Show simple item record

Relaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales

dc.contributor.authorLopez‐nieves, Samuel
dc.contributor.authorYang, Ya
dc.contributor.authorTimoneda, Alfonso
dc.contributor.authorWang, Minmin
dc.contributor.authorFeng, Tao
dc.contributor.authorSmith, Stephen A.
dc.contributor.authorBrockington, Samuel F.
dc.contributor.authorMaeda, Hiroshi A.
dc.date.accessioned2018-02-05T16:27:29Z
dc.date.available2019-03-01T21:00:19Zen
dc.date.issued2018-01
dc.identifier.citationLopez‐nieves, Samuel ; Yang, Ya; Timoneda, Alfonso; Wang, Minmin; Feng, Tao; Smith, Stephen A.; Brockington, Samuel F.; Maeda, Hiroshi A. (2018). "Relaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales." New Phytologist 217(2): 896-908.
dc.identifier.issn0028-646X
dc.identifier.issn1469-8137
dc.identifier.urihttps://hdl.handle.net/2027.42/141098
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.othertyrosine biosynthesis
dc.subject.otherCaryophyllales
dc.subject.otherbetalains
dc.subject.otherarogenate dehydrogenase (ADH/TyrAa)
dc.subject.otheranthocyanins
dc.subject.othermetabolic pathway evolution
dc.titleRelaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141098/1/nph14822-sup-0001-SupInfo.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141098/2/nph14822-sup-0006-MethodsS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141098/3/nph14822_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141098/4/nph14822.pdf
dc.identifier.doi10.1111/nph.14822
dc.identifier.sourceNew Phytologist
dc.identifier.citedreferenceRubin JL, Jensen RA. 1979. Enzymology of l â tyrosine biosynthesis in mung bean ( Vigna radiata [L.] Wilczek). Plant Physiology 64: 727 â 734.
dc.identifier.citedreferencePolturak G, Grossman N, Velaâ Corcia D, Dong Y, Nudel A, Pliner M, Levy M, Rogachev I, Aharoni A. 2017. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalainâ producing crops and ornamentals. Proceedings of the National Academy of Sciences, USA 114: 9062 â 9067.
dc.identifier.citedreferenceRapp RA, Haigler CH, Flagel L, Hovav RH, Udall JA, Wendel JF. 2010. Gene expression in developing fibres of upland cotton ( Gossypium hirsutum L.) was massively altered by domestication. BMC Biology 8: 1 â 15.
dc.identifier.citedreferenceRippert P, Matringe M. 2002a. Purification and kinetic analysis of the two recombinant arogenate dehydrogenase isoforms of Arabidopsis thaliana. European Journal of Biochemistry 269: 4753 â 4761.
dc.identifier.citedreferenceRippert P, Matringe M. 2002b. Molecular and biochemical characterization of an Arabidopsis thaliana arogenate dehydrogenase with two. Plant Molecular Biology 48: 361 â 368.
dc.identifier.citedreferenceRippert P, Puyaubert J, Grisollet D, Derrier L, Matringe M. 2009. Tyrosine and phenylalanine are synthesized within the plastids in Arabidopsis. Plant Physiology 149: 1251 â 1260.
dc.identifier.citedreferenceRong J, Lammers Y, Strasburg JL, Schidlo NS, Ariyurek Y, de Jong TJ, Klinkhamer PGL, Smulders MJM, Vrieling K. 2014. New insights into domestication of carrot from root transcriptome analyses. BMC Genomics 15: 895.
dc.identifier.citedreferenceSchenck CA, Chen S, Siehl DL, Maeda HA. 2015. Nonâ plastidic, tyrosineâ insensitive prephenate dehydrogenases from legumes. Nature Chemical Biology 11: 52 â 57.
dc.identifier.citedreferenceSchenck CA, Holland CK, Schneider MR, Men Y, Lee SG, Jez JM, Maeda HA. 2017. Molecular basis of the evolution of alternative tyrosine biosynthetic routes in plants. Nature Chemical Biology 13: 1029 â 1035.
dc.identifier.citedreferenceShimada S, Inoue YT, Sakuta M. 2005. Anthocyanidin synthase in nonâ anthocyaninâ producing Caryophyllales species. Plant Journal 44: 950 â 959.
dc.identifier.citedreferenceSiehl DL. 1999. The biosynthesis of tryptophan, tyrosine, and phenylalanine from chorismate. In: Singh B, ed. Plant amino acids: biochemistry and biotechnology. New York, USA: CRC Press, 171 â 204.
dc.identifier.citedreferenceSparkes IA, Runions J, Kearns A, Hawes C. 2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols 1: 2019 â 2025.
dc.identifier.citedreferenceSun W, Shahinas D, Bonvin J, Hou W, Kimber MS, Turnbull J, Christendat D. 2009. The crystal structure of Aquifex aeolicus prephenate dehydrogenase reveals the mode of tyrosine inhibition. Journal of Biological Chemistry 284: 13 223 â 13 232.
dc.identifier.citedreferenceSunnadeniya R, Bean A, Brown M, Akhavan N, Hatlestad G, Gonzalez A, Symonds VV, Lloyd A. 2016. Tyrosine hydroxylation in betalain pigment biosynthesis is performed by cytochrome P450 enzymes in beets ( Beta vulgaris ). PLoS ONE 11: 1 â 16.
dc.identifier.citedreferenceTanaka Y, Sasaki N, Ohmiya A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant Journal 54: 733 â 749.
dc.identifier.citedreferenceTattersall DB, Bak S, Jones PR, Olsen CE, Nielsen JK, Hansen ML, Høj PB, Møller BL. 2001. Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293: 1826 â 1828.
dc.identifier.citedreferenceTzin V, Galili G. 2010. The biosynthetic pathways for shikimate and aromatic amino acids in Arabidopsis thaliana. Arabidopsis Book/American Society of Plant Biologists 8: e0132.
dc.identifier.citedreferenceWang M, Lopezâ Nieves S, Goldman IL, Maeda HA. 2017. Limited tyrosine utilization explains lower betalain contents in yellow than red table beet genotypes. Journal of Agricultural and Food Chemistry 65: 4305 â 4313.
dc.identifier.citedreferenceWang X, Xiao H, Chen G, Zhao X, Huang C, Chen C, Wang F. 2011. Isolation of highâ quality RNA from Reaumuria soongorica, a desert plant rich in secondary metabolites. Molecular Biotechnology 48: 165 â 172.
dc.identifier.citedreferenceWeber E, Engler C, Gruetzner R, Werner S, Marillonnet S. 2011. A modular cloning system for standardized assembly of multigene constructs. PLoS ONE 18: e16765.
dc.identifier.citedreferenceWeng JK. 2014. The evolutionary paths towards complexity: a metabolic perspective. New Phytologist 201: 1141 â 1149.
dc.identifier.citedreferenceWeng JK, Philippe RN, Noel JP. 2012. The rise of chemodiversity in plants. Science 336: 1667 â 1670.
dc.identifier.citedreferenceWertheim JO, Murrell B, Smith MD, Kosakovsky Pond SL, Scheffler K. 2014. RELAX: detecting relaxed selection in a phylogenetic framework. Molecular Biology and Evolution 32: 1 â 13.
dc.identifier.citedreferenceXu S, Brockmöller T, Navarroâ Quezada A, Kuhl H, Gase K, Ling Z, Zhou W, Kreitzer C, Stanke M, Tang H et al. 2017. Wild tobacco genomes reveal the evolution of nicotine biosynthesis. Proceedings of the National Academy of Sciences, USA 114: 6133 â 6138.
dc.identifier.citedreferenceXu S, Huang Q, Lin C, Lin L, Zhou Q, Lin F, He E. 2016. Transcriptome comparison reveals candidate genes responsible for the betalainâ /anthocyanidinâ production in bougainvilleas. Functional Plant Biology 43: 278 â 286.
dc.identifier.citedreferenceYagi M, Kosugi S, Hirakawa H, Ohmiya A, Tanase K, Harada T, Kishimoto K, Nakayama M, Ichimura K, Onozaki T et al. 2014. Sequence analysis of the genome of carnation ( Dianthus caryophyllus L.). DNA Research 21: 231 â 241.
dc.identifier.citedreferenceZhang R, Guo C, Zhang W, Wang P, Li L, Duan X, Du Q, Zhao L, Shan H, Hodges SA et al. 2013. Disruption of the petal identity gene APETALA3â 3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae). Proceedings of the National Academy of Sciences, USA 110: 5074 â 5079.
dc.identifier.citedreferenceAmbawat S, Sharma P, Yadav NR, Yadav RC. 2013. MYB transcription factor genes as regulators for plant responses: an overview. Phyisyiology and Molecular Biology of Plants 19: 307 â 321.
dc.identifier.citedreferenceBarshandy H, Jalkanen S, Teeri TH. 2015. Within leaf variation is the largest source of variation in agroinfiltration of Nicotiana benthamiana. Plant Methods 11: 47.
dc.identifier.citedreferenceBateâ Smith EC. 1962. The phenolic constituents of plants and their taxonomic significance. Botanical Journal of the Linnean Society 58: 95 â 173.
dc.identifier.citedreferenceBeaudoin GAW, Facchini PJ. 2014. Benzylisoquinoline alkaloid biosynthesis in opium poppy. Planta 240: 19 â 32.
dc.identifier.citedreferenceBentley R. 1990. The ahikimate pathway â a metabolic tree with many branche. Critical Reviews in Biochemistry and Molecular Biology 25: 307 â 384.
dc.identifier.citedreferenceBiancardi E, Panella LW, Lewellen R. 2012. Beta maritima: the origin of beets. New York, USA: Springer.
dc.identifier.citedreferenceBonvin J, Aponte RA, Marcantonio M, Singh S, Christendat D, Turnbull JL. 2006. Biochemical characterization of prephenate dehydrogenase from the hyperthermophilic bacterium Aquifex aeolicus. Protein Science 15: 1417 â 1432.
dc.identifier.citedreferenceBrockington SF, Alexandre R, Ramdial J, Moore MJ, Crawley S, Dhingra A, Hilu K, Soltis PS. 2009. Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. International Journal of Plant Sciences 170: 627 â 643.
dc.identifier.citedreferenceBrockington SF, Walker RH, Glover BJ, Soltis PS, Soltis DE. 2011. Complex pigment evolution in the Caryophyllales. New Phytologist 190: 854 â 864.
dc.identifier.citedreferenceBrockington SF, Yang Y, Gandiaâ Herrero F, Covshoff S, Hibberd JM, Sage RF, Wong GKS, Moore MJ, Smith SA. 2015. Lineageâ specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytologist 207: 1170 â 1180.
dc.identifier.citedreferenceByng G, Whitaker R, Elick C, Jensen RA. 1981. Enzymology of l â tyrosine biosynthesis in corn ( Zea mays ). Phytochemistry 20: 1289 â 1292.
dc.identifier.citedreferenceChen F, Tholl D, Bohlmann J, Pichersky E. 2011. The family of terpene synthases in plants: a midâ size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant Journal 66: 212 â 229.
dc.identifier.citedreferenceChristinet L, Burdet F, Zaiko M, Hinz U, Zrÿd JP. 2004. Characterization and functional identification of a novel plant 4,5â extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandiflora. Plant Physiology 134: 265 â 274.
dc.identifier.citedreferenceClement JS, Mabry TJ. 1996. Pigment evolution in the caryophyllales: a systematic overview. Botanica Acta 109: 360 â 367.
dc.identifier.citedreferenceConnelly JA, Conn EE. 1986. Tyrosine biosynthesis in Sorghum bicolor: isolation and regulatory properties of arogenate dehydrogenase. Zeitschrift für Naturforschung C 41: 69 â 78.
dc.identifier.citedreferenceDal Cin V, Tieman DM, Tohge T, McQuinn R, de Vos RCH, Osorio S, Schmelz E, Taylor MG, Smitsâ Kroon MT, Schuurink RC et al. 2011. Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit. Plant Cell 23: 2738 â 2753.
dc.identifier.citedreferenceDelaux PM, Varala K, Edger PP, Coruzzi GM, Pires JC, Ané JM. 2014. Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genetics 10: e1004487.
dc.identifier.citedreferenceDes Marais DL. 2015. To betalains and back again: a tale of two pigments. New Phytologist 207: 939 â 941.
dc.identifier.citedreferenceDohm JC, Minoche AE, Holtgräwe D, Capellaâ Gutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R et al. 2014. The genome of the recently domesticated crop plant sugar beet ( Beta vulgaris ). Nature 505: 546 â 549.
dc.identifier.citedreferenceDornfeld C, Weisberg AJ, Ritesh KC, Dudareva N, Jelesko JG, Maeda HA. 2014. Phylobiochemical characterization of classâ Ib aspartate/prephenate aminotransferases reveals evolution of the plant arogenate phenylalanine pathway. Plant Cell 26: 3101 â 3114.
dc.identifier.citedreferenceEngler C, Youles M, Gruetzner R, Ehnert TM, Werner S, Jones JDG, Patron NJ, Marillonnet S. 2014. A golden gate modular cloning toolbox for plants. ACS Synthetic Biology 3: 839 â 843.
dc.identifier.citedreferenceGaines CG, Byng GS, Whitaker RJ, Jensen RA. 1982. l â Tyrosine regulation and biosynthesis via arogenate dehydrogenase in suspensionâ cultured cells of Nicotiana silvestris Speg. et Comes. Planta 156: 233 â 240.
dc.identifier.citedreferenceGandíaâ Herrero F, Garcíaâ Carmona F. 2012. Characterization of recombinant Beta vulgaris 4,5â DOPAâ extradiolâ dioxygenase active in the biosynthesis of betalains. Planta 236: 91 â 100.
dc.identifier.citedreferenceGleadow RM, Møller BL. 2014. Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annual Review of Plant Biology 65: 155 â 185.
dc.identifier.citedreferenceGoldman IL. 1996. A list of germplasm releases from the University of Wisconsin table beet breeding program. HortScience 31: 880 â 881.
dc.identifier.citedreferenceGreenberg AK, Donoghue MJ. 2011. Molecular systematics and character evolution in Caryophyllaceae. Taxon 60: 1637 â 1652.
dc.identifier.citedreferenceHanson M, Gaut BS, Stec AO, Fuerstenberg SI, Goodman MM, Coe EH, Doebley JF. 1996. Evolution of anthocyanin biosynthesis in maize kernels: the role of regulatory and enzymatic loci. Genetics 143: 1395 â 1407.
dc.identifier.citedreferenceHarris NN, Javellana J, Davies KM, Lewis DH, Jameson PE, Deroles SC, Calcott KE, Gould KS, Schwinn KE. 2012. Betalain production is possible in anthocyaninâ producing plant species given the presence of DOPAâ dioxygenase and Lâ DOPA. BMC Plant Biology. 12: 34.
dc.identifier.citedreferenceHatlestad GJ, Akhavan NA, Sunnadeniya RM, Elam L, Cargile S, Hembd A, Gonzalez A, McGrath JM, Lloyd AM. 2015. The beet Y locus encodes an anthocyanin MYBâ like protein that activates the betalain red pigment pathway. Nature Genetic 47: 92 â 96.
dc.identifier.citedreferenceHatlestad GJ, Sunnadeniya RM, Akhavan N, Gonzalez A, Goldman IL, McGrath JM, Lloyd AM. 2012. The beet R locus encodes a new cytochrome P450 required for red betalain production. Nature Genetics 44: 816 â 820.
dc.identifier.citedreferenceHudson GS, Wong V, Davidson B. 1984. Chorismate mutase/prephenate dehydrogenase from Escherichia coli K12: purification, characterization, and identification of a reactive cysteine. Biochemistry 23: 6240 â 6249.
dc.identifier.citedreferenceIbarraâ Laclette E, Zamudioâ Hernández F, Pérezâ Torres CA, Albert VA, Ramírezâ Chávez E, Molinaâ Torres J, Fernándezâ Cortes A, Calderónâ Vázquez C, Olivaresâ Romero JL, Herreraâ Estrella A et al. 2015. De novo sequencing and analysis of Lophophora williamsii transcriptome, and searching for putative genes involved in mescaline biosynthesis. BMC Genomics 16: 657.
dc.identifier.citedreferenceKajikawa M, Sierro N, Kawaguchi H, Bakaher N, Ivanov NV, Hashimotp T, Shoji T. 2017. Genomic insights into the evolution of the nicotine biosynthesis pathway in tobacco. Plant Physiology 4: 999 â 1011.
dc.identifier.citedreferenceKhan MI. 2015. Plant betalains: safety, antioxidant activity, clinical efficacy, and bioavailability. Comprehensive Reviews in Food Science and Food Safety 15: 316 â 330.
dc.identifier.citedreferenceKristensen C, Morant M, Olsen CE, Ekstrom CT, Galbraith DW, Moller BL, Bak S. 2005. Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proceedings of the National Academy of Sciences, USA 102: 1779 â 1784.
dc.identifier.citedreferenceLee EJ, An D, Nguyen CTT, Patill BS, Kim J, Yoo KS. 2014. Betalain and betaine composition of greenhouseâ or fieldâ produced beetroot ( Beta vulgar is L.) and inhibition of HepG2 cell proliferation. Journal of Agriculture and Food Chemistry 62: 1324 â 1331.
dc.identifier.citedreferenceLegrand P, Dumas R, Seux M, Rippert P, Ravelli R, Ferrer JL, Matringe M. 2006. Biochemical characterization and crystal structure of Synechocystis arogenate dehydrogenase provide insights into catalytic reaction. Structure 14: 767 â 776.
dc.identifier.citedreferenceMabry TJ. 1964. The betacyanins, a new class of red violet pigments, and their phylogenetic significance. In: Leone CA, ed. Taxonomic biochemistry, physiology, and serology. New York, NY, USA: Ronald Press, 239 â 254.
dc.identifier.citedreferenceMaeda H, Dudareva N. 2012. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant Biology 63: 73 â 105.
dc.identifier.citedreferenceMeneâ Saffrane L, Jones AD, DellaPenna D. 2010. Plastochromanolâ 8 and tocopherols are essential lipidâ soluble antioxidants during seed desiccation and quiescence in Arabidopsis. Proceedings of the National Academy of Sciences, USA 107: 17 815 â 17 820.
dc.identifier.citedreferenceMillgate AG, Pogson BJ, Wilson IW, Kutchan TM, Zenk MH, Gerlach WL, Fist AJ, Larkin PJ. 2004. Analgesia: morphineâ pathway block in top1 poppies. Nature 431: 413 â 414.
dc.identifier.citedreferenceMizutani M, Ohta D. 2010. Diversification of P450 genes during land plant evolution. Annual Review of Plant Biology 61: 291 â 315.
dc.identifier.citedreferenceMoghe GD, Last RL. 2015. Something old, something new: conserved enzymes and the evolution of novelty in plant specialized metabolism. Plant Physiology 169: 1512 â 1523.
dc.identifier.citedreferenceNeelwarne B, Halagur SB. 2012. Red beet: an overview. In: Neelwarne B, ed. Red beet biotechnology: food and pharmaceutical applications. New York, NY, USA: Springer, 1 â 43.
dc.identifier.citedreferencePanchy N, Lehtiâ Shiu M, Shiu Sâ H. 2016. Evolution of gene duplication in plants. Plant Physiology 171: 2294 â 2316.
dc.identifier.citedreferencePencharz PB, Hsu JWâ C, Ball RO. 2007. Aromatic amino acid requirements in healthy human subjects. Journal of Nutrition 137: 1576S â 1578S.
dc.identifier.citedreferencePichersky E, Lewinsohn E. 2011. Convergent evolution in plant specialized metabolism. Annual Review of Plant Biology 62: 549 â 566.
dc.identifier.citedreferencePolturak G, Breitel D, Grossman N, Sarrionâ Perdigones A, Weithorn E, Pliner M, Orzaez D, Granell A, Rogachev I, Aharoni A. 2016. Elucidation of the first committed step in betalain biosynthesis enables the heterologous engineering of betalain pigments in plants. New Phytologist 210: 269 â 283.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.