Show simple item record

Estimate of the Rigidity of Eclogite in the Lower Mantle From Waveform Modeling of Broadband S‐to‐P Wave Conversions

dc.contributor.authorHaugland, Samuel M.
dc.contributor.authorRitsema, Jeroen
dc.contributor.authorKaneshima, Satoshi
dc.contributor.authorThorne, Michael S.
dc.date.accessioned2018-02-05T16:27:35Z
dc.date.available2019-01-07T18:34:39Zen
dc.date.issued2017-12-16
dc.identifier.citationHaugland, Samuel M.; Ritsema, Jeroen; Kaneshima, Satoshi; Thorne, Michael S. (2017). "Estimate of the Rigidity of Eclogite in the Lower Mantle From Waveform Modeling of Broadband S‐to‐P Wave Conversions." Geophysical Research Letters 44(23): 11,778-11,784.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/141104
dc.description.abstractBroadband USArray recordings of the 21 July 2007 western Brazil earthquake (Mw=6.0; depth = 633 km) include high‐amplitude signals about 40 s, 75 s, and 100 s after the P wave arrival. They are consistent with S wave to P wave conversions in the mantle beneath northwestern South America. The signal at 100 s, denoted as S1750P, has the highest amplitude and is formed at 1,750 km depth based on slant‐stacking and semblance analysis. Waveform modeling using axisymmetric, finite difference synthetics indicates that S1750P is generated by a 10 km thick heterogeneity, presumably a fragment of subducted mid‐ocean ridge basalt in the lower mantle. The negative polarity of S1750P is a robust observation and constrains the shear velocity anomaly δVS of the heterogeneity to be negative. The amplitude of S1750P indicates that δVS is in the range from −1.6% to −12.4%. The large uncertainty in δVS is due to the large variability in the recorded S1750P amplitude and simplifications in the modeling of S1750P waveforms. The lower end of our estimate for δVS is consistent with ab initio calculations by Tsuchiya (2011), who estimated that δVS of eclogite at lower mantle pressure is between 0 and −2% due to shear softening from the poststishovite phase transition.Key PointsBroadband recordings of S‐P conversions allow for constraining compositional properties of deep Earth materialsStishovite is present in subducted eclogite and contributes to shear velocity softeningFragments of subducted oceanic crust are entrained in mantle flow and can be preserved at depths approaching 2,000 km
dc.publisherElsevier
dc.publisherWiley Periodicals, Inc.
dc.subject.otheroceanic crust
dc.subject.otherseismology
dc.subject.othereclogite
dc.subject.otherstishovite
dc.subject.othersubduction
dc.subject.otherS‐P conversion
dc.titleEstimate of the Rigidity of Eclogite in the Lower Mantle From Waveform Modeling of Broadband S‐to‐P Wave Conversions
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141104/1/grl56669_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141104/2/grl56642-sup-0002-supplementary.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141104/3/grl56642-sup-0001-supplementary.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141104/4/grl56669.pdf
dc.identifier.doi10.1002/2017GL075463
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceOno, S., Hirose, K., Murakami, M., & Isshiki, M. ( 2002 ). Post‐stishovite phase boundary in SiO 2 determined by in situ X‐ray observations. Earth and Planetary Science Letters, 197 ( 3 ), 187 – 192. https://doi.org/10.1016/S0012-821X(02)00479-X
dc.identifier.citedreferenceKaneshima, S., & Helffrich, G. ( 1999 ). Dipping low‐velocity layer in the mid‐lower mantle: Evidence for geochemical heterogeneity. Science, 283 ( 5409 ), 1888 – 1892. https://doi.org/10.1126/science.283.5409.1888
dc.identifier.citedreferenceKaneshima, S., & Helffrich, G. ( 2003 ). Subparallel dipping heterogeneities in the mid‐lower mantle. Journal of Geophysical Research, 108 ( B5 ), 2272. https://doi.org/10.1029/2001JB001596
dc.identifier.citedreferenceKaneshima, S., & Helffrich, G. ( 2010 ). Small scale heterogeneity in the mid‐lower mantle beneath the circum‐Pacific area. Physics of the Earth and Planetary Interiors, 183 ( 1 ), 91 – 103. https://doi.org/10.1016/j.pepi.2010.03.011
dc.identifier.citedreferenceKarki, B. B., Stixrude, L., & Crain, J. ( 1997 ). Ab initio elasticity of three high‐pressure polymorphs of silica. Geophysical Research Letters, 24 ( 24 ), 3269 – 3272. https://doi.org/10.1029/97GL53196
dc.identifier.citedreferenceKawai, K., & Tsuchiya, T. ( 2012 ). First principles investigations on the elasticity and phase stability of grossular garnet. Journal of Geophysical Research, 117, B02202. https://doi.org/10.1029/2011JB008529
dc.identifier.citedreferenceKawakatsu, H., & Niu, F. ( 1994 ). Seismic evidence for a 920‐km discontinuity in the mantle. Nature, 371 ( 6495 ), 301 – 305. https://doi.org/10.1038/371301a0
dc.identifier.citedreferenceKudo, Y., Hirose, K., Murakami, M., Asahara, Y., Ozawa, H., Ohishi, Y., & Hirao, N. ( 2012 ). Sound velocity measurements of CaSiO 3 perovskite to 133 GPa and implications for lowermost mantle seismic anomalies. Earth and Planetary Science Letters, 349, 1 – 7. https://doi.org/10.1016/j.epsl.2012.06.040
dc.identifier.citedreferenceLakshtanov, D. L., Sinogeikin, S. V., Litasov, K. D., Prakapenka, V. B., Hellwig, H., Wang, J., & Li, J. ( 2007 ). The post‐stishovite phase transition in hydrous alumina‐bearing SiO 2 in the lower mantle of the Earth. Proceedings of the National Academy of Sciences of the United States of America, 104 ( 34 ), 13,588 – 13,590. https://doi.org/10.1073/pnas.0706113104
dc.identifier.citedreferenceLi, J., & Yuen, D. A. ( 2014 ). Mid‐mantle heterogeneities associated with Izanagi plate: Implications for regional mantle viscosity. Earth and Planetary Science Letters, 385, 137 – 144. https://doi.org/10.1016/j.epsl.2013.10.042
dc.identifier.citedreferenceLitasov, K., Ohtani, E., Suzuki, A., Kawazoe, T., & Funakoshi, K. ( 2004 ). Absence of density crossover between basalt and peridotite in the cold slabs passing through 660 km discontinuity. Geophysical Research Letters, 31, L24607. https://doi.org/10.1029/2004GL021306
dc.identifier.citedreferenceNiu, F. ( 2014 ). Distinct compositional thin layers at mid‐mantle depths beneath northeast China revealed by the USArray. Earth and Planetary Science Letters, 402, 305 – 312. https://doi.org/10.1016/j.epsl.2013.02.015
dc.identifier.citedreferenceNiu, F., & Kawakatsu, H. ( 1997 ). Depth variation of the mid‐mantle seismic discontinuity. Geophysical Research Letters, 24 ( 4 ), 429 – 432. https://doi.org/10.1029/97GL00216
dc.identifier.citedreferenceNomura, R., Hirose, K., Sata, N., & Ohishi, Y. ( 2010 ). Precise determination of post‐stishovite phase transition boundary and implications for seismic heterogeneities in the mid‐lower mantle. Physics of the Earth and Planetary Interiors, 183 ( 1 ), 104 – 109. https://doi.org/10.1016/j.pepi.2010.08.004
dc.identifier.citedreferenceRicolleau, A., Perrillat, J. P., Fiquet, G., Daniel, I., Matas, J., Addad, A., & Guignot, N. ( 2010 ). Phase relations and equation of state of a natural MORB: Implications for the density profile of subducted oceanic crust in the Earth’s lower mantle. Journal of Geophysical Research, 115, B08202. https://doi.org/10.1029/2009JB006709
dc.identifier.citedreferenceRitsema, J., Deuss, A. A., Van Heijst, H. J., & Woodhouse, J. H. ( 2011 ). S40RTS: A degree‐40 shear‐velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal‐mode splitting function measurements. Geophysical Journal International, 184 ( 3 ), 1223 – 1236. https://doi.org/10.1111/j.1365-246X.2010.04884.x
dc.identifier.citedreferenceShearer, P. M. ( 2007 ). Deep Earth structure—Seismic scattering in the deep Earth, Treatise on Geophysics (pp. 695–729). Amsterdam: Elsevier.
dc.identifier.citedreferenceThorne, M. S., Zhang, Y., & Ritsema, J. ( 2013 ). Evaluation of 1‐D and 3‐D seismic models of the Pacific lower mantle with S, SKS, and SKKS traveltimes and amplitudes. Journal of Geophysical Research: Solid Earth, 118, 985 – 995. https://doi.org/10.1002/jgrb.50054
dc.identifier.citedreferenceTsuchiya, T. ( 2011 ). Elasticity of subducted basaltic crust at the lower mantle pressures: Insights on the nature of deep mantle heterogeneity. Physics of the Earth and Planetary Interiors, 188 ( 3 ), 142 – 149. https://doi.org/10.1016/j.pepi.2011.06.018
dc.identifier.citedreferenceTsuchiya, T., Caracas, R., & Tsuchiya, J. ( 2004 ). First principles determination of the phase boundaries of high‐pressure polymorphs of silica. Geophysical Research Letters, 31, L11610. http://doi.org/10.1029/2004GL019649
dc.identifier.citedreferenceVanacore, E., Niu, F., & Kawakatsu, H. ( 2006 ). Observations of the mid‐mantle discontinuity beneath Indonesia from S to P converted waveforms. Geophysical Research Letters, 33, L04302. https://doi.org/10.1029/2005GL025106
dc.identifier.citedreferenceVinnik, L., Niu, F., & Kawakatsu, H. ( 1998 ). Broadband converted phases from midmantle discontinuities. Earth, Planets and Space, 50 ( 11–12 ), 987 – 997. http://doi.org/10.1186/BF03352193
dc.identifier.citedreferenceXu, W., Lithgow‐Bertelloni, C., Stixrude, L., & Ritsema, J. ( 2008 ). The effect of bulk composition and temperature on mantle seismic structure. Earth and Planetary Science Letters, 275 ( 1 ), 70 – 79. https://doi.org/10.1016/j.epsl.2008.08.012
dc.identifier.citedreferenceYang, Z., & He, X. ( 2015 ). Oceanic crust in the mid‐mantle beneath west‐central Pacific subduction zones: Evidence from S to P converted waveforms. Geophysical Journal International, 203 ( 1 ), 541 – 547. https://doi.org/10.1093/gji/ggv314
dc.identifier.citedreferenceBolfan‐Casanova, N., Andrault, D., Amiguet, E., & Guignot, N. ( 2009 ). Equation of state and post‐stishovite transformation of Al‐bearing silica up to 100 GPa and 3000 K. Physics of the Earth and Planetary Interiors, 174 ( 1 ), 70 – 77. https://doi.org/10.1016/j.pepi.2008.06.024
dc.identifier.citedreferenceCastle, J. C., & van der Hilst, R. D. ( 2003 ). Searching for seismic scattering off mantle interfaces between 800 km and 2000 km depth. Journal of Geophysical Research, 108 ( B2 ), 2095. https://doi.org/10.1029/2001JB000286
dc.identifier.citedreferenceFukao, Y., Widiyantoro, S., & Obayashi, M. ( 2001 ). Stagnant slabs in the upper and lower mantle transition region. Reviews of Geophysics, 39 ( 3 ), 291 – 323. https://doi.org/10.1029/1999RG000068
dc.identifier.citedreferenceGrand, S. P., van der Hilst, R. D., & Widiyantoro, S. ( 1997 ). High resolution global tomography: A snapshot of convection in the Earth. Geological Society of America Today, 7 ( 4 ), 1 – 7.
dc.identifier.citedreferenceHirose, K., Fei, Y., Ma, Y., & Mao, H. K. ( 1999 ). The fate of subducted basaltic crust in the Earth’s lower mantle. Nature, 397 ( 6714 ), 53 – 56. https://doi.org/10.1038/16225
dc.identifier.citedreferenceIrifune, T., & Ringwood, A. E. ( 1987 ). Phase transformations in a harzburgite composition to 26 GPa: Implications for dynamical behaviour of the subducting slab. Earth and Planetary Science Letters, 86 ( 2–4 ), 365 – 376. https://doi.org/10.1016/0012-821X(87)90233-0
dc.identifier.citedreferenceIrifune, T., & Ringwood, A. E. ( 1993 ). Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth and Planetary Science Letters, 117 ( 1–2 ), 101 – 110. https://doi.org/10.1016/0012-821X(93)90120-X
dc.identifier.citedreferenceIrifune, T., & Tsuchiya, T. ( 2007 ). Mineralogy of the Earth–Phase transitions and mineralogy of the lower mantle. Treatise on Geophysics, 2, 33 – 62. https://doi.org/10.1029/2012JB009696
dc.identifier.citedreferenceJahnke, G., Thorne, M. S., Cochard, A., & Igel, H. ( 2008 ). Global S H ‐wave propagation using a parallel axisymmetric spherical finite‐difference scheme: Application to whole mantle scattering. Geophysical Journal International, 173 ( 3 ), 815 – 826. https://doi.org/10.1111/j.1365-246X.2008.03744.x
dc.identifier.citedreferenceKaneshima, S. ( 2013 ). Lower mantle seismic scatterers below the subducting Tonga slab: Evidence for slab entrainment of transition zone materials. Physics of the Earth and Planetary Interiors, 222, 35 – 46. https://doi.org/10.1016/j.pepi. 2013.07.001
dc.identifier.citedreferenceKaneshima, S. ( 2016 ). Seismic scatterers in the mid‐lower mantle. Physics of the Earth and Planetary Interiors, 257, 105 – 114. https://doi.org/10.1016/j.pepi.2016.05.004
dc.identifier.citedreferenceKaneshima, S., & Helffrich, G. ( 1998 ). Detection of lower mantle scatterers northeast of the Marianna subduction zone using short‐period array data. Journal of Geophysical Research, 103 ( B3 ), 4825 – 4838. https://doi.org/10.1029/97JB02565
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.