Show simple item record

Understanding sources of methylmercury in songbirds with stable mercury isotopes: Challenges and future directions

dc.contributor.authorTsui, Martin Tsz‐ki
dc.contributor.authorAdams, Evan M.
dc.contributor.authorJackson, Allyson K.
dc.contributor.authorEvers, David C.
dc.contributor.authorBlum, Joel D
dc.contributor.authorBalogh, Steven J.
dc.date.accessioned2018-02-05T16:28:13Z
dc.date.available2019-03-01T21:00:19Zen
dc.date.issued2018-01
dc.identifier.citationTsui, Martin Tsz‐ki ; Adams, Evan M.; Jackson, Allyson K.; Evers, David C.; Blum, Joel D.; Balogh, Steven J. (2018). "Understanding sources of methylmercury in songbirds with stable mercury isotopes: Challenges and future directions." Environmental Toxicology and Chemistry 37(1): 166-174.
dc.identifier.issn0730-7268
dc.identifier.issn1552-8618
dc.identifier.urihttps://hdl.handle.net/2027.42/141144
dc.description.abstractMercury (Hg) stable isotope analysis is an emerging technique that has contributed to a better understanding of many aspects of the biogeochemical cycling of Hg in the environment. However, no study has yet evaluated its usefulness in elucidating the sources of methylmercury (MeHg) in songbird species, a common organism for biomonitoring of Hg in forested ecosystems. In the present pilot study, we examined stable mercury isotope ratios in blood of 4 species of songbirds and the invertebrates they are likely foraging on in multiple habitats in a small watershed of mixed forest and wetlands in Acadia National Park in Maine (USA). We found distinct isotopic signatures of MeHg in invertebrates (both massâ dependent fractionation [as δ202Hg] and massâ independent fractionation [as Î 199Hg]) among 3 interconnected aquatic habitats. It appears that the Hg isotopic compositions in bird blood cannot be fully accounted for by the isotopic compositions of MeHg in lower trophic levels in each of the habitats examined. Furthermore, the bird blood isotope results cannot be simply explained by an isotopic offset as a result of metabolic fractionation of δ202Hg (e.g., internal demethylation). Our results suggest that many of the birds sampled obtain MeHg from sources outside the habitat they were captured in. Our findings also indicate that massâ independent fractionation is a more reliable and conservative tracer than massâ dependent fractionation for identifying sources of MeHg in bird blood. The results demonstrate the feasibility of Hg isotope studies of songbirds but suggest that larger numbers of samples and an expanded geographic area of study may be required for conclusive interpretation. Environ Toxicol Chem 2018;37:166â 174. © 2017 SETAC
dc.publisherMaine Agricultural and Forest Experiment Station
dc.publisherWiley Periodicals, Inc.
dc.subject.otherTrophic transfer
dc.subject.otherSongbird
dc.subject.otherWetland
dc.subject.otherMethylation
dc.subject.otherIsotopic fractionation
dc.titleUnderstanding sources of methylmercury in songbirds with stable mercury isotopes: Challenges and future directions
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141144/1/etc3941.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141144/2/etc3941_am.pdf
dc.identifier.doi10.1002/etc.3941
dc.identifier.sourceEnvironmental Toxicology and Chemistry
dc.identifier.citedreferenceHobson KA, Clark RG. 1992. Assessing avian diets using stable isotopes I: Turnover of C in tissues. Condor 94: 181 â 188.
dc.identifier.citedreferenceLongcore JR, Haines TA, Halteman WA. 2007. Mercury in tree swallow food, eggs, bodies, and feathers at Acadia National Park, Maine, and an EPA superfund site, Ayer, Massachusetts. Environ Monit Assess 126: 129 â 143.
dc.identifier.citedreferenceFair JM, Paul E, Jones J, Council O. 2010. Guidelines to the use of wild birds in research. Ornithological Council, Washington, DC, USA.
dc.identifier.citedreferenceTsui MTK, Blum JD, Kwon SY, Finlay JC, Balogh SJ, Nollet YH. 2013. Photodegradation of methylmercury in stream ecosystems. Limnol Oceanogr 58: 13 â 22.
dc.identifier.citedreferenceZheng W, Obrist D, Weis D, Bergquist BA. 2016. Mercury isotope compositions across North American forests. Glob Biogeochem Cycles 30: 1475 â 1492.
dc.identifier.citedreferenceRodríguezâ González P, Epov VN, Bridou R, Tessier E, Guyoneaud R, Monperrus M, Amouroux D. 2009. Speciesâ specific stable isotope fractionation of mercury during Hg(II) methylation by an anaerobic bacteria ( Desulfobulbus propionicus ) under dark conditions. Environ Sci Technol 43: 9183 â 9188.
dc.identifier.citedreferencePerrot V, Bridou R, Pedrero Z, Guyoneaud R, Monperrus M, Amouroux D. 2015. Identical Hg isotope mass dependent fractionation signature during methylation by sulfateâ reducing bacteria in sulfate and sulfateâ free environment. Environ Sci Technol 49: 1365 â 1373.
dc.identifier.citedreferenceJanssen SE, Schaefer JK, Barkay T, Reinfelder JR. 2016. Fractionation of mercury stable isotopes during microbial methylmercury production by ironâ and sulfateâ reducing bacteria. Environ Sci Technol 50: 8077 â 8083.
dc.identifier.citedreferenceRoy V, Amyot M, Carignan R. 2009. Beaver ponds increase methylmercury concentrations in Canadian shield streams along vegetation and pondâ age gradients. Environ Sci Technol 43: 5605 â 5611.
dc.identifier.citedreferenceTsui MTK, Finlay JC, Nater EA. 2008. Effects of stream water chemistry and tree species on release and methylation of mercury during litter decomposition. Environ Sci Technol 42: 8692 â 8697.
dc.identifier.citedreferenceBergquist BA, Blum JD. 2007. Massâ dependent and â independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318: 417 â 420.
dc.identifier.citedreferencePeckenham JM, Kahl JS, Nelson SJ, Johnson KB, Haines TA. 2007. Landscape controls on mercury in streamwater at Acadia National Park, USA. Environ Monit Assess 126: 97 â 104.
dc.identifier.citedreferenceKwon SY, Blum JD, Chen CY, Meattey DE, Mason RP. 2014. Exposure pathways of methylmercury in estuarine food webs in the northeastern U.S. Environ Sci Technol 48: 10089 â 10097.
dc.identifier.citedreferenceKwon SY, Blum JD, Chirby M, Chesney E. 2013. Application of mercury isotopes for tracing trophic transfer and internal distribution of mercury in marine fish feeding experiments. Environ Toxicol Chem 32: 2322 â 2330.
dc.identifier.citedreferenceHobson KA, Clark RG. 1992. Assessing avian diets using stable isotopes II: Factors influencing dietâ tissue fractionation. Condor 94: 189 â 197.
dc.identifier.citedreferenceHopkins WA, Bodinof C, Budischak S, Perkins C. 2013. Nondestructive indices of mercury exposure in three species of turtles occupying different trophic niches downstream from a former chloralkali. Ecotoxicology 22: 22 â 32.
dc.identifier.citedreferenceYates DE, Mayack DT, Munney K, Evers DC, Major A, Kaur T, Taylor RJ. 2005. Mercury levels in mink ( Mustela vison ) and river otter ( Lontra canadensis ) from northeastern North America. Ecotoxicology 14: 263 â 274.
dc.identifier.citedreferenceAkagi H, Malm O, Branches FJP, Kinjo Y, Kashima Y, Guimaraes JRD, Oliveira RB, Haraguchi K, Pfeiffer WC, Takizawa Y, Kato H. 1995. Human exposure to mercury due to goldmining in the Tapajos River basin, Amazon, Brazil: Speciation of mercury in human hair, blood and urine. Water Air Soil Pollut 80: 85 â 94.
dc.identifier.citedreferenceLaffont L, Sonke JE, Maurice L, Hintelmann H, Pouilly M, Bacarreza YS, Perez T, Behra P. 2009. Anomalous mercury isotopic compositions of fish and human hair in the Bolivian Amazon. Environ Sci Technol 43: 8985 â 8990.
dc.identifier.citedreferenceSherman LS, Blum JD, Franzblau A, Basu N. 2013. New insight into biomarkers of human mercury exposure using naturally occurring mercury stable isotopes. Environ Sci Technol 47: 3403 â 3409.
dc.identifier.citedreferenceLi M, Sherman LS, Blum JD, Grandjean P, Mikkelsen B, Weihe P, Sunderland EM, Shine JP. 2014. Assessing sources of human methylmercury exposure using stable mercury isotopes. Environ Sci Technol 48: 8800 â 8806.
dc.identifier.citedreferenceDay RD, Roseneau DG, Berail S, Hobson KA, Donard OFX, Vander Pol SS, Pugh RS, Moors AJ, Long SE, Becker PR. 2012. Mercury stable isotopes in seabird eggs reflect a gradient from terrestrial geogenic to oceanic mercury reservoirs. Environ Sci Technol 46: 5327 â 5335.
dc.identifier.citedreferencePerrot V, Pastukhov MV, Epov VN, Husted S, Donard OFX, Amouroux D. 2012. Higher massâ independent isotope fractionation of methylmercury in the pelagic food web of Lake Baikal (Russia). Environ Sci Technol 46: 5902 â 5911.
dc.identifier.citedreferenceEaglesâ Smith CA, Ackerman JT, Yee J, Adelsbach TL. 2009. Mercury demethylation in waterbird livers: Doseâ response thresholds and differences among species. Environ Toxicol Chem 28: 568 â 577.
dc.identifier.citedreferenceEaglesâ Smith CA, Ackerman JT, Adelsbach TL, Takekawa JY, Miles AK, Keister RA. 2008. Mercury correlations among six tissues for four waterbird species breeding in San Francisco Bay, California, USA. Environ Toxicol Chem 27: 2136 â 2153.
dc.identifier.citedreferenceFournier F, Karasov WH, Kenow KP, Meyer MW, Hines RK. 2002. The oral bioavailability and toxicokinetics of methylmercury in common loon ( Gavia immer ) chicks. Comp Biochem Physiol A Mol Integr Physiol 133: 703 â 714.
dc.identifier.citedreferenceScheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW. 2007. Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36: 12 â 19.
dc.identifier.citedreferenceMitchell CPJ, Branfireun BA, Kolka RK. 2008. Spatial characteristics of net methylmercury production hot spots in peatlands. Environ Sci Technol 42: 1010 â 1016.
dc.identifier.citedreferenceKahle S, Becker PH. 1999. Bird blood as bioindicator for mercury in the environment. Chemosphere 39: 2451 â 2457.
dc.identifier.citedreferenceEvers DC, Burgess NM, Champoux L, Hoskins B, Major A, Goodale WM, Taylor RJ, Poppenga R, Daigle T. 2005. Patterns and interpretation of mercury exposure in freshwater avian communities in northeastern North America. Ecotoxicology 14: 193 â 221.
dc.identifier.citedreferenceJackson AK, Evers DC, Etterson MA, Condon AM, Folsom SB, Detweiler J, Schmerfeld J, Cristol DA. 2011. Mercury exposure affects the reproductive success of a freeâ living terrestrial songbird, the Carolina wren ( Thryothorus ludovicianus ). Auk 128: 759 â 769.
dc.identifier.citedreferenceBlum JD, Sherman LS, Johnson MW. 2014. Mercury isotopes in earth and environmental sciences. Annu Rev Earth Planet Sci 42: 249 â 269.
dc.identifier.citedreferenceTsui MTK, Blum JD, Kwon SY, Finlay JC, Balogh SJ, Nollet YH. 2012. Sources and transfers of methylmercury in adjacent river and forest food webs. Environ Sci Technol 46: 10957 â 10964.
dc.identifier.citedreferenceTsui MTK, Blum JD, Finlay JC, Balogh SJ, Power ME, Palen WJ, Nollet YH. 2014. Variation in terrestrial and aquatic sources of methylmercury in stream predators as revealed by stable mercury isotopes. Environ Sci Technol 48: 10128 â 10135.
dc.identifier.citedreferenceKwon SY, Blum JD, Carvan MJ, Basu N, Head JA, Madanjian CP, David SR. 2012. Absence of fractionation of mercury isotopes during trophic transfer of methylmercury to freshwater fish in captivity. Environ Sci Technol 46: 7527 â 7534.
dc.identifier.citedreferenceLi M, Schartup AT, Valberg AP, Ewald JD, Krabbenhoft DP, Yin R, Balcom PH, Sunderland EM. 2016. Environmental origins of methylmercury accumulated in subarctic estuarine fish indicated by mercury stable isotopes. Environ Sci Technol 50: 11559 â 11568.
dc.identifier.citedreferenceYin R, Feng X, Zhang J, Pan K, Wang W, Li X. 2016. Using mercury isotopes to understand the bioaccumulation of Hg in the subtropical Pearl River Estuary, South China. Chemosphere 147: 173 â 179.
dc.identifier.citedreferenceBank MS, Burgess JR, Evers DC, Loftin CS. 2007. Mercury contamination of biota from Acadia National Park, Maine: A review. Environ Monit Assess 126: 105 â 115.
dc.identifier.citedreferenceCalhoun AJK, Cormier JE, Owen RB, O’Connell AF, Roman CT, Tiner RW. 1994. The Wetlands of Acadia National Park and Vicinity. Publication Series 21, Maine Agricultural and Forest Experiment Station, Orono, Maine, USA.
dc.identifier.citedreferenceRimmer CC, McFarland KP, Evers DC, Miller EK, Aubry Y, Busby D, Taylor RJ. 2005. Mercury concentrations in Bicknell’s thrush and other insectivorous passerines in montane forests of northeastern North America. Ecotoxicology 14: 223 â 240.
dc.identifier.citedreferenceWayland M, Garciaâ Fernandez AJ, Neugebauer E, Gilchrist HG. 2001. Concentrations of cadmium, mercury, and selenium in blood, liver, and kidney of common eider ducks from the Canadian arctic. Environ Monit Assess 71: 255 â 8267.
dc.owningcollnameEarth and Environmental Sciences, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.