Show simple item record

Axin expression in thymic stromal cells contributes to an ageâ related increase in thymic adiposity and is associated with reduced thymopoiesis independently of ghrelin signaling

dc.contributor.authorYang, Hyunwon
dc.contributor.authorYoum, Yun‐hee
dc.contributor.authorSun, Yuxiang
dc.contributor.authorRim, Jong‐seop
dc.contributor.authorGalbán, Craig J.
dc.contributor.authorVandanmagsar, Bolormaa
dc.contributor.authorDixit, Vishwa Deep
dc.date.accessioned2018-02-05T16:29:17Z
dc.date.available2018-02-05T16:29:17Z
dc.date.issued2009-06
dc.identifier.citationYang, Hyunwon; Youm, Yun‐hee ; Sun, Yuxiang; Rim, Jong‐seop ; Galbán, Craig J. ; Vandanmagsar, Bolormaa; Dixit, Vishwa Deep (2009). "Axin expression in thymic stromal cells contributes to an ageâ related increase in thymic adiposity and is associated with reduced thymopoiesis independently of ghrelin signaling." Journal of Leukocyte Biology 85(6): 928-938.
dc.identifier.issn0741-5400
dc.identifier.issn1938-3673
dc.identifier.urihttps://hdl.handle.net/2027.42/141208
dc.publisherWiley Periodicals, Inc.
dc.subject.otherGH
dc.subject.otheradipocyte
dc.subject.otherdietary restriction
dc.subject.otherobesity
dc.subject.otheradipogenesis
dc.subject.otherWnt
dc.subject.otheraging
dc.titleAxin expression in thymic stromal cells contributes to an ageâ related increase in thymic adiposity and is associated with reduced thymopoiesis independently of ghrelin signaling
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumRadiology Department, University of Michigan, Ann Arbor, Michigan, USA
dc.contributor.affiliationotherHuffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA; and
dc.contributor.affiliationotherDivision of Experimental Obesity, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA;
dc.contributor.affiliationotherLaboratory of Neuroendocrineâ Immunology, Baton Rouge, Louisiana, USA
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141208/1/jlb0928.pdf
dc.identifier.doi10.1189/jlb.1008621
dc.identifier.sourceJournal of Leukocyte Biology
dc.identifier.citedreferenceDouek, D. C., McFarland, R. D., Keiser, P. H., Gage, E. A., Massey, J. M., Haynes, B. F., Polis, M. A., Haase, A. T., Feinberg, M. B., Sullivan, J. L., Jamieson, B. D., Zack, J. A., Picker, L. J., Koup, R. A. ( 1998 ) Changes in thymic function with age and during the treatment of HIV infection. Nature 396, 690 â 695.
dc.identifier.citedreferencede Geer, G., Webb, W. R., Gamsu, G. ( 1986 ) Normal thymus: assessment with MR and CT. Radiology 158, 313 â 317.
dc.identifier.citedreferenceEvans, R., Barish, G. D., Wang, Y. X. ( 2004 ) PPARs and the complex journey to obesity. Nat. Med. 10, 355 â 361.
dc.identifier.citedreferenceRosen, E. D., MacDougald, O. A. ( 2006 ) Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7, 885 â 896.
dc.identifier.citedreferenceTontonoz, P., Hu, E., Spiegelman, B. M. ( 1994 ) Stimulation of adipogenesis in fibroblasts by PPAR γ 2, a lipidâ activated transcription factor. Cell 79, 1147 â 1156.
dc.identifier.citedreferenceHotamisligil, G. S., Johnson, R. S., Distel, R. J., Ellis, R., Papaioannou, V. E., Spiegelman, B. M. ( 1996 ) Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 274, 1377 â 1379.
dc.identifier.citedreferenceRoss, S. E., Hemati, N., Longo, K. A., Bennett, C. N., Lucas, P. C., Erickson, R. L., MacDougald, O. A. ( 2000 ) Inhibition of adipogenesis by Wnt signaling. Science 289, 950 â 953.
dc.identifier.citedreferenceLiu, H., Fergusson, M. M., Castilho, R. M., Liu, J., Cao, L., Chen, J., Malide, D., Rovira, I. I., Schimel, D., Kuo, C. J., Gutkind, J. S., Hwang, P. M., Finkel, T. ( 2007 ) Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317, 803 â 806.
dc.identifier.citedreferenceBrack, A. S., Conboy, M. J., Roy, S., Lee, M., Kuo, C. J., Keller, C., Rando, T. A. ( 2007 ) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807 â 810.
dc.identifier.citedreferenceYe, X., Zerlanko, B., Kennedy, A., Banumathy, G., Zhang, R., Adams, P. D. ( 2007 ) Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells. Mol. Cell 27, 183 â 196.
dc.identifier.citedreferenceStrutz, F., Okada, H., Lo, C. W., Danoff, T., Carone, R. L., Tomaszewski, J. E., Neilson, E. G. ( 1995 ) Identification and characterization of a fibroblast marker: FSP1. J. Cell Biol. 130, 393 â 405.
dc.identifier.citedreferenceIwano, M., Plieth, D., Danoff, T. M., Xue, C., Okada, H., Neilson, E. G. ( 2002 ) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 110, 341 â 350.
dc.identifier.citedreferenceVan den Dool, C., de Boer, R. J. ( 2006 ) The effects of age, thymectomy, and HIV infection on α and β TCR excision circles in naive T cells. J. Immunol. 177, 4391 â 4401.
dc.identifier.citedreferenceWharton Jr., K. A., Zimmermann, G., Rousset, R., Scott, M. P. ( 2001 ) Vertebrate proteins related to Drosophila naked cuticle bind disheveled and antagonize Wnt signaling. Dev. Biol. 234, 93 â 106.
dc.identifier.citedreferenceVan Raay, T. J., Coffey, R. J., Solnicaâ Krezel, L. ( 2007 ) Zebrafish Naked1 and Naked2 antagonize both canonical and nonâ canonical Wnt signaling. Dev. Biol. 309, 151 â 168.
dc.identifier.citedreferenceSmas, C. M., Sul, H. S. ( 1993 ) Prefâ 1, a protein containing EGFâ like repeats, inhibits adipocyte differentiation. Cell 73, 725 â 734.
dc.identifier.citedreferenceMoon, Y. S., Smas, C. M., Lee, K., Villena, J. A., Kim, K. H., Yun, E. J., Sul, H. S. ( 2002 ) Mice lacking paternally expressed Prefâ 1/Dlk1 display growth retardation and accelerated adiposity. Mol. Cell. Biol. 22, 5585 â 5592.
dc.identifier.citedreferenceLee, K., Villena, J. A., Moon, Y. S., Kim, K. H., Lee, S., Kang, C., Sul, H. S. ( 2003 ) Inhibition of adipogenesis and development of glucose intolerance by soluble preadipocyte factorâ 1 (Prefâ 1). J. Clin. Invest. 111, 453 â 461.
dc.identifier.citedreferenceYang, H., Youm, Y. H., Nakata, C., Dixit, V. D. ( 2007 ) Chronic caloric restriction induces forestomach hypertrophy with enhanced ghrelin levels during aging. Peptides 28, 1931 â 1936.
dc.identifier.citedreferenceZediak, V. P., Maillard, I., Bhandoola, A. ( 2007 ) Multiple prethymic defects underlie age related loss of T progenitor competence. Blood 110, 1161 â 1167.
dc.identifier.citedreferenceAnderson, G., Jenkinson, E. J. ( 2001 ) Lymphostromal interactions in thymic development and function. Nat. Rev. Immunol. 1, 31 â 40.
dc.identifier.citedreferenceHale, J. S., Boursalian, T. E., Turk, G. L., Fink, P. J. ( 2006 ) Thymic output in aged mice. Proc. Natl. Acad. Sci. USA 103, 8447 â 8452.
dc.identifier.citedreferenceBhandoola, A., von Boehmer, H., Petrie, H. T., Zunigaâ Pflucker, J. C. ( 2007 ) Commitment and developmental potential of extrathymic and intrathymic T cell precursors: plenty to choose from. Immunity 26, 678 â 689.
dc.identifier.citedreferenceHsu, W., Shakya, R., Costantini, F. ( 2001 ) Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. J. Cell Biol. 155, 1055 â 1064.
dc.identifier.citedreferenceMohtashami, M., Zúñigaâ Pflücker, J. C. ( 2005 ) Threeâ dimensional architecture of the thymus is required to maintain δâ like expression necessary for inducing T cell development. J. Immunol. 175, 4858 â 4865.
dc.identifier.citedreferenceNikolichâ Zugich, J., Messaoudi, I. ( 2005 ) Mice and flies and monkeys too: caloric restriction rejuvenates the aging immune system of nonâ human primates. Exp. Gerontol. 40, 884 â 893.
dc.identifier.citedreferenceMessaoudi, I., Warner, J., Fischer, M., Park, B., Hill, B., Mattison, J., Lane, M. A., Roth, G. S., Ingram, D. K., Picker, L. J., Douek, D. C., Mori, M., Nikolichâ Zugich, J. ( 2006 ) Delay of T cell senescence by caloric restriction in aged longâ lived nonhuman primates. Proc. Natl. Acad. Sci. USA 103, 19448 â 19453.
dc.identifier.citedreferenceDixit, V. D., Schaffer, E. M., Pyle, R. S., Collins, G. D., Sakthivel, S. K., Palaniappan, R., Lillard Jr., J. W., Taub, D. D. ( 2004 ) Ghrelin inhibits leptinâ and activationâ induced proinflammatory cytokine expression by human monocytes and T cells. J. Clin. Invest. 114, 57 â 66.
dc.identifier.citedreferenceLi, W. G., Gavrila, D., Liu, X., Wang, L., Gunnlaugsson, S., Stoll, L. L., McCormick, M. L., Sigmund, C. D., Tang, C., Weintraub, N. L. ( 2004 ) Ghrelin inhibits proinflammatory responses and nuclear factorâ κB activation in human endothelial cells. Circulation 109, 2221 â 2226.
dc.identifier.citedreferenceYoum, Y. H., Yang, H., Sun, Y., Smith, R. G., Manley, N. R., Vandanmagsar, B., Dixit, V. D. ( 2009 ) Deficient ghrelin receptor mediated signaling compromises thymic stromal cell microenvironment by accelerating thymic adiposity. J. Biol. Chem. 284, 7068 â 7077.
dc.identifier.citedreferenceLinton, P. J., Dorshkind, K. ( 2004 ) Ageâ related changes in lymphocyte development and function. Nat. Immunol. 5, 133 â 139.
dc.identifier.citedreferenceSutherland, J. S., Goldberg, G. L., Hammett, M. V., Uldrich, A. P., Berzins, S. P., Heng, T. S., Blazar, B. R., Millar, J. L., Malin, M. A., Chidgey, A. P., Boyd, R. L. ( 2005 ) Activation of thymic regeneration in mice and humans following androgen blockade. J. Immunol. 175, 2741 â 2753.
dc.identifier.citedreferenceDixit, V. D. ( 2008 ) Adiposeâ immune interactions during obesity and caloric restriction: reciprocal mechanisms regulating immunity and health span. J. Leukoc. Biol. 84, 882 â 892.
dc.identifier.citedreferenceDixit, V. D., Yang, H., Sun, Y., Weeraratna, A. T., Youm, Y. H., Smith, R. G., Taub, D. D. ( 2007 ) Ghrelin promotes thymopoiesis during aging. J. Clin. Invest. 117, 2778 â 2790.
dc.identifier.citedreferenceGui, J., Zhu, X., Dohkan, J., Cheng, L., Barnes, P. F., Su, D. M. ( 2007 ) The aged thymus shows normal recruitment of lymphohematopoietic progenitors but has defects in thymic epithelial cells. Int. Immunol. 19, 1201 â 1211.
dc.identifier.citedreferenceZhu, X., Gui, J., Dohkan, J., Cheng, L., Barnes, P. F., Su, D. M. ( 2007 ) Lymphohematopoietic progenitors do not have a synchronized defect with ageâ related thymic involution. Aging Cell 6, 663 â 672.
dc.identifier.citedreferenceAw, D., Silva, A. B., Maddick, M., von Zglinicki, T., Palmer, D. B. ( 2008 ) Architectural changes in the thymus of aging mice. Aging Cell 7, 158 â 167.
dc.identifier.citedreferenceChu, Y. W., Schmitz, S., Choudhury, B., Telford, W., Kapoor, V., Garfield, S., Howe, D., Gress, R. E. ( 2008 ) Exogenous insulinâ like growth factor 1 enhances thymopoiesis predominantly through thymic epithelial cell expansion. Blood 112, 2836 â 2846.
dc.identifier.citedreferenceMin, D., Panoskaltsisâ Mortari, A., Kuroâ O, M., Holländer, G. A., Blazar, B. R., Weinberg, K. I. ( 2007 ) Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 109, 2529 â 2537.
dc.identifier.citedreferenceMin, H., Montecinoâ Rodriguez, E., Dorshkind, K. ( 2004 ) Reduction in the developmental potential of intrathymic T cell progenitors with age. J. Immunol. 173, 245 â 250.
dc.identifier.citedreferenceChidgey, A., Dudakov, J., Seach, N., Boyd, R. ( 2007 ) Impact of niche aging on thymic regeneration and immune reconstitution. Semin. Immunol. 19, 331 â 340.
dc.identifier.citedreferencePetrie, H. T., Zunigaâ Pflucker, J. C. ( 2007 ) Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu. Rev. Immunol. 25, 649 â 679.
dc.identifier.citedreferenceSteinmann, G. G. ( 1986 ) Changes in the human thymus during aging. Curr. Top. Pathol. 75, 43 â 88.
dc.identifier.citedreferenceFlores, K. G., Li, J., Sempowski, G. D., Haynes, B. F., Hale, L. P. ( 1999 ) Analysis of the human thymic perivascular space during aging. J. Clin. Invest. 104, 1031 â 1039.
dc.identifier.citedreferencePearse, G. ( 2006 ) Normal structure, function and histology of the thymus. Toxicol. Pathol. 34, 504 â 514.
dc.identifier.citedreferenceManolagas, S. C., Almeida, M. ( 2007 ) Gone with the Wnts: βâ catenin, Tâ cell factor, forkhead box O, and oxidative stress in ageâ dependent diseases of bone, lipid, and glucose metabolism. Mol. Endocrinol. 21, 2605 â 2614.
dc.identifier.citedreferenceKléber, M., Sommer, L. ( 2004 ) Wnt signaling and the regulation of stem cell function. Curr. Opin. Cell Biol. 16, 681 â 687.
dc.identifier.citedreferenceZeng, L., Fagotto, F., Zhang, T., Hsu, W., Vasicek, T. J., Perry III L., Lee, J. J., Tilghman, S. M., Gumbiner, B. M., Costantini, F. ( 1997 ) The mouse fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90, 181 â 192.
dc.identifier.citedreferenceChia, I. V., Costantini, F. ( 2005 ) Mouse axin and axin2/conductin proteins are functionally equivalent in vivo. Mol. Cell. Biol. 25, 4371 â 4376.
dc.identifier.citedreferenceReya, T., Clevers, H. ( 2005 ) Wnt signaling in stem cells and cancer. Nature 434, 843 â 850.
dc.identifier.citedreferenceCadigan, K. M., Liu, Y. I. ( 2006 ) Wnt signaling: complexity at the surface. J. Cell Sci. 119, 395 â 402.
dc.identifier.citedreferenceLogan, C. Y., Nusse, R. ( 2004 ) The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781 â 810.
dc.identifier.citedreferenceKawano, Y., Kypta, R. ( 2003 ) Secreted antagonists of the Wnt signaling pathway. J. Cell Sci. 116, 2627 â 2634.
dc.identifier.citedreferenceWeerkamp, F., Baert, M. R., Naber, B. A., Koster, E. E., de Haas, E. F., Atkuri, K. R., van Dongen, J. J., Herzenberg, L. A., Staal, F. J. ( 2006 ) Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules. Proc. Natl. Acad. Sci. USA 103, 3322 â 3326.
dc.identifier.citedreferenceLiang, H., Coles, A. H., Zhu, Z., Zayas, J., Jurecic, R., Kang, J., Jones, S. N. ( 2007 ) Noncanonical Wnt signaling promotes apoptosis in thymocyte development. J. Exp. Med. 204, 3077 â 3084.
dc.identifier.citedreferencevan de Wetering, M., de Lau, W., Clevers, H. ( 2002 ) WNT signaling and lymphocyte development. Cell 109 (Suppl.), S13 â S19.
dc.identifier.citedreferenceBalciunaite, G., Keller, M. P., Balciunaite, E., Piali, L., Zuklys, S., Mathieu, Y. D., Gill, J., Boyd, R., Sussman, D. J., Holländer, G. A. ( 2002 ) Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat. Immunol. 3, 1102 â 1108.
dc.identifier.citedreferenceStaal, F. J., Clevers, H. C. ( 2003 ) Wnt signaling in the thymus. Curr. Opin. Immunol. 15, 204 â 208.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.