Show simple item record

P2X7 receptor‐mediated Nlrp3‐inflammasome activation is a genetic determinant of macrophage‐dependent crescentic glomerulonephritis

dc.contributor.authorDeplano, Simona
dc.contributor.authorCook, H. Terence
dc.contributor.authorRussell, Ryan
dc.contributor.authorFranchi, Luigi
dc.contributor.authorSchneiter, Sabine
dc.contributor.authorBhangal, Gurjeet
dc.contributor.authorUnwin, Robert J.
dc.contributor.authorPusey, Charles D.
dc.contributor.authorTam, Frederick W. K.
dc.contributor.authorBehmoaras, Jacques
dc.date.accessioned2018-02-05T16:28:36Z
dc.date.available2018-02-05T16:28:36Z
dc.date.issued2013-01
dc.identifier.citationDeplano, Simona; Cook, H. Terence; Russell, Ryan; Franchi, Luigi; Schneiter, Sabine; Bhangal, Gurjeet; Unwin, Robert J.; Pusey, Charles D.; Tam, Frederick W. K.; Behmoaras, Jacques (2013). "P2X7 receptor‐mediated Nlrp3‐inflammasome activation is a genetic determinant of macrophage‐dependent crescentic glomerulonephritis." Journal of Leukocyte Biology 93(1): 127-134.
dc.identifier.issn0741-5400
dc.identifier.issn1938-3673
dc.identifier.urihttps://hdl.handle.net/2027.42/141169
dc.publisherWiley Periodicals, Inc.
dc.subject.otherIL‐18
dc.subject.otherIL‐1β
dc.subject.otherglomeruli
dc.subject.othercaspase‐1
dc.subject.otherWKY rat
dc.titleP2X7 receptor‐mediated Nlrp3‐inflammasome activation is a genetic determinant of macrophage‐dependent crescentic glomerulonephritis
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
dc.contributor.affiliationotherRenal Section, Hammersmith Hospital, London, United Kingdom
dc.contributor.affiliationotherUniversity College London Centre for Nephrology, University College London Medical School, Royal Free Campus and Hospital, London, United Kingdom
dc.contributor.affiliationotherCentre for Complement and Inflammation Research, Imperial College London, Hammersmith Hospital, London, United Kingdom
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141169/1/jlb0127-sup-0001.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141169/2/jlb0127.pdf
dc.identifier.doi10.1189/jlb.0612284
dc.identifier.sourceJournal of Leukocyte Biology
dc.identifier.citedreferenceKahlenberg, J. M., Lundberg, K. C., Kertesy, S. B., Qu, Y., Dubyak, G. R. ( 2005 ) Potentiation of caspase‐1 activation by the P2X7 receptor is dependent on TLR signals and requires NF‐κB‐driven protein synthesis. J. Immunol. 175, 7611 – 7622.
dc.identifier.citedreferenceBehmoaras, J., Bhangal, G., Smith, J., McDonald, K., Mutch, B., Lai, P. C., Domin, J., Game, L., Salama, A., Foxwell, B. M., Pusey, C. D., Cook, H. T., Aitman, T. J. ( 2008 ) Jund is a determinant of macrophage activation and is associated with glomerulonephritis susceptibility. Nat. Genet. 40, 553 – 559.
dc.identifier.citedreferencePage, T. H., D’Souza, Z., Nakanishi, S., Serikawa, T., Pusey, C. D., Aitman, T. J., Cook, H. T., Behmoaras, J. ( 2012 ) Role of a novel rat‐specific Fc receptor in macrophage activation associated with crescentic glomerulonephritis. J. Biol. Chem. 287, 5610 – 5719.
dc.identifier.citedreferenceMaratou, K., Behmoaras, J., Fewings, C., Srivastava, P., D’Souza, Z., Smith, J., Game, L., Cook, T., Aitman, T. ( 2011 ) Characterization of the macrophage transcriptome in glomerulonephritis‐susceptible and ‐resistant rat strains. Genes Immun. 12, 78 – 89.
dc.identifier.citedreferenceCook, H. T., Singh, S. J., Wembridge, D. E., Smith, J., Tam, F. W., Pusey, C. D. ( 1999 ) Interleukin‐4 ameliorates crescentic glomerulonephritis in Wistar Kyoto rats. Kidney Int. 55, 1319 – 1326.
dc.identifier.citedreferenceLai, P. C., Cook, H. T., Smith, J., Keith, J. C., Jr., Pusey, C. D., Tam, F. W. ( 2001 ) Interleukin‐11 attenuates nephrotoxic nephritis in Wistar Kyoto rats. J. Am. Soc. Nephrol. 12, 2310 – 2320.
dc.identifier.citedreferenceSheryanna, A., Bhangal, G., McDaid, J., Smith, J., Manning, A., Foxwell, B. M., Feldmann, M., Cook, H. T., Pusey, C. D., Tam, F. W. ( 2007 ) Inhibition of p38 mitogen‐activated protein kinase is effective in the treatment of experimental crescentic glomerulonephritis and suppresses monocyte chemoattractant protein‐1 but not IL‐1β or IL‐6. J. Am. Soc. Nephrol. 18, 1167 – 1179.
dc.identifier.citedreferenceSmith, J., McDaid, J. P., Bhangal, G., Chawanasuntorapoj, R., Masuda, E. S., Cook, H. T., Pusey, C. D., Tam, F. W. ( 2010 ) A spleen tyrosine kinase inhibitor reduces the severity of established glomerulonephritis. J. Am. Soc. Nephrol. 21, 231 – 236.
dc.identifier.citedreferenceDi Virgilio, F. ( 2007 ) Liaisons dangereuses: P2X(7) and the inflammasome. Trends Pharmacol. Sci. 28, 465 – 472.
dc.identifier.citedreferenceSurprenant, A., Rassendren, F., Kawashima, E., North, R. A., Buell, G. ( 1996 ) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272, 735 – 738.
dc.identifier.citedreferenceFerrari, D., Chiozzi, P., Falzoni, S., Dal Susino, M., Melchiorri, L., Baricordi, O. R., Di Virgilio, F. ( 1997 ) Extracellular ATP triggers IL‐1 β release by activating the purinergic P2Z receptor of human macrophages. J. Immunol. 159, 1451 – 1458.
dc.identifier.citedreferenceFerrari, D., Pizzirani, C., Adinolfi, E., Lemoli, R. M., Curti, A., Idzko, M., Panther, E., Di Virgilio, F. ( 2006 ) The P2X7 receptor: a key player in IL‐1 processing and release. J. Immunol. 176, 3877 – 3883.
dc.identifier.citedreferenceHillman, K. A., Burnstock, G., Unwin, R. J. ( 2005 ) The P2X7 ATP receptor in the kidney: a matter of life or death? Nephron Exp. Nephrol. 101, e24 – e30.
dc.identifier.citedreferenceVonend, O., Turner, C. M., Chan, C. M., Loesch, A., Dell’Anna, G. C., Srai, K. S., Burnstock, G., Unwin, R. J. ( 2004 ) Glomerular expression of the ATP‐sensitive P2X receptor in diabetic and hypertensive rat models. Kidney Int. 66, 157 – 166.
dc.identifier.citedreferenceTurner, C. M., Tam, F. W., Lai, P. C., Tarzi, R. M., Burnstock, G., Pusey, C. D., Cook, H. T., Unwin, R. J. ( 2007 ) Increased expression of the pro‐apoptotic ATP‐sensitive P2X7 receptor in experimental and human glomerulonephritis. Nephrol. Dial. Transplant. 22, 386 – 395.
dc.identifier.citedreferenceMartinon, F., Burns, K., Tschopp, J. ( 2002 ) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL‐β. Mol. Cell 10, 417 – 426.
dc.identifier.citedreferenceFranchi, L., Eigenbrod, T., Muñoz‐Planillo, R., Nuñez, G. ( 2009 ) The inflammasome: a caspase‐1‐activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 10, 241 – 247.
dc.identifier.citedreferenceBauernfeind, F. G., Horvath, G., Stutz, A., Alnemri, E. S., MacDonald, K., Speert, D., Fernandes‐Alnemri, T., Wu, J., Monks, B. G., Fitzgerald, K. A., Hornung, V., Latz, E. ( 2009 ) Cutting edge: NF‐κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787 – 791.
dc.identifier.citedreferenceFranchi, L., Eigenbrod, T., Nuñez, G. ( 2009 ) Cutting edge: TNF‐α mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J. Immunol. 183, 792 – 796.
dc.identifier.citedreferenceFranchi, L., Kanneganti, T. D., Dubyak, G. R., Nuñez, G. ( 2007 ) Differential requirement of P2X7 receptor and intracellular K+ for caspase‐1 activation induced by intracellular and extracellular bacteria. J. Biol. Chem. 282, 18810 – 18818.
dc.identifier.citedreferenceMariathasan, S., Newton, K., Monack, D. M., Vucic, D., French, D. M., Lee, W. P., Roose‐Girma, M., Erickson, S., Dixit, V. M. ( 2004 ) Differential activation of the inflammasome by caspase‐1 adaptors ASC and Ipaf. Nature 430, 213 – 218.
dc.identifier.citedreferenceSutterwala, F. S., Ogura, Y., Szczepanik, M., Lara‐Tejero, M., Lichtenberger, G. S., Grant, E. P., Bertin, J., Coyle, A. J., Galan, J. E., Askenase, P. W., Flavell, R. A. ( 2006 ) Critical role for NALP3/CIAS1/cryopyrin in innate and adaptive immunity through its regulation of caspase‐1. Immunity 24, 317 – 327.
dc.identifier.citedreferenceTaylor, S. R., Turner, C. M., Elliott, J. I., McDaid, J., Hewitt, R., Smith, J., Pickering, M. C., Whitehouse, D. L., Cook, H. T., Burnstock, G., Pusey, C. D., Unwin, R. J., Tam, F. W. ( 2009 ) P2X7 deficiency attenuates renal injury in experimental glomerulonephritis. J. Am. Soc. Nephrol. 20, 1275 – 1281.
dc.identifier.citedreferencePelegrin, P., Surprenant, A. ( 2007 ) Pannexin‐1 couples to maitotoxin‐ and Nigericin‐induced interleukin‐1β release through a dye uptake‐independent pathway. J. Biol. Chem. 282, 2386 – 2394.
dc.identifier.citedreferenceGhiringhelli, F., Apetoh, L., Tesniere, A., Aymeric, L., Ma, Y., Ortiz, C., Vermaelen, K., Panaretakis, T., Mignot, G., Ullrich, E., Perfettini, J. L., Schlemmer, F., Tasdemir, E., Uhl, M., Genin, P., Civas, A., Ryffel, B., Kanellopoulos, J., Tschopp, J., Andre, F., Lidereau, R., McLaughlin, N. M., Haynes, N. M., Smyth, M. J., Kroemer, G., Zitvogel, L. ( 2009 ) Activation of the NLRP3 inflammasome in dendritic cells induces IL‐1β‐dependent adaptive immunity against tumors. Nat. Med. 15, 1170 – 1178.
dc.identifier.citedreferenceMcDonald, B., Pittman, K., Menezes, G. B., Hirota, S. A., Slaba, I., Waterhouse, C. C., Beck, P. L., Muruve, D. A., Kubes, P. ( 2010 ) Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330, 362 – 366.
dc.identifier.citedreferenceTurner, C. M., Elliott, J. I., Tam, F. W. ( 2009 ) P2 receptors in renal pathophysiology. Purinergic Signal. 5, 513 – 520.
dc.identifier.citedreferenceGoncalves, R. G., Gabrich, L., Rosario, A., Jr., Takiya, C. M., Ferreira, M. L., Chiarini, L. B., Persechini, P. M., Coutinho‐Silva, R., Leite Jr., M., ( 2006 ) The role of purinergic P2X7 receptors in the inflammation and fibrosis of unilateral ureteral obstruction in mice. Kidney Int. 70, 1599 – 1606.
dc.identifier.citedreferenceFuller, S. J., Stokes, L., Skarratt, K. K., Gu, B. J., Wiley, J. S. ( 2009 ) Genetics of the P2X7 receptor and human disease. Purinergic Signal. 5, 257 – 262.
dc.identifier.citedreferenceWesselius, A., Bours, M. J., Agrawal, A., Gartland, A., Dagnelie, P. C., Schwarz, P., Jorgensen, N. R. ( 2012 ) Role of purinergic receptor polymorphisms in human bone. Front. Biosci. 17, 2572 – 2585.
dc.identifier.citedreferenceVilaysane, A., Chun, J., Seamone, M. E., Wang, W., Chin, R., Hirota, S., Li, Y., Clark, S. A., Tschopp, J., Trpkov, K., Hemmelgarn, B. R., Beck, P. L., Muruve, D. A. ( 2010 ) The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J. Am. Soc. Nephrol. 21, 1732 – 1744.
dc.identifier.citedreferenceLittle, M. A., Pusey, C. D. ( 2004 ) Rapidly progressive glomerulonephritis: current and evolving treatment strategies. J. Nephrol. 17 ( Suppl. 8 ), S10 – S19.
dc.identifier.citedreferenceTarzi, R. M., Cook, H. T., Pusey, C. D. ( 2011 ) Crescentic glomerulonephritis: new aspects of pathogenesis. Semin. Nephrol. 31, 361 – 368.
dc.identifier.citedreferenceMa, F. Y., Ikezumi, Y., Nikolic‐Paterson, D. J. ( 2010 ) Macrophage signaling pathways: a novel target in renal disease. Semin. Nephrol. 30, 334 – 344.
dc.identifier.citedreferenceNikolic‐Paterson, D. J., Atkins, R. C. ( 2001 ) The role of macrophages in glomerulonephritis. Nephrol. Dial. Transplant. 16 ( Suppl. 5 ), 3 – 7.
dc.identifier.citedreferenceVielhauer, V., Kulkarni, O., Reichel, C. A., Anders, H. J. ( 2010 ) Targeting the recruitment of monocytes and macrophages in renal disease. Semin. Nephrol. 30, 318 – 333.
dc.identifier.citedreferenceTam, F. W., Smith, J., Morel, D., Karkar, A. M., Thompson, E. M., Cook, H. T., Pusey, C. D. ( 1999 ) Development of scarring and renal failure in a rat model of crescentic glomerulonephritis. Nephrol. Dial. Transplant. 14, 1658 – 1666.
dc.identifier.citedreferenceAitman, T. J., Dong, R., Vyse, T. J., Norsworthy, P. J., Johnson, M. D., Smith, J., Mangion, J., Roberton‐Lowe, C., Marshall, A. J., Petretto, E., Hodges, M. D., Bhangal, G., Patel, S. G., Sheehan‐Rooney, K., Duda, M., Cook, P. R., Evans, D. J., Domin, J., Flint, J., Boyle, J. J., Pusey, C. D., Cook, H. T. ( 2006 ) Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439, 851 – 855.
dc.identifier.citedreferenceBehmoaras, J., Smith, J., D’Souza, Z., Bhangal, G., Chawanasuntoropoj, R., Tam, F. W., Pusey, C. D., Aitman, T. J., Cook, H. T. ( 2010 ) Genetic loci modulate macrophage activity and glomerular damage in experimental glomerulonephritis. J. Am. Soc. Nephrol. 21, 1136 – 1144.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.