Show simple item record

The Global Mesoscale Eddy Available Potential Energy Field in Models and Observations

dc.contributor.authorLuecke, C.A.
dc.contributor.authorArbic, B.K.
dc.contributor.authorBassette, S.L.
dc.contributor.authorRichman, J.G.
dc.contributor.authorShriver, J.F.
dc.contributor.authorAlford, M.H.
dc.contributor.authorSmedstad, O.M.
dc.contributor.authorTimko, P.G.
dc.contributor.authorTrossman, D.S.
dc.contributor.authorWallcraft, A.J.
dc.date.accessioned2018-02-05T16:29:24Z
dc.date.available2019-01-07T18:34:39Zen
dc.date.issued2017-11
dc.identifier.citationLuecke, C. A.; Arbic, B. K.; Bassette, S. L.; Richman, J. G.; Shriver, J. F.; Alford, M. H.; Smedstad, O. M.; Timko, P. G.; Trossman, D. S.; Wallcraft, A. J. (2017). "The Global Mesoscale Eddy Available Potential Energy Field in Models and Observations." Journal of Geophysical Research: Oceans 122(11): 9126-9143.
dc.identifier.issn2169-9275
dc.identifier.issn2169-9291
dc.identifier.urihttps://hdl.handle.net/2027.42/141214
dc.description.abstractGlobal maps of the mesoscale eddy available potential energy (EAPE) field at a depth of 500 m are created using potential density anomalies in a high‐resolution 1/12.5° global ocean model. Maps made from both a free‐running simulation and a data‐assimilative reanalysis of the HYbrid Coordinate Ocean Model (HYCOM) are compared with maps made by other researchers from density anomalies in Argo profiles. The HYCOM and Argo maps display similar features, especially in the dominance of western boundary currents. The reanalysis maps match the Argo maps more closely, demonstrating the added value of data assimilation. Global averages of the simulation, reanalysis, and Argo EAPE all agree to within about 10%. The model and Argo EAPE fields are compared to EAPE computed from temperature anomalies in a data set of “moored historical observations” (MHO) in conjunction with buoyancy frequencies computed from a global climatology. The MHO data set allows for an estimate of the EAPE in high‐frequency motions that is aliased into the Argo EAPE values. At MHO locations, 15–32% of the EAPE in the Argo estimates is due to aliased motions having periods of 10 days or less. Spatial averages of EAPE in HYCOM, Argo, and MHO data agree to within 50% at MHO locations, with both model estimates lying within error bars observations. Analysis of the EAPE field in an idealized model, in conjunction with published theory, suggests that much of the scatter seen in comparisons of different EAPE estimates is to be expected given the chaotic, unpredictable nature of mesoscale eddies.Key PointsGlobal maps of the mesoscale eddy available potential energy are made from a HYCOM simulation and reanalysisModeled eddy available potential energy compares well to Argo observations globally, and to moored instruments locallyModel‐data comparisons of eddy available potential energy exhibit intrinsic scatter
dc.publisherU.S. Government Printing Office
dc.publisherWiley Periodicals, Inc.
dc.subject.otherArgo
dc.subject.othereddy available potential energy
dc.subject.othermixing
dc.subject.othermodel‐data comparison
dc.subject.otherocean energy reservoirs
dc.subject.othermesoscale eddies
dc.titleThe Global Mesoscale Eddy Available Potential Energy Field in Models and Observations
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141214/1/jgrc22559_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141214/2/jgrc22559.pdf
dc.identifier.doi10.1002/2017JC013136
dc.identifier.sourceJournal of Geophysical Research: Oceans
dc.identifier.citedreferenceRoemmich, D., & Owens, B. W. ( 2000 ). The argo project: Global ocean observations for understanding and prediction of climate variability. Oceanography, 13, 45 – 50.
dc.identifier.citedreferenceFlierl, G. R., & McWilliams, J. C. ( 1977 ). Sampling requirements for measuring moments of eddy variability. Journal of Marine Research, 35, 797 – 820.
dc.identifier.citedreferenceGnanadesikan, A. ( 1999 ). A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 2077 – 2079.
dc.identifier.citedreferenceHecht, W. M., & Hasumi, H. ( 2008 ). Ocean modeling in an eddying regime, Geophysical monograph. Washington, DC: American Geophysical Union.
dc.identifier.citedreferenceHuang, R. X. ( 1998 ). Mixing and available potential energy in a Boussinesq ocean. Journal of Physical Oceanography, 28, 669 – 678.
dc.identifier.citedreferenceJacobs, G. A., Barron, C. N., & Rhodes, R. C. ( 2001 ). Mesoscale characteristics. Journal of Geophysical Research, 106 ( C9 ), 19581 – 19595. https://doi.org/10.1029/2000JC000669
dc.identifier.citedreferenceKang, D., & Fringer, O. ( 2010 ). On the calculation of available potential energy in internal wave fields. Journal of Physical Oceanography, 40, 2539 – 2545.
dc.identifier.citedreferenceKuragano, T., & Kamachi, M. ( 2000 ). Global statistical space‐time scales of oceanic variability estimated from the topex/poseidon altimeter data. Journal of Geophysical Research, 105 ( C1 ), 955 – 974. https://doi.org/10.1029/1999JC900247
dc.identifier.citedreferenceLocarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., … Johnson, D. R. ( 2010 ). World Ocean Atlas 2009, volume 1: Temperature. In NOAA atlas NESDIS 68. Washington, DC: U.S. Government Printing Office.
dc.identifier.citedreferenceLumpkin, R., & Pazos, M. ( 2007 ). Lagrangian analysis and prediction of coastal and ocean dynamics. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511535901
dc.identifier.citedreferenceMaltrud, M. E., & McClean, J. L. ( 2005 ). An eddy resolving global 1/10 ocean simulation. Ocean Modelling, 8 ( 12 ), 31 – 54. https://doi.org/10.1016/j.ocemod.2003.12.001
dc.identifier.citedreferenceMcClean, J. L., Bader, D. C., Bryan, F. O., Maltrud, M. E., Dennis, J. M., Mirin, A. A., … Worley, P. H. ( 2011 ). A prototype two‐decade fully‐coupled fine‐resolution ccsm simulation. Ocean Modelling, 39 ( 1 ), 10 – 30. https://doi.org/10.1016/j.ocemod.2011.02.011
dc.identifier.citedreferenceMcDougall, T. J., & Barker, P. M. ( 2011 ). Getting started with TEOS‐10 and the Gibbs seawater (GSW) oceanographic toolbox (Rep. SCOR/IAPSO WG127).
dc.identifier.citedreferenceMetzger, E. J., Smedstad, O. M., Thoppil, P. G., Hurlburt, H. E., Cummings, J. A., Wallcraft, A. J., … DeHaan, C. J. ( 2014 ). US Navy operational global ocean and Arctic ice prediction systems. Oceanography, 27 ( 3 ), 32 – 43. https://doi.org/10.5670/oceanog.2014.66
dc.identifier.citedreferenceMunk, W., & Wunsch, C. ( 1998 ). Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research I: Oceanographic Research Papers, 45, 1977 – 2010.
dc.identifier.citedreferenceMurphy, A. H. ( 1988 ). Skill scores based on the mean square error and their relationships to the correlation coefficient. Monthly Weather Review, 116 ( 12 ), 2417 – 2424. https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2
dc.identifier.citedreferencePenduff, T., Barnier, B., Molines, J.‐M., & Madec, G. ( 2006 ). On the use of current meter data to assess the realism of ocean model simulations. Ocean Modelling, 11, 399 – 416.
dc.identifier.citedreferenceRichman, J. G., Wunsch, C., & Hogg, N. G. ( 1977 ). Space and time scales of mesoscale motion in the western north atlantic. Reviews of Geophysics, 15 ( 4 ), 385 – 420. https://doi.org/10.1029/RG015i004p00385
dc.identifier.citedreferenceRoullet, G., Capet, X., & Maze, G. ( 2014 ). Global interior eddy available potential energy diagnosed from argo floats. Geophysical Research Letters, 41, 1651 – 1656. https://doi.org/10.1002/2013GL059004
dc.identifier.citedreferenceRudnick, D. L., & Ferrari, R. ( 1999 ). Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science, 283 ( 5401 ), 526 – 529. https://doi.org/10.1126/science.283.5401.526
dc.identifier.citedreferenceSaenz, J. A., Hogg, A. M., Hughes, G. O., & Griffiths, R. W. ( 2012 ). Mechanical power input from buoyancy and wind to the circulation in an ocean model. Geophysical Research Letters, 39, L13605. https://doi.org/10.1029/2012GL052035
dc.identifier.citedreferenceSaha, S., Moorthi, S., Pan, H.‐L., Wu, X., Wang, J., Nadiga, S., … Goldberg, M. ( 2010 ). The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91 ( 8 ), 1015 – 1057. https://doi.org/10.1175/2010BAMS3001.1
dc.identifier.citedreferenceSaha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., … Becker, E. ( 2013 ). The ncep climate forecast system version 2. Journal of Climate, 27 ( 6 ), 2185 – 2208. https://doi.org/10.1175/JCLI-D-12-00823.1
dc.identifier.citedreferenceSchmitz, W. J. ( 1988 ). Exploration of the eddy field in the midlatitude North Pacific. Journal of Physical Oceanography, 18 ( 3 ), 459 – 468. https://doi.org/10.1175/1520-0485(1988)018<0459:EOTEFI>2.0.CO;2
dc.identifier.citedreferenceScott, R. B., Arbic, B. K., Chassignet, E. P., Coward, A. C., Maltrud, M., Merryfield, W. J., … Varghese, A. ( 2010 ). Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records. Ocean Modelling, 32, 157 – 169.
dc.identifier.citedreferenceTailleux, R. ( 2013 ). Available potential energy and exergy in stratified fluids. Annual Review of Fluid Mechanics, 45 ( 1 ), 35 – 58. https://doi.org/10.1146/annurev-fluid-011212-140620
dc.identifier.citedreferenceThoppil, P. G., Richman, J. G., & Hogan, P. J. ( 2011 ). Energetics of a global ocean circulation model compared to observations. Geophysical Research Letters, 38, L15607. https://doi.org/10.1029/2011GL048347
dc.identifier.citedreferenceTimko, P. G., Arbic, B. K., Richman, J. G., Scott, R. B., Metzger, E. J., & Wallcraft, A. J. ( 2012 ). Skill tests of three‐dimensional tidal currents in a global ocean model: A look at the North Atlantic. Journal of Geophysical Research, 117, C08014. https://doi.org/10.1029/2011JC007617
dc.identifier.citedreferenceTimko, P. G., Arbic, B. K., Richman, J. G., Scott, R. B., Metzger, E. J., & Wallcraft, A. J. ( 2013 ). Skill testing a three‐dimensional global tide model to historical current meter records. Journal of Geophysical Research: Oceans, 118, 6914 – 6933. https://doi.org/10.1002/2013JC009071
dc.identifier.citedreferenceWinters, K. B., Lombard, P. N., Riley, J. J., & D’asaro, E. A. ( 1995 ). Available potential energy and mixing in density‐stratified fluids. Journal of Fluid Mechanics, 94, 3187 – 3200.
dc.identifier.citedreferenceWunsch, C. ( 1999 ). A summary of north atlantic baroclinic variability. Journal of Physical Oceanography, 29 ( 12 ), 3161 – 3166. https://doi.org/10.1175/1520-0485(1999)029<3161:ASONAB>2.0.CO;2
dc.identifier.citedreferenceAntonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., Garcia, H. E., … Johnson, D. R. ( 2010 ). World Ocean Atlas 2009, volume 2: Salinity. In NOAA atlas NESDIS 68. Washington, DC: U.S. Government Printing Office.
dc.identifier.citedreferenceArbic, B. K., Müller, M., Richman, J. G., Shriver, J. F., Morten, A. J., Scott, R. B., … Penduff, T. ( 2014 ). Geostrophic turbulence in the frequency‐wavenumber domain: Eddy‐driven low‐frequency variability. Journal of Physical Oceanography, 44 ( 8 ), 2050 – 2069. https://doi.org/10.1175/JPO-D-13-054.1
dc.identifier.citedreferenceArbic, B. K., Scott, R. B., Flierl, G. R., Morten, A. J., Richman, J. G., & Shriver, J. F. ( 2012 ). Nonlinear cascades of surface oceanic geostrophic kinetic energy in the frequency domain. Journal of Physical Oceanography, 42 ( 9 ), 1577 – 1600. https://doi.org/10.1175/JPO-D-11-0151.1
dc.identifier.citedreferenceChassignet, E. P., Hurlburt, H. E., Metzger, E. J., Smedstad, O. M., Cummings, J. A., Halliwell, G. R., … Wilkin, J. ( 2009 ). US GODAE: Global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography, 22 ( 2 ), 64 – 75. https://doi.org/10.5670/oceanog.2009.39
dc.identifier.citedreferenceChassignet, E. P., & Xu, X. ( 2017 ). Impact of horizontal resolution (1/12 to 1/50) on Gulf Stream separation, penetration, and variability. Journal of Physical Oceanography, 47 ( 8 ), 1999 – 2021. https://doi.org/10.1175/JPO-D-17-0031.1
dc.identifier.citedreferenceChelton, D. B., Schlax, M. G., Samelson, R. M., & de Szoeke, R. A. ( 2007 ). Global observations of large oceanic eddies. Geophysical Research Letters, 34, L15606. https://doi.org/10.1029/2007GL030812
dc.identifier.citedreferenceCummings, J. A., & Smedstad, O. M. ( 2013 ). Variational data assimilation for the global ocean. In S. K. Park & L. Xu (Eds.), Data assimilation for atmospheric, oceanic and hydrologic applications (Vol. II, pp. 303 – 343 ). Berlin, Germany: Springer. https://doi.org/10.1007/978-3-642-35088-7_13
dc.identifier.citedreferenceDantzler, H. K. ( 1977 ). Potential energy maxima in the tropical and subtropical North Atlantic. Journal of Physical Oceanography, 7 ( 4 ), 512 – 519. https://doi.org/10.1175/1520-0485(1977)007<0512:PEMITT>2.0.CO;2
dc.identifier.citedreferenceDoherty, K. W., Frye, D. E., Lberatore, S. P., & Toole, J. M. ( 1999 ). A moored profiling instrument. Journal of Atmospheric and Oceanic Technology, 16, 1816 – 1829.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.