
dc.identifier.citedreferenceGordon RS, Cherkes A.: Unesterified fatty acid in human blood plasma. J Clin Invest 35: 206 – 212, 1956
dc.identifier.citedreferenceSteinberg D.: Catecholamine stimulation of fat mobilization and its metabolic consequences. Pharmacol Reviews 18: 217 – 235, 1966
dc.identifier.citedreferenceVaughan M., Steinberg D.: Effect of hormones on lipolysis and esterification of free fatty acids during incubation of adipose tissue in vitro. J Lipid Res 4: 193 – 199, 1963
dc.identifier.citedreferenceSteinberg D.: Fatty acid mobilization‐ Mechanisms of regulation and metabolic consequences. IN The Control of Lipid Metabolism, Grant JK (ed). New York, Academic Press, Inc., 1963, pp 111 – 143
dc.identifier.citedreferenceCarlson LA, Liljedahl SO: Lipid metabolism and trauma. Acta Med Scand 173: 25 – 34, 1963
dc.identifier.citedreferenceBogdonoff MD, Estes EH, Trout D.: Acute effect of physiologic stimuli upon plasma nonesterified fatty acid level. Proc Soc Exp Biol Med 100: 503 – 504, 1959
dc.identifier.citedreferenceFomon SJ, Haschke F., Zeigler EE, et al: Body composition of reference children from birth to age 10 years. Am J Clin Nutr 35: 1169 – 1175, 1982
dc.identifier.citedreferenceBessey PQ, Watters JM, Aoki TT, Wilmore DW: Combined hormonal infusion stimulates the metabolic response to injury. Ann Surg 200: 264 – 281, 1984
dc.identifier.citedreferenceIm MJC, Hoopes JE: Energy metabolism in healing skin wounds. J Surg Res 10: 459 – 466, 1970
dc.identifier.citedreferenceWilmore DW: Glucose metabolism following severe injury. J Trauma 21: 705 – 707, 1981
dc.identifier.citedreferenceElliott M., Albert Kgmm: The hormonal and metabolic response to surgery and trauma. IN: New aspects of clinical nutrition. Kleinberger G, Deutsch E. (eds). Karger, Basel, 1983 pp 247 – 270
dc.identifier.citedreferenceMoyer E., Cerra F., Chenier R., et al: Multiple systems organ failure. VI. Death predictors in the trauma‐septic state‐the most critical determinants. J Trauma 21: 862 – 869, 1981
dc.identifier.citedreferenceKerri‐Szanto M.: Demand analgesia. Br J Anesthesia 55: 919 – 920, 1983
dc.identifier.citedreferenceBrandt MR, Fernandez A., Mordhurst R., et al: Epidural analgesia improves postoperative nitrogen balance. Br Med J 1: 1106 – 1108, 1978
dc.identifier.citedreferenceKehlet H.: Stress‐free anaesthesia and surgery. Acta Anesthes Scand 23: 503 – 504, 1979
dc.identifier.citedreferenceRackow H., Salanitre E., Green LT: Frequency of cardiac arrest associated with anesthesia in infants and children. Pediatrics 28: 697 – 704, 1961
dc.identifier.citedreferenceSchweiss JF, Pennington DG: Anesthetic management of neonates undergoing pallative operations for congenital heart defects. Clev Clin Q 48: 153 – 165, 1981
dc.identifier.citedreferenceLiebig J.: Die organisuhe chemie. IN: Ihrer anwendung auf physiologie und pathologie. Braunschvweig, Wiley and Putnam, New York, 1848
dc.identifier.citedreferenceBauer J.: Ilbur Zerretzungsvorgange in thierkirper unter dem kinflusse von blutentziehunger. Zeitschr Biol 8: 567 – 603, 1872
dc.identifier.citedreferenceMalcolm JD: The physiology of death from traumatic fever; a study in abdominal surgery. Lancet 1: 408 – 410, 460–462. 519–521, 1893
dc.identifier.citedreferencer 14. Aub JC, Wu H.: Studies in experimental traumatic shock II: Chemical changes in the blood. Am J Physiol 54: 416 – 424, 1920
dc.identifier.citedreferenceBernard C.: Chiens rendus diabetiques. Compt Rend Soc De Biol 1: 60 – 63, 1849
dc.identifier.citedreferenceBernard C.: Lecons de physiologie experimentelle au college de France. Paris, 1855
dc.identifier.citedreferenceBernard C.: Lecons de physiologie operatoire. JB Balliere Et Fils. Paris, 1879, pp 640
dc.identifier.citedreferenceBrown‐Sequard: Des effets produits chez l’homme par des injections soucutoanees d’un liquide retire des testicules frais de cobage et de chien. Compt Rend Soc De Biol 9: 415 – 454, 1889
dc.identifier.citedreferenceBrown‐Sequard: Des effets produits chez l’homme par des injections soucutoanees d’un liquid retire des testicules frais de cobage et de chien. Lancet 2: 105 – 107, 1889
dc.identifier.citedreferencePringle H., Maunsell RCB, Pringle S.: Clinical effects of ether anaesthesia on renal activity. Br Med J 2: 542 – 543, 1905
dc.identifier.citedreferenceEvans GH: The abuse of normal salt solutions. JAMA 57: 2126 – 2127, 1911
dc.identifier.citedreferenceCannon WB: The Shattuck Lecture. The physiological factors concerned in surgical shock. Boston Med Surg J CLXXVI: 859 – 867, 1917
dc.identifier.citedreferenceCannon WB: A consideration of the nature of wound shock. JAMA 70: 611 – 617, 1918
dc.identifier.citedreferenceCannon WB: The Wisdom of the Body. Norton and Co., New York, 1932
dc.identifier.citedreferenceCuthbertson DP: The influence of prolonged muscular rest on metabolism. Biochem J 23: 1328 – 1345, 1929
dc.identifier.citedreferenceCuthbertson DP: Observations on the disturbance of metabolism produced by injury to the limbs. Q J Med 1: 233 – 246, 1932
dc.identifier.citedreferenceCuthbertson DP, Munro AN: A study of the effect of overfeeding on the protein metabolism of man. Biochem J 31: 694 – 705, 1937
dc.identifier.citedreferenceHayes MH, Coller FA: The neuroendocrine control of water and electrolyte excretion during surgical anesthesia. Surg Gynecol Obstet 95: 142 – 149, 1952
dc.identifier.citedreferenceSelye H.: The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol 6: 117 – 230, 1946
dc.identifier.citedreferenceMoore FD, Ball MR: The Metabolic Response to Surgery. Charles C Thomas Co., Springfield, 1952
dc.identifier.citedreferenceSandberg AA, Elk‐Nes K., Sammels LT, et al: The effects of surgery on the blood levels and metabolism of 17‐hydroxy‐corticosteroids in man. J Clin Invest 33: 1509 – 1516, 1954
dc.identifier.citedreferenceHume DM, Egdahl RH: The importance of the brain in the endocrine response to injury. Ann Surg 150: 697 – 712, 1959
dc.identifier.citedreferencevon Bezold A.: Ztschr Wissensch Zool 8: 487, 1857
dc.identifier.citedreferencevon Bezold A.: Ztschr Wissensch Zool 9: 240, 1858
dc.identifier.citedreferenceYlppo A.: Neugebofenen‐, Hunger‐und intoxikatations acidosis in ihren Beziehungen zueinander. Ztschr Kindrh 14: 268 – 448, 1916
dc.identifier.citedreferenceMarples E., Lippard VW: Acid‐base balance of newborn infants. II. Consideration of the low alkaline reserve of normal new‐born infants. Am J Dis Child 44: 31 – 39, 1932
dc.identifier.citedreferenceMarples E., Lippard VW: Acid‐base balance of newborn infants. III. Influence of cowsmilk on the acid base balance of the blood of new‐born infants. Am J Dis Child 45: 294 – 306, 1933
dc.identifier.citedreferenceMarriott WM: Some phases of the pathology of nutrition in infancy. Harvey Lecture 15: 121 – 151, 1919
dc.identifier.citedreferenceMoore RM: Acute intestinal obstruction in infants and children: Physiological and pathological considerations. Mississippi Doctor 23: 554 – 556, 1946
dc.identifier.citedreferenceSantulli TV: Intestinal obstruction in the newborn infant. J Pediatr 44: 317 – 337, 1954
dc.identifier.citedreferenceRickham PP: The metabolic response to neonatal surgery. Harvard University Press, Cambridge, 1957
dc.identifier.citedreferenceSuits GS, Bottsford JE Jr: The metabolic response to trauma. Resident Staff Phys 33: 21 – 29, 1987
dc.identifier.citedreferenceAnand KJS, Hickey PR: Pain and its effects in the human neonate and fetus. N Engl J Med 317: 1321 – 1329, 1987
dc.identifier.citedreferenceValman HB, Pearson JF: What the fetus feels. Br Med J 280: 233 – 234, 1980
dc.identifier.citedreferenceAnand KJS: The stress response to surgical trauma: From physiological basis to therapeutic implications. Proc Food Nutr Sci 10: 67 – 132, 1986
dc.identifier.citedreferenceAtwelt SF, Kuhar MJ: Distribution and physiological significance of opoid receptors in the brain. Br Med Bull 39: 47 – 52, 1983
dc.identifier.citedreferenceDubois M., Pickar D., Cohen M., et al: Surgical stress in humans is accompanied by an increase in plasma B‐endorphin immunoreactivity. Life Sci 29: 1249 – 1254, 1981
dc.identifier.citedreferenceCohen MR, Pickar D., Dubois M.: Role of the endogenous opioid system in the human stress response. Psychiatr Clin North Am 6: 457 – 471, 1983
dc.identifier.citedreferencePickar D., Cohen MR, Dubois M.: The relationship of plasma cortisol and B‐endorphin immunoreactivity to surgical stress and postoperative analgesic requirement. Gen Hosp Psychiatry 5: 93 – 98, 1983
dc.identifier.citedreferenceCohen MR, Pickar D., Dubois M., et al: Stress‐induced plasma beta‐endorphin immunoreactivity may predict postoperative morphine usage. Psych Res 6: 7 – 12, 1982
dc.identifier.citedreferenceMcIntosh TK, Bush HL, Palter M., et al: Prolonged disruption of plasma beta‐endorphin dynamics following surgery. J Surg Res 38: 210 – 215, 1985
dc.identifier.citedreferenceGuillemin R., Vargo T., Rossier J., et al: Beta‐endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland. Science 197: 1367 – 1369, 1971
dc.identifier.citedreferenceVan Loon GR, Appel NM, Ho D.: B‐endorphin induced stimulation of central sympathetic outflow: B‐endorphin increases plasma concentrations of epinephrine, norepinephrine, and dopamine in rats. Endocrinology 109: 46 – 53, 1981
dc.identifier.citedreferenceFeldman M., Kiser RS, Unger RH, et al: Beta‐endorphin and the endocrine pancreas. N Engl J Med 308: 349 – 353, 1983
dc.identifier.citedreferenceHanbauer I., Kelly GD, Saiani L., et al: [Met5]‐enkephalin‐like peptides of the adrenal medulla: Release by nerve stimulation and functional implications. Peptides 3: 469 – 473, 1982
dc.identifier.citedreferenceBockman DE, Kirby ML: Neural crest interactions in the development of the immune system. J Immunol 135 (suppl): 766 – 768, 1985
dc.identifier.citedreferenceSmith EM, Harbour‐McMenamin D., Blalock JE: Lymphocyte production of endorphins and endorphin‐mediated immunoregulatory activity. J Immunol 135 (Suppl): 779 – 782, 1985
dc.identifier.citedreferenceRoszman TL, Jackson JC, Cross RJ, et al: Neuroanatomic and neurotransmitter influences on immune function. J Immunol 135 (Suppl): 769 – 772, 1985
dc.identifier.citedreferenceHoladam JW: Opiate antagonists in shock and trauma. Am J Emerg Med 2: 8 – 12, 1983
dc.identifier.citedreferenceAmaral JF, Gann DS: The effects of naloxone on glucose uptake and metabolism in the isolated perfused hindlimb of the rat. J Trauma 25: 1119 – 1125, 1985
dc.identifier.citedreferenceDeitch EA, Xu D., McIntyre‐Bridges R.: Opioids modulate human neutrophil and lymphocyte function: Thermal injury alters plasma B‐endorphin levels. Surgery 104: 41 – 48, 1988
dc.identifier.citedreferenceMichie HR, Spriggs DR, Manogue KR, et al: Tumor necrosis factor and endotoxin induce similar metabolic responses in human beings. Surgery 104: 280 – 286, 1988
dc.identifier.citedreferenceBeutler B., Krochin N., Milsark IW, et al: Control of cachectin (tumor necrosis factor) synthesis: Mechanisms of endotoxin resistance. Science 232: 977 – 980, 1986
dc.identifier.citedreferenceBeutler B., Cerami A.: Cachectin: More than a tumor necrosis factor. N Engl J Med 316: 379 – 385, 1987
dc.identifier.citedreferenceWinters AJ, Oliver C., Colston C., et al: Plasma ACTH levels in the human fetus and neonate as related to age and paturition. J Clin Endocrinol Metab 39: 269 – 273, 1974
dc.identifier.citedreferenceArai K., Yanaihara T., Okinaga S.: Adrenocorticotropic hormone in human fetal blood at delivery. Am J Obstet Gynecol 125: 1136 – 1140, 1976
dc.identifier.citedreferenceHindmarsh KW, Sankaran K.: Endorphins and the neonate. Can Med Assoc J 132: 331 – 334, 1985
dc.identifier.citedreferenceHindmarsh KW, Sankaran K., Watson VG: Plasma beta‐endorphin concentrations in neonates associated with acute stress. Dev Pharmacol Ther 7: 198 – 204, 1984
dc.identifier.citedreferenceGautray JP, Jolivet A., Vielh JP, et al: Presence of immunoassay‐able beta‐endorphin in human amniotic fluid: Elevation in cases of fetal distress. Am J Obstet Gynecol 129: 211 – 212, 1979
dc.identifier.citedreferencePuolakka J., Kaupila A., Leppaluoto J., et al: Elevated beta‐endorphin immunoreactivity in umbilical cord blood after complicated delivery. Acta Obstet Gynecol Scand 61: 513 – 514, 1982
dc.identifier.citedreferenceFurman WL, Menke JA, Barson WJ, et al: Continuous naloxone infusion in two neonates with septic shock. J Pediatr 105: 649 – 651, 1984
dc.identifier.citedreferenceSankaran K., Hindmarsh KW, Watson VG: Plasma beta endorphin concentration in infants with apneic spells. Am J Perinatol 1: 331 – 334, 1984
dc.identifier.citedreferenceKuich TE, Zimmerman D.: Could endorphins be implicated in sudden‐infant‐death‐syndrome. N Engl J Med 304: 973, 1981
dc.identifier.citedreferenceDeMaria EJ, Lilly MP, Gann DS: Potentiated hormonal responses in a model of traumatic injury. J Surg Res 43: 45 – 51, 1987
dc.identifier.citedreferenceNewsome HH, Rose JC: The response of adrenocorticotrophic hormone and growth hormone to surgical stress. J Clin Endocrinol 33: 481 – 487, 1971
dc.identifier.citedreferenceGann DS, Lilly MP: The neuroendocrine response to multiple trauma. World J Surg 7: 101 – 118, 1983
dc.identifier.citedreferenceBoix‐Ocha J., Martinez Ibanez V., Potau N., et al: Cortisol response to surgical stress in neonates. Pediatr Surg Int 2: 267 – 270, 1987
dc.identifier.citedreferenceHalter JB, Pflug AE, Porte D.: Mechanism of plasma catecholamine increases during surgical stress in man. J Clin Endocrinol Metab 45: 936 – 944, 1977
dc.identifier.citedreferenceWatters JM, Bessey PQ, Dinarello CA, et al: Both inflammatory and endocrine mediators stimulate host response to sepsis. Arch Surg 121: 179 – 190, 1986
dc.identifier.citedreferenceFinley RJ, Inculet RI, Pace R., et al: Major operative trauma increases peripheral amino acid release during the steady‐state infusion of total parenteral nutrition in man. Surgery 99: 491 – 499, 1986
dc.identifier.citedreferenceHulton N., Johnson DJ, Smith RJ, et al: Hormonal blockade modifies posttraumatic protein catabolism. J Surg Res 39: 310 – 315, 1985
dc.identifier.citedreferenceNakai T., Yamada R.: The secretion of catecholamines in newborn babies with special reference to fetal distress. J Perinatol Med 6: 39 – 45, 1978
dc.identifier.citedreferenceTalbert JL, Karmen A., Graystone JE, et al: Assessment of the infants response to stress. Surgery 61: 626 – 633, 1967
dc.identifier.citedreferenceAnand KJS, Brown MJ, Causon RC, et al: Can the human neonate mount an endocrine and metabolic response to surgery? J Pediatr Surg 20: 41 – 48, 1985
dc.identifier.citedreferenceAnand KJS, Brown MJ, Bloom SR, et al: Studies on the hormonal regulation of fuel metabolism in the human newborn infant undergoing anesthesia and surgery. Hormone Res 22: 115 – 128, 1985
dc.identifier.citedreferenceAnand KJS, Sippell WG, Aynsley‐Green A.: Randomized trial of fentanyl anaesthesia in preterm babies undergoing surgery: Effects on the stress response. Lancet 8527: 243 – 248, 1987
dc.identifier.citedreferenceAnand KJS, Sippel WG, Schofield NM, et al: Does halothane anaesthesia decrease the metabolic and endocrine stress responses of newborn infants undergoing operation? Br Med J 296: 668 – 672, 1988
dc.identifier.citedreferenceStjernstrom H., Jorfeldt L., Wiklund L.: The influence of abdominal surgical trauma upon the turnover of some blood‐borne metabolites in the human leg. JPEN 5: 207 – 214, 1981
dc.identifier.citedreferenceRoss H., Johnston IDA, Welborn TA, et al: Effect of abdominal operation on glucose tolerance and serum levels of insulin, growth hormone, and hydrocortisone. Lancet 2: 563 – 566, 1966
dc.identifier.citedreferenceGiddings AEB: The control of plasma glucose in the surgical patient. Br J Surg 61: 787 – 792, 1974
dc.identifier.citedreferenceWright PD, Henderson K., Johnston IDA: Glucose utilization and insulin secretion during surgery in man. Br J Surg 61: 5 – 8, 1974
dc.identifier.citedreferenceHalter JB, Beard JC, Porte D.: Islet function and stress hyperglycaemia: Plasma glucose and epinephrine interaction. Am J Physiol 10: E47 – E52, 1984
dc.identifier.citedreferenceMallette LE, Exton JH, Park DR: Effects of glucagon on amino acid transport and utilization in the perfused rat liver. J Biol Chem 244: 5724 – 5728, 1979
dc.identifier.citedreferenceMayor F., Cuezva JM: Hormonal and metabolic changes in the perinatal period. Biol Neonate 48: 185 – 196, 1985
dc.identifier.citedreferenceAnand KJS, Aynsley‐Green A.: Metabolic and endocrine effects of surgical ligation of patent ductus arteriosus in the human preterm neonate: Are there implications for further improvement of postoperative outcome? Mod Probl Paediatr 23: 143 – 157, 1985
dc.identifier.citedreferenceSperling MA: Integration of fuel homeostasis by insulin and glucagon in the newborn. Mongr Pediatr 16: 39 – 58, 1982
dc.identifier.citedreferencePinter A.: The metabolic effects of anesthesia and surgery in the newborn infant. Zeitschr Kinderchir 12: 149 – 162, 1973
dc.identifier.citedreferenceRussell RCG, Walker CJ, Bloom SR: Hyperglucagonaemia in the surgical patient. Br Med J 1: 10 – 12, 1975
dc.identifier.citedreferenceShamoon H., Hendler R., Sherwin RS: Synergistic interactions among antiinsulin hormones in the pathogenesis of stress hyperglycemia in humans. J Clin Endocrinol Metab 52: 1235 – 1241, 1981
dc.identifier.citedreferenceWilmore DW: Hormonal responses and their effect on metabolism. Symposium on response to infection and injury. II. Surg Clin North Am 56 ( 5 ): 999 – 1018, 1976
dc.identifier.citedreferenceEigler N., Sacca L., Sherwin RS: Synergistic interactions of physiologic increments of glucagon, epinephrine and cortisol in the dog. J Clin Invest 63: 114 – 123, 1979
dc.identifier.citedreferenceWolfe BM, Culebras JM, Aoki TT, et al: The effect of glucagon on protein metabolism in normal man. Surgery 86: 248 – 257. 1979
dc.identifier.citedreferenceAlberti Kgmm, Batstone GF, Foster KJ et al: Relative role of various hormones mediating the metabolic response to injury. JPEN 4: 141 – 146, 1980
dc.identifier.citedreferenceMohler JL, Michael KA, Freedman AM, et al: The serum and urinary cortisol response to operative trauma. Surg Gynecol Obstet 161: 445 – 449, 1985
dc.identifier.citedreferenceHelmreich ML, Jenkins D., Swan H.: The adrenal cortical response to surgery. II. Changes in plasma and urinary corticosteroid levels in man. Surgery 41: 895 – 909, 1957
dc.identifier.citedreferenceGeorge JM, Reier CE, Lanese RR, et al: Morphine anesthesia blocks cortisol and growth hormone response to surgical stress in humans. J Clin Endocrinol Metab 38: 736 – 741, 1974
dc.identifier.citedreferenceLines JG, Loder RE, Millar RA: Plasma cortisol responses during neurosurgical and abdominal operations. Br J Anaesth 43: 1136 – 1144, 1971
dc.identifier.citedreferenceSolomon S., Bird CE, Ling W., et al: Formation and metabolism of steroids in the fetus and placenta. Recent Progr Horm Res 23: 297 – 347, 1967
dc.identifier.citedreferenceStang HJ, Gunnar MR, Snellman L., et al: Local anesthesia for neonatal circumcision. Effects on distress and cortisol response. JAMA 259: 1507 – 1511, 1988
dc.identifier.citedreferenceWilliamson PS, Williamson ML: Physiologic stress reduction by a local anesthetic during newborn circumcision. Pediatrics 71: 36 – 40, 1983
dc.identifier.citedreferenceWilliamson PS, Evans ND: Neonatal cortisol response to circumcision with anesthesia. Clin Pediatr 25: 412 – 415, 1986
dc.identifier.citedreferenceTalbert LM, Kraybill EN, Potter HD: Adrenal cortical response to circumcision in the neonate. Obstet Gynecol 48: 208 – 210, 1976
dc.identifier.citedreferenceGunnar MR, Malone S., Vance G., et al: Coping with aversive stimulation during the neonatal period: Quiet sleep and plasma cortisol levels during recovery from circumcision. Child Dev 56: 824 – 834, 1985
dc.identifier.citedreferenceHillman DA, Giroud CJ: Plasma cortisone and cortisol levels at birth and during the neonatal period. J Clin Endocrinol Metab 25: 243 – 248, 1965
dc.identifier.citedreferenceKirya C., Ertthmann MW: Neonatal circumcision and penile dorsal nerve block: A painless procedure. J Pediatr 96: 998 – 1000, 1978
dc.identifier.citedreferenceCochrane JPS: The aldosterone response to surgery and the relationship of this response to postoperative sodium retention. Br J Surg 65: 744 – 747, 1978
dc.identifier.citedreferenceEnquist A., Blichert‐Toft M., Olgaard K., et al: Inhibition of aldosterone response to surgery by saline administration. Br J Surg 65: 224 – 227, 1978
dc.identifier.citedreferenceWright PD, Johnston IDA: The effects of surgical operation on growth hormone levels in plasma. Surgery 77: 479 – 486, 1975
dc.identifier.citedreferenceWard HC, Halliday S., Sim AJW: Protein and energy metabolism with biosynthetic human growth after gastrointestinal surgery. Ann Surg 206: 56 – 61, 1987
dc.identifier.citedreferenceKostyo JL, Keagan CR: The biology of growth hormone. Pharmacol Ther 2: 591 – 604, 1976
dc.identifier.citedreferenceMilne EMG, Elliott MJ, Pearson DT, et al: The effect on intermediary metabolism of open‐heart surgery with deep hypothermia and circulatory arrest in infants of less than 10 k body weight. Perfusion 1: 29 – 40, 1986
dc.identifier.citedreferenceRobertson D., Michelakis AM: Effect of anesthesia and surgery on plasma renin activity in man. J Clin Endocrinol Metab 34: 831 – 836, 1972
dc.identifier.citedreferenceBailey DR, Miller ED, Kaplan JA, et al: The renin‐angiotensin aldosterone system during cardiac surgery with morphine‐nitrous oxide anesthesia. Anesthesiology 42: 538 – 544, 1975
dc.identifier.citedreferenceBrandt MR, Olgaard K., Kehlet H.: Epidural analgesia inhibits the renin and aldosterone response to surgery. Acta Anesth Scand 23: 267 – 272, 1979
dc.identifier.citedreferenceFiselier T., Monnens L., Moerman E., et al: Influence of the stress of venipuncture on basal levels of plasma renin activity in infants and children. Int J Pediatr Nephrol 4: 181 – 185, 1983
dc.identifier.citedreferenceCoran AG, Drongowski RA: Body fluid compartment changes following neonatal surgery. J Pediatr Surg 24: 829 – 832, 1989
dc.identifier.citedreferenceBrandt M., Kehlet H., Skovsted L., et al: Rapid decrease in plasma triiodothyronine during surgery and epidural analgesia independent of afferent neurogenic stimuli and of cortisol. Lancet 2: 1333 – 1336, 1976
dc.identifier.citedreferencePrescott RWG, Yeo PPB, Watson MJ, et al: Total and free thyroid hormone concentrations following elective surgery. J Clin Pathol 32: 321 – 324, 1979
dc.identifier.citedreferenceHasselgren P., Chen I., James JH, et al: Studies on the possible role of thyroid hormone in altered muscle protein turnover during sepsis. Ann Surg 206: 18 – 24, 1987
dc.identifier.citedreferenceCuthbertson DP: Postshock metabolic response. Lancet 1: 433 – 437, 1942
dc.identifier.citedreferenceCuthbertson DP: Protein metabolism in relation to energy needs. Metabolism 8: 787 – 808, 1959
dc.identifier.citedreferenceIto T., Iyomasa Y., Inoue T.: Changes in the postoperative minimal oxygen consumption of the newborn. J Pediatr Surg 11: 495 – 503, 1976
dc.identifier.citedreferenceBromage PR, Shibata HR, Willoughby HW: Influence of prolonged epidural blockade on blood sugar and cortisol response to operations upon the upper part of the abdomen and thorax. Surg Gynecol Obstet 132: 1051 – 1056, 1971
dc.identifier.citedreferenceKusaka M., Ui M.: Activation of the cori cycle by epinephrine. Am J Physiol 232: E145 – E155, 1977
dc.identifier.citedreferenceMills NL, Beaudet RL, Isom OW, et al: Hyperglycaemia during cardiopulmonary bypass. Ann Surg 177: 203 – 205, 1973
dc.identifier.citedreferenceBenedict FG, Talbot FB: The physiology of the newborn infant. Character and amount of the catabolism. Carnegie Inst Pub No. 233, Washington, 1915
dc.identifier.citedreferenceSheeley HJ: Glycogen reserves and their changes at birth and in anoxia. Br Med Bull 17: 137 – 143, 1961
dc.identifier.citedreferenceCornblath M., Ganzon AF, Nicolopoulos D., et al: Studies of carbohydrate metabolism in the newborn infant. III. Some factors influencing the capillary blood sugar and the response to glucagon during the first hours of life. Pediatrics 27: 378 – 389, 1961
dc.identifier.citedreferenceNovak M., Melichar V., Hahn P., et al: Levels of lipids in the blood of newborn infants and the effect of glucose administration. Physiol Bohemoslov 10: 488 – 492, 1961
dc.identifier.citedreferencePersson B., Gentz J.: The pattern of blood lipids, glycerol and ketone bodies during the neonatal period, infancy and childhood. Acta Pediatr Scand 55: 353 – 362, 1966
dc.identifier.citedreferenceWiddowson EM, Spray CM: Chemical development in utero. Arch Dis Child 26: 205 – 214, 1951
dc.identifier.citedreferenceHughes EA, Stevens LH, Wilkinson AW: Some aspects of starvation in the newborn baby. Arch Dis Child 39: 598 – 604, 1964
dc.identifier.citedreferenceElphick MC, Wilkinson AW: Glucose intolerance in newborn infants undergoing surgery for alimentary tract anomalies. Lancet 539 – 541, 1968
dc.identifier.citedreferenceElphick MC, Wilkinson AW: The effects of starvation and surgical injury on the plasma levels of glucose, free fatty acids, and neutral lipids in newborn babies suffering from various congenital anomalies. Pediatr Res 15: 313 – 318, 1981
dc.identifier.citedreferenceElphick MC: The effect of starvation and injury on the utilization of glucose in newborn rabbits. Biol Neonate 17: 399 – 409, 1971
dc.identifier.citedreferencePinter A., Schafer J.: Metabolic effects of anesthesia and surgery newborn: blood glucose, plasma free fatty acids, free amino acid and blood lactate level in newborn puppies. Acta Paediatr Acad Sci Hung 14: 85 – 90, 1973
dc.identifier.citedreferenceKalhan SC, Bier DM, Savin SM, et al: Estimation of glucose turnover and 13C recycling in the human newborn by simultaneous [1–13C] glucose and [6.6–2H2] glucose tracers. J Clin Endocrinol Metab 50: 456 – 460, 1980
dc.identifier.citedreferenceKalahan SC, C’Angelo LJ, Savin S., et al: Glucose production in pregnant women at term gestation: Sources of glucose for human fetus. J Clin Invest 63: 388 – 394, 1979
dc.identifier.citedreferenceMarsac C., Saudubray JM, Moncion A., et al: Development of gluconeogenic enzymes in the liver of human newborns. Biol Neonate 28: 317 – 325, 1976
dc.identifier.citedreferenceGump FE, Long CL, Geiger JW, et al: The significance of altered gluconeogenesis in surgical catabolism. J Trauma 15: 704 – 712, 1975
dc.identifier.citedreferenceFinberg L.: Dangers to infants caused by changes in osmolal concentration. Pediatrics 40: 1031 – 1034, 1967
dc.identifier.citedreferenceArant BS, Gooch WM: Effects of acute hyperglycemia on the central nervous system of neonatal puppies. Pediatr Res 12: 549, 1978
dc.identifier.citedreferenceBent JM, Paterson JL, Mashiter K., et al: Effects of high‐dose fentanyl anesthesia on the established metabolic and endocrine response to surgery. Anesthesia 39: 19 – 23, 1984
dc.identifier.citedreferenceWalsh ES, Traynor C., Paterson JL, et al: Effect of different intraoperative fluid regimenson circulating metabolites and insulin during abdominal surgery. Br J Anaesth 55: 135 – 140, 1983
dc.identifier.citedreferenceBunker JP: Metabolic acidosis during anesthesia and surgery. Anesthesiology 23: 107 – 123, 1962
dc.identifier.citedreferenceFelig P., Pozefsky T., Marliss E., et al: Alanine: Key role in gluconeogenesis. Science 167: 1003 – 1004, 1970
dc.identifier.citedreferenceReisner SH, Aranda JV, Colle E., et al: The effect of intravenous glucagon on plasma amino acids in the newborn. Pediatr Res 7: 184 – 191, 1973
dc.identifier.citedreferenceDeLamater PV, Sperling MA, Fiser RH, et al: Plasma alanine: Relation to plasma glucose, glucagon and insulin in the neonate. J Pediatr 85: 702 – 706, 1974
dc.identifier.citedreferenceStudley HO: Percentage of weight loss. A basic indicator of surgical risk in patients with chronic peptic ulcer. JAMA 106: 458 – 460, 1936
dc.identifier.citedreferenceChristensen J., Kehlet H.: Postoperative fatigue and changes and nutritional status. Br J Surg 71: 473 – 476, 1984
dc.identifier.citedreferenceCuthbertson DP: The disturbance of metabolism produced by bony and nonbony injury, with notes on certain abnormal conditions of bone. Biochem J 24: 1244 – 63, 1930
dc.identifier.citedreferenceDuke JH, Jorgensen SB, Broell JR, et al: Contribution of protein to caloric expenditure following injury. Surgery 68: 168 – 174, 1970
dc.identifier.citedreferenceRyan NT: Metabolic adaptations for energy production during trauma and sepsis. Surg Clin North Am 56: 1073 – 1090, 1976
dc.identifier.citedreferenceMcMenamy RH, Birkhahn R., Oswald G., et al: Multiple systems organ failure I. The basal state. J Trauma 21: 99 – 114, 1981
dc.identifier.citedreferenceCoran, AG: Nutrition of the surgical patient. IN Pediatric Surgery, 4 th ed, Welch KJ (ed). Chapter 10, Yearbook Publishers, 1986
dc.identifier.citedreferenceBallard FJ, Tomas FM, Pope LM, et al: Muscle protein degradation in premature human infants. Clin Sci 57: 535 – 544, 1979
dc.identifier.citedreferenceFleck A.: Protein metabolism after surgery. Proc Nutr Soc 39: 125 – 132, 1980
dc.identifier.citedreferenceJohnston IDA: Endocrine aspects of the metabolic response to surgical operation. Ann R Coll Surg Engl 35: 270 – 286, 1964
dc.identifier.citedreferenceRich AJ, Wright PD: Ketosis and nitrogen excretion in undernourished surgical patients. JPEN 3: 350 – 354, 1979
dc.identifier.citedreferenceWannemacher RW, Dinterman RE: Total body protein catabolism in starved and infected rats. Am J Clin Nutr 30: 1510 – 1511, 1977
dc.identifier.citedreferenceOgata ES, Foung SKH, Holliday MA: The effects of starvation and refeeding on muscle protein synthesis and catabolism in the young rat. J Nutr 108: 759 – 765, 1978
dc.identifier.citedreferenceMarliss EB, Murray FT, Nakhooda AF: The metabolic response to hypocaloric protein diets in obese men. J Clin Invest 62: 468 – 479, 1978
dc.identifier.citedreferenceTomas FM, Ballard FJ, Pope LM: Age‐dependent changes ‐in the rate of myofibrillar protein degradation in humans as assessed by 3‐methylhistidine and urinative excretion. Clin Sci 56: 341 – 346, 1979
dc.identifier.citedreferenceColle, Paulsen: Response of the newborn infant to major surgery. I. Effects on water, electrolyte, and nitrogen balance. Pediatrics 23: 1063 – 1084, 1959
dc.identifier.citedreferenceHansen JDL, Smith CA: Effects of withholding fluid in the immediate postnatal period. Pediatrics 12: 99 – 113, 1953
dc.identifier.citedreferenceDuffy B., Pencharz P.: The effects of surgery on the nitrogen metabolism of parenterally fed human neonates. Pediatr Res 20: 32 – 35, 1986
dc.identifier.citedreferenceZlotkin SH: Intravenous nitrogen intake requirements in full‐term newborns undergoing surgery. Pediatrics 73: 493 – 496, 1984
dc.identifier.citedreferenceWinthrop AL, Jones PJH, Schoeller DA, et al: Changes in the body composition of the surgical infant in the early postoperative period. J Pediatr Surg 22: 546 – 549, 1987
dc.identifier.citedreferenceJohnston IDA, Dale G., Craig RP, et al: Plasma amino acid concentrations in surgical patients. JPEN 4: 161 – 164, 1980
dc.identifier.citedreferenceVinnars E., Bergstrom J., Furst P.: Influence of the postoperative state on the intracellular free amino acids in human muscle tissue. Ann Surg 182: 665 – 671, 1975
dc.identifier.citedreferenceElia M., Ilic V., Bacon S., et al: Relationship between the basal blood alanine concentration and the removal of an alanine load in various clinical states in man. Clin Sci 58: 301 – 304, 1980
dc.identifier.citedreferenceKarl IE, Garber AJ, Kipnis DM: Alanine and glutamine synthesis and release from skeletal muscle. J Biol Chem 251: 844 – 860, 1976
dc.identifier.citedreferenceMuhlbacher F., Kapadia CF, Colpoys MF, et al: Effects of glucocorticoids on glutamine metabolism in skeletal muscle. Am J Physiol 10: E75 – E83, 1984
dc.identifier.citedreferenceLund P., Williamson DH: Intertissue nitrogen fluxes. Br Med Bull 41: 251 – 256, 1985
dc.identifier.citedreferenceDale G., Young G., Latner AL, et al: The effect of surgical operation on venous plasma amino acids. Surgery 81: 295 – 301, 1977
dc.identifier.citedreferenceWedge JH, DeCampos R., Kerr A.: Branched‐chain amino acids, nitrogen excretion, and injury in man. Clin Sci Mol Med 50: 393 – 399, 1976
dc.identifier.citedreferenceFischer JE, Yoshimura N., Aguire A., et al: Plasma amino acids in patients with hepatic encephalopathy. Am J Surg 127: 40 – 47, 1974
dc.identifier.citedreferenceAnsley JD, Issacs JW, Rikkers LF, et al: Quantitative tests on nitrogen metabolism in cirrhosis in relation to other manifestations of liver disease. Gastroenterology 75: 570 – 579, 1978
dc.identifier.citedreferenceElia M., Farrell R., Iilc V., Smith R., et al: The removal of infused leucine after injury, starvation, and other conditions in man. Clin Sci 59: 275 – 283, 1980
dc.identifier.citedreferenceBarbul A.: Arginine: Biochemistry, physiology, and therapeutic implications. JPEN 10: 227 – 238, 1986
dc.identifier.citedreferenceSaito H., Trocki O., Wang S., et al: Metabolic and immune effects of dietary arginine supplementation after burn. Arch Surg 122: 784 – 789, 1987
dc.identifier.citedreferenceSitren HS, Fisher H.: Nitrogen retention in rats fed on diets enriched with arginine and glycine: I. Improved N retention after trauma. Br J Nutr 37: 195 – 208, 1977
dc.identifier.citedreferenceBarbul A., Rettura G., Levenson MS, et al: Wound healing and thymotropic effects of arginine: A pituitary mechanism of action. Am J Clin Nutr 37: 786 – 794, 1983
dc.identifier.citedreferenceMulloy AL, Kari FW, Visek WJ: Dietary arginine, insulin secretion, glucose tolerance and liver lipids during repletion of protein‐depleted rats. Horm Metab Res 14: 471 – 475, 1982
dc.identifier.citedreferenceClowes JHA Jr, Randall HT, Cha CJ: Amino acid and energy metabolism in septic and traumatized patients. JPEN 4: 195 – 205, 1980
dc.identifier.citedreferenceClowes JHA, George BC, Villee CA, et al: Muscle proteolysis induced by a circulating peptide in patients with sepsis or trauma. N Engl J Med 308: 545 – 552, 1983
dc.identifier.citedreferenceGarber AJ, Menzel PH, Boden G., et al: Hepatic ketogenesis and gluconeogenesis in humans. J Clin Invest 54: 981 – 989, 1971
dc.identifier.citedreferenceWilmore DW, Goodwin CW, Aulick LH, et al: Effect of injury and infection on visceral metabolism and circulation. Ann Surg 192: 491 – 504, 1980
dc.identifier.citedreferenceWarner BW, James JH, Hasselgren PO, LaFrance R., Fischer JE: Effect of catabolic hormone infusion on argan amino acid uptake. J Surg Res 42: 418 – 424, 1987
dc.identifier.citedreferenceHasselgren PO, James JH, Fischer JE: Inhibited muscle amino acid uptake in sepsis. Ann Surg 203: 360 – 365, 1986
dc.identifier.citedreferenceKnutrud O.: The Water and Electrolyte Metabolism in the Newborn Child after Major Surgery. Scandinavian University Books, Universitetsforlaget, Oslo, Norway, 1965
dc.identifier.citedreferenceHughes EA, Stevens LH, Toms DA, et al: Esophageal atresia: Metabolic effects of operation. Br J Surg 52: 403 – 410, 1965
dc.identifier.citedreferenceWilkinson AW, Hughes EA, Stevens LH: Neonatal duodenal obstruction. The influence of treatment on the metabolic effects of operation. Br J Surg 52: 410 – 424, 1965
dc.identifier.citedreferenceSukarochano K., Motai Y., Slim M., et al: Postoperative protein metabolism in pediatric surgery. Surg Gynecol Obstet 121: 79 – 90, 1965
dc.identifier.citedreferenceGrewal RS, Mampilly J., Misra TR: Postoperative protein metabolism and electrolyte changes in pediatric surgery. Int Surg 51: 142 – 148, 1969
dc.identifier.citedreferenceGreenwall MJ, Kettlewell MGW, Gough MH: Nitrogen requirement for postoperative parenteral nutrition in neonates. Acta Therap 9: 5 – 9, 1983
dc.identifier.citedreferenceYoung VR, Munro HN: N T‐methylhistidine (3‐methylhistidine) and muscle protein turnover: An overview. Fed Proc Fed Am Soc Exp Biol 37: 2291 – 2300, 1978
dc.identifier.citedreferenceBurgoyne JL, Ballard FJ, Tomas FM, et al: Measurements of myofibrillar protein breakdown in newborn human infants. Clin Sci 63: 421 – 427, 1982
dc.identifier.citedreferenceAnand KJS: Metabolic and Endocrine Effects of Surgery and Anesthesia in the Human Newborn Infant. D Phil Thesis, University of Oxford, 1985
dc.identifier.citedreferenceSeashore JH, Huszar G., Davis EM: Urinary 3‐methylhistidine/ creatinine ratio as a clinical tool: Correlation between 3‐methylhistidine excretion and metabolic and clinical states in healthy and stressed premature infants. Metabolism 30: 959 – 969, 1981
dc.identifier.citedreferenceAnand KJS, Sippell WG, Schofield NM, et al: Does halothane anaesthesia decrease the metabolic and endocrine stress response of newborn infants undergoing operation? Br Med J 296: 668 – 672, 1988
dc.identifier.citedreferencePencharz PB, Steffee WP, Cochran W., et al: Protein metabolism in human neonates: Nitrogen balance studies, estimated obligatory losses of nitrogen and whole‐body turnover of nitrogen. Clin Sci Mol Med 52: 485 – 498, 1977
dc.identifier.citedreferenceWilliamson DH, Farrell R., Kerr A., et al: Muscle‐protein catabolism after injury in man, as measured by urinary excretion of 3‐methylhistidine. Clin Sci and Molecular Med 52: 527 – 533, 1977
dc.identifier.citedreferencePinter A.: Metabolic changes in newborn infants following surgical operations. Acta Pediatr Acad Sci Hungary 16: 171 – 180, 1975
dc.identifier.citedreferenceAllison SP, Hinton P., Chamberlain MJ: Intravenous glucose tolerance, insulin and free fatty acid levels in burned patients. Lancet II: 1113 – 1116, 1968
dc.identifier.citedreferenceAllison SP, Tomlin PJ, Chamberlain MJ: Some effects of anaesthesia and surgery on carbohydrate and fat metabolism. Br J Anaesth 41: 588 – 593, 1969
dc.identifier.citedreferenceMeguid MM, Brennan MF, Aoki TT, et al: Hormone‐substrate interrelationships following trauma. Arch Surg 109: 776 – 783, 1974
dc.identifier.citedreferenceKinney JM, Duke JH, Long CL, et al: Tissue fuel and weight loss after injury. J Clin Pathol 23: 65 – 72, 1970
dc.identifier.citedreferenceWilliamson DH: Regulation of ketone body metabolism and the effects of injury. Acta Chir Scand 52 (Suppl 507 ): 22 – 29, 1981
dc.identifier.citedreferenceSteinberg D., Khoo JC: Hormone sensitive lipase of adipose tissue. Fed Proc 36: 1986 – 1990, 1977
dc.identifier.citedreferenceForse RA, Leibel R., Askanazi J., et al: Adrenergic control of adipocyte lipolysis in trauma and sepsis. Ann Surg 206: 744 – 751, 1987
dc.identifier.citedreferenceWolfe RR, Herndon DN, Jahoor F., et al: Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 317: 403 – 408, 1987
dc.identifier.citedreferenceWolfe RR, Herndon DN, Peters EJ, et al: Regulation of lipolysis in severely burned children. Ann Surg 206: 214 – 221, 1987
dc.identifier.citedreferenceCooper GM, Holdcroft A., Hall GM, et al: Epidural analgesia and the metabolic response to surgery. Can Anaesth Soc J 26: 381 – 385, 1979
dc.identifier.citedreferenceFoster KJ, Alberti Kgmm, Binder C., et al: Lipid metabolites and nitrogen balance after abdominal surgery in man. Br J Surg 66: 242 – 245, 1979
dc.identifier.citedreferenceOppenheim WL, Williamson DH, Smith R.: Early biochemical changes and severity of injury in man. J Trauma 20: 135 – 140, 1980
dc.identifier.citedreferenceKehlet H., Brandt MR, Hansen AP, et al: Effect of epidural analgesia on metabolic profiles during and after surgery. Br J Surg 66: 543 – 546, 1979
dc.identifier.citedreferenceWilliamson DH: The production and utilization of ketone bodies in the neonate: IN Jones: Biochemical development of the fetus and neonate, Jones (ed). Elsevier, Amsterdam, 1982, pp 621 – 650
dc.identifier.citedreferenceAnand KJS: Hormonal and metabolic functions of neonates and infants undergoing surgery. Curr Opin Cardiol 1: 681 – 689, 1986
dc.identifier.citedreferenceAnand KJS, Yacoub MH, Sippel WG, et al: Endocrine control of glucose homeostasis during cardiopulmonary bypass and cardiac surgery in full‐term neonates. J Endocrinol 104: 140, 1985
dc.identifier.citedreferenceBougneres PF, Karl IE, Hillman LS, et al: Lipid transport in the human newborn: Palmitate and glycerol turnover and the contribution of glycerol to neonatal hepatic glucose output. J Clin Invest 70: 262 – 270, 1982
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.