Show simple item record

Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events

dc.contributor.authorYang, Ya
dc.contributor.authorMoore, Michael J.
dc.contributor.authorBrockington, Samuel F.
dc.contributor.authorMikenas, Jessica
dc.contributor.authorOlivieri, Julia
dc.contributor.authorWalker, Joseph F.
dc.contributor.authorSmith, Stephen A.
dc.date.accessioned2018-02-05T16:29:33Z
dc.date.available2019-03-01T21:00:19Zen
dc.date.issued2018-01
dc.identifier.citationYang, Ya; Moore, Michael J.; Brockington, Samuel F.; Mikenas, Jessica; Olivieri, Julia; Walker, Joseph F.; Smith, Stephen A. (2018). "Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events." New Phytologist 217(2): 855-870.
dc.identifier.issn0028-646X
dc.identifier.issn1469-8137
dc.identifier.urihttps://hdl.handle.net/2027.42/141221
dc.publisherSpringer International Publishing
dc.publisherWiley Periodicals, Inc.
dc.subject.otherallopolyploidy
dc.subject.otherCaryophyllales
dc.subject.othergenome duplication
dc.subject.otherKs plot
dc.subject.othermodified phylome
dc.subject.otherpolyploidy
dc.titleImproved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141221/1/nph14812.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141221/2/nph14812-sup-0001-SupInfo.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141221/3/nph14812_am.pdf
dc.identifier.doi10.1111/nph.14812
dc.identifier.sourceNew Phytologist
dc.identifier.citedreferenceSeo T‐K, Kishino H, Thorne JL. 2005. Incorporating gene‐specific variation when inferring and evaluating optimal evolutionary tree topologies from multilocus sequence data. Proceedings of the National Academy of Sciences, USA 102: 4436 – 4441.
dc.identifier.citedreferenceSeo T‐K. 2008. Calculating bootstrap probabilities of phylogeny using multilocus sequence data. Molecular Biology and Evolution 25: 960 – 971.
dc.identifier.citedreferenceShen X‐X, Hittinger CT, Rokas A. 2017. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nature Ecology & Evolution 1: 0126.
dc.identifier.citedreferenceSmith SA, Brown JW, Yang Y, Brockington SF, Bruenn R, Drummond CP, Walker JF, Last N, Douglas NA, Moore MJ. 2017. Disparity, diversity, and duplications in the Caryophyllales. New Phytologist. doi: 10.1111/nph.14772.
dc.identifier.citedreferenceSmith SA, Dunn CW. 2008. Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24: 715 – 716.
dc.identifier.citedreferenceSmith SA, Moore MJ, Brown JW, Yang Y. 2015. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evolutionary Biology 15: 150.
dc.identifier.citedreferenceSoltis PS, Marchant DB, Van de Peer Y, Soltis DE. 2015. Polyploidy and genome evolution in plants. Current Opinion in Genetics & Development 35: 119 – 125.
dc.identifier.citedreferenceSoltis PS, Soltis DE. 2016. Ancient WGD events as drivers of key innovations in angiosperms. Current Opinion in Plant Biology 30: 159 – 165.
dc.identifier.citedreferenceStamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post‐analysis of large phylogenies. Bioinformatics 30: 1312 – 1313.
dc.identifier.citedreferenceStamatakis A. 2016. The RAxML v8.2.X manual. [WWW document] URL https://github.com/stamatak/standard-RAxML/tree/master/manual [accessed 4 March 2017].
dc.identifier.citedreferenceSteige KA, Slotte T. 2016. Genomic legacies of the progenitors and the evolutionary consequences of allopolyploidy. Current Opinion in Plant Biology 30: 88 – 93.
dc.identifier.citedreferenceTank DC, Eastman JM, Pennell MW, Soltis PS, Soltis DE, Hinchliff CE, Brown JW, Sessa EB, Harmon LJ. 2015. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytologist 207: 454 – 467.
dc.identifier.citedreferenceThomas GWC, Ather SH, Hahn MW. 2017. Gene‐tree reconciliation with MUL‐trees to resolve polyploidy events. Systematic Biology. 10.1093/sysbio/syx1044. [Epub ahead of print.]
dc.identifier.citedreferenceThulin M, Moore AJ, El‐Seedi H, Larsson A, Christin P‐A, Edwards EJ. 2016. Phylogeny and generic delimitation in Molluginaceae, new pigment data in Caryophyllales, and the new family Corbichoniaceae. Taxon 65: 775 – 793.
dc.identifier.citedreferenceVanneste K, Baele G, Maere S, Van de Peer Y. 2014a. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous‐Paleogene boundary. Genome Research 24: 1334 – 1347.
dc.identifier.citedreferenceVanneste K, Maere S, Van de Peer Y. 2014b. Tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences 369: 20130353.
dc.identifier.citedreferenceVanneste K, Van de Peer Y, Maere S. 2013. Inference of genome duplications from age distributions revisited. Molecular Biology and Evolution 30: 177 – 190.
dc.identifier.citedreferenceWalker JF, Brown JW, Smith SA. 2017a. Analyzing contentious relationships and outlier genes in phylogenomics. bioRxiv. 10.1101/115774.
dc.identifier.citedreferenceWalker JF, Yang Y, Moore MJ, Mikenas J, Timoneda A, Brockington SF, Smith SA. 2017b. Widespread paleopolyploidy, gene tree conflict, and recalcitrant relationships among the carnivorous Caryophyllales. American Journal of Botany 104: 858 – 867.
dc.identifier.citedreferenceWood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences, USA 106: 13875 – 13879.
dc.identifier.citedreferenceXiang Y, Huang CH, Hu Y, Wen J, Li S, Yi T, Chen H, Xiang J, Ma H. 2016. Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Molecular Biology and Evolution 34: 262 – 281.
dc.identifier.citedreferenceYagi M, Kosugi S, Hirakawa H, Ohmiya A, Tanase K, Harada T, Kishimoto K, Nakayama M, Ichimura K, Onozaki T et al. 2014. Sequence analysis of the genome of carnation ( Dianthus caryophyllus L.). DNA Research 21: 231 – 241.
dc.identifier.citedreferenceYang Y, Berry PE. 2011. Phylogenetics of the Chamaesyce clade ( Euphorbia, Euphorbiaceae): reticulate evolution and long‐distance dispersal in a prominent C 4 lineage. American Journal of Botany 98: 1486 – 1503.
dc.identifier.citedreferenceYang Y, Moore MJ, Brockington SF, Soltis DE, Wong GK‐S, Carpenter EJ, Zhang Y, Chen L, Yan Z, Xie Y et al. 2015. Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing. Molecular Biology and Evolution 32: 2001 – 2014.
dc.identifier.citedreferenceYang Y, Moore MJ, Brockington SF, Timoneda A, Feng T, Marx H, Walker JF, Smith SA. 2017. An efficient field and laboratory workflow for plant phylotranscriptomic projects. Applications in Plant Sciences 5: 1600128.
dc.identifier.citedreferenceYang Y, Smith SA. 2014. Orthology inference in non‐model organisms using transcriptomes and low‐coverage genomes: improving accuracy and matrix occupancy for phylogenomics. Molecular Biology and Evolution 31: 3081 – 3092.
dc.identifier.citedreferenceArakaki M, Christin PA, Nyffeler R, Lendel A, Eggli U, Ogburn RM, Spriggs E, Moore MJ, Edwards EJ. 2011. Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proceedings of the National Academy of Sciences, USA 108: 8379 – 8384.
dc.identifier.citedreferenceArcila D, Ortí G, Vari R, Armbruster JW, Stiassny MLJ, Ko KD, Sabaj MH, Lundberg J, Revell LJ, Betancur ‐RR. 2017. Genome‐wide interrogation advances resolution of recalcitrant groups in the tree of life. Nature Ecology & Evolution 1: 0020.
dc.identifier.citedreferenceBarker MS, Li Z, Kidder TI, Reardon CR, Lai Z, Oliveira LO, Scascitelli M, Rieseberg LH. 2016. Most Compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae. American Journal of Botany 103: 1203 – 1211.
dc.identifier.citedreferenceBarrier M, Baldwin BG, Robichaux RH, Purugganan MD. 1999. Interspecific hybrid ancestry of a plant adaptive radiation: allopolyploidy of the Hawaiian silversword alliance (Asteraceae) inferred from floral homeotic gene duplications. Molecular Biology and Evolution 16: 1105 – 1113.
dc.identifier.citedreferenceBell CD, Soltis DE, Soltis PS. 2010. The age and diversification of the angiosperms re‐revisited. American Journal of Botany 97: 1296 – 1303.
dc.identifier.citedreferenceBrockington SF, Alexandre R, Ramdial J, Moore MJ, Crawley S, Dhingra A, Hilu K, Soltis DE, Soltis PS. 2009. Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. International Journal of Plant Sciences 170: 627 – 643.
dc.identifier.citedreferenceBrockington SF, Yang Y, Gandia‐Herrero F, Covshoff S, Hibberd JM, Sage RF, Wong GKS, Moore MJ, Smith SA. 2015. Lineage‐specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytologist 207: 1170 – 1180.
dc.identifier.citedreferenceBrown JM, Thomson RC. 2017. Bayes factors unmask highly variable information content, bias, and extreme influence in phylogenomic analyses. Systematic Biology 66: 517 – 530.
dc.identifier.citedreferenceByng JW, Chase MW, Christenhusz MJM, Fay MF, Judd WS, Mabberley DJ, Sennikov AN, Soltis DE, Soltis PS, Stevens PF et al. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1 – 20.
dc.identifier.citedreferenceCannon SB, McKain MR, Harkess A, Nelson MN, Dash S, Deyholos MK, Peng Y, Joyce B, Stewart CN, Rolf M. 2015. Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. Molecular Biology and Evolution 32: 193 – 210.
dc.identifier.citedreferenceCaperta AD, Castro S, Loureiro J, Róis AS, Conceição S, Costa J, Rhazi L, Espírito Santo D, Arsénio P. 2016. Biogeographical, ecological and ploidy variation in related asexual and sexual Limonium taxa (Plumbaginaceae). Botanical Journal of the Linnean Society 183: 75 – 93.
dc.identifier.citedreferenceChester M, Riley RK, Soltis PS, Soltis DE. 2015. Patterns of chromosomal variation in natural populations of the neoallotetraploid Tragopogon mirus (Asteraceae). Heredity 114: 309 – 317.
dc.identifier.citedreferenceCuénoud P, Savolainen V, Chatrou LW, Powell M, Grayer ReJ, Chase MW. 2002. Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. American Journal of Botany 89: 132 – 144.
dc.identifier.citedreferenceDohm JC, Lange C, Holtgräwe D, Sörensen TR, Borchardt D, Schulz B, Lehrach H, Weisshaar B, Himmelbauer H. 2012. Palaeohexaploid ancestry for Caryophyllales inferred from extensive gene‐based physical and genetic mapping of the sugar beet genome ( Beta vulgaris ). Plant Journal 70: 528 – 540.
dc.identifier.citedreferenceDohm JC, Minoche AE, Holtgrawe D, Capella‐Gutierrez S, Zakrzewski F, Tafer H, Rupp O, Sorensen TR, Stracke R, Reinhardt R et al. 2014. The genome of the recently domesticated crop plant sugar beet ( Beta vulgaris ). Nature 505: 546 – 549.
dc.identifier.citedreferencevan Dongen S. 2000. Graph clustering by flow simulation. PhD thesis, University of Utrecht, Utrecht, the Netherlands.
dc.identifier.citedreferenceDouglas NA, Manos PS. 2007. Molecular phylogeny of Nyctaginaceae: taxonomy, biogeography, and characters associated with a radiation of xerophytic genera in North America. American Journal of Botany 94: 856 – 872.
dc.identifier.citedreferenceDouglas N, Spellenberg R. 2010. A new tribal classification of Nyctaginaceae. Taxon 59: 905 – 910.
dc.identifier.citedreferenceEbersberger I, Strauss S, von Haeseler A. 2009. HaMStR: profile hidden markov model based search for orthologs in ESTs. BMC Evolutionary Biology 9: 157.
dc.identifier.citedreferenceEdger PP, Heidel‐Fischer HM, Bekaert M, Rota J, Glöckner G, Platts AE, Heckel DG, Der JP, Wafula EK, Tang M et al. 2015. The butterfly plant arms‐race escalated by gene and genome duplications. Proceedings of the National Academy of Sciences, USA 112: 8362 – 8366.
dc.identifier.citedreferenceEdwards EJ, Ogburn RM. 2012. Angiosperm responses to a low‐CO 2 World: CAM and C 4 photosynthesis as parallel evolutionary trajectories. International Journal of Plant Sciences 173: 724 – 733.
dc.identifier.citedreferenceEmms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology 16: 157.
dc.identifier.citedreferenceEstep MC, McKain MR, Vela Diaz D, Zhong J, Hodge JG, Hodkinson TR, Layton DJ, Malcomber ST, Pasquet R, Kellogg EA. 2014. Allopolyploidy, diversification, and the Miocene grassland expansion. Proceedings of the National Academy of Sciences, USA 111: 15149 – 15154.
dc.identifier.citedreferenceFawcett J, Maere S, Van de Peer Y. 2009. Plants with double genomes might have had a better chance to survive the Cretaceous‐Tertiary extinction event. Proceedings of the National Academy of Sciences, USA 106: 5737 – 5742.
dc.identifier.citedreferenceFishman L, Willis JH, Wu CA, Lee YW. 2014. Comparative linkage maps suggest that fission, not polyploidy, underlies near‐doubling of chromosome number within monkeyflowers ( Mimulus; Phrymaceae). Heredity 112: 562 – 568.
dc.identifier.citedreferenceFu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD‐HIT: accelerated for clustering the next generation sequencing data. Bioinformatics 28: 3150 – 3152.
dc.identifier.citedreferenceGlick L, Mayrose I. 2014. ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Molecular Biology and Evolution 31: 1914 – 1922.
dc.identifier.citedreferenceHodgins KA, Lai Z, Oliveira LO, Still DW, Scascitelli M, Barker MS, Kane NC, Dempewolf H, Kozik A, Kesseli RV et al. 2014. Genomics of Compositae crops: reference transcriptome assemblies and evidence of hybridization with wild relatives. Molecular Ecology Resources 14: 166 – 177.
dc.identifier.citedreferenceHuang CH, Zhang C, Liu M, Hu Y, Gao T, Qi J, Ma H. 2016. Multiple polyploidization events across Asteraceae with two nested events in the early history revealed by nuclear phylogenomics. Molecular Biology and Evolution 33: 2820 – 2835.
dc.identifier.citedreferenceHuerta‐Cepas J, Capella‐Gutierrez S, Pryszcz LP, Denisov I, Kormes D, Marcet‐Houben M, Gabaldon T. 2011. PhylomeDB v3.0: an expanding repository of genome‐wide collections of trees, alignments and phylogeny‐based orthology and paralogy predictions. Nucleic Acids Research 39: D556 – D560.
dc.identifier.citedreferenceJaillon O, Aury J, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C et al. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: 463 – 467.
dc.identifier.citedreferenceJiao Y, Leebens‐Mack J, Ayyampalayam S, Bowers J, McKain M, McNeal J, Rolf M, Ruzicka D, Wafula E, Wickett N et al. 2012. A genome triplication associated with early diversification of the core eudicots. Genome Biology 13: R3.
dc.identifier.citedreferenceJiao Y, Li J, Tang H, Paterson AH. 2014. Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. Plant Cell 26: 2792 – 2802.
dc.identifier.citedreferenceJiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang HY, Soltis PS et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97 – 100.
dc.identifier.citedreferenceJones G, Sagitov S, Oxelman B. 2013. Statistical inference of allopolyploid species networks in the presence of incomplete lineage sorting. Systematic Biology 62: 467 – 478.
dc.identifier.citedreferenceKane NC, King MG, Barker MS, Raduski A, Karrenberg S, Yatabe Y, Knapp SJ, Rieseberg LH. 2009. Comparative genomic and population genetic analyses indicate highly porous genomes and high levels of gene flow between divergent Helianthus species. Evolution 63: 2061 – 2075.
dc.identifier.citedreferenceKapralov MV, Stift M, Filatov DA. 2009. Evolution of genome size in Hawaiian endemic genus Schiedea (Caryophyllaceae). Tropical Plant Biology 2: 77 – 83.
dc.identifier.citedreferenceKatoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772 – 780.
dc.identifier.citedreferenceKellogg EA. 2016. Has the connection between polyploidy and diversification actually been tested? Current Opinion in Plant Biology 30: 25 – 32.
dc.identifier.citedreferenceKobert K, Salichos L, Rokas A, Stamatakis A. 2016. Computing the internode certainty and related measures from partial gene trees. Molecular Biology and Evolution 33: 1606 – 1617.
dc.identifier.citedreferenceLai Z, Kane NC, Kozik A, Hodgins KA, Dlugosch KM, Barker MS, Matvienko M, Yu Q, Turner KG, Pearl SA et al. 2012. Genomics of Compositae weeds: EST libraries, microarrays, and evidence of introgression. American Journal of Botany 99: 209 – 218.
dc.identifier.citedreferenceLi Z, Baniaga AE, Sessa EB, Scascitelli M, Graham SW, Rieseberg LH, Barker MS. 2015. Early genome duplications in conifers and other seed plants. Science Advances 1: e1501084.
dc.identifier.citedreferenceLi L, Stoeckert CJJ, Roos D. 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Research 13: 2178 – 2189.
dc.identifier.citedreferenceLohaus R, Van de Peer Y. 2016. Of dups and dinos: evolution at the K/Pg boundary. Current Opinion in Plant Biology 30: 62 – 69.
dc.identifier.citedreferenceLott M, Spillner A, Huber KT, Moulton V. 2009. PADRE: a package for analyzing and displaying reticulate evolution. Bioinformatics 25: 1199 – 1200.
dc.identifier.citedreferenceLöytynoja A, Goldman N. 2010. webPRANK: a phylogeny‐aware multiple sequence aligner with interactive alignment browser. BMC Bioinformatics 11: 579.
dc.identifier.citedreferenceMandakova T, Li Z, Barker MS, Lysak MA. 2017. Diverse genome organization following 13 independent mesopolyploid events in Brassicaceae contrasts with convergent patterns of gene retention. Plant Journal 91: 3 – 21.
dc.identifier.citedreferenceMarcet‐Houben M, Gabaldon T. 2015. Beyond the whole‐genome duplication: phylogenetic evidence for an ancient interspecies hybridization in the Baker’s yeast lineage. PLoS Biology 13: e1002220.
dc.identifier.citedreferenceMarcussen T, Heier L, Brysting AK, Oxelman B, Jakobsen KS. 2015. From gene trees to a dated allopolyploid network: insights from the angiosperm genus Viola (Violaceae). Systematic Biology 64: 84 – 101.
dc.identifier.citedreferenceMarcussen T, Jakobsen KS, Danihelka Jô, Ballard HE, Blaxland K, Brysting AK, Oxelman B. 2012. Inferring species networks from gene trees in high‐polyploid North American and Hawaiian violets ( Viola, Violaceae). Systematic Biology 61: 107 – 126.
dc.identifier.citedreferenceMayrose I, Barker MS, Otto SP. 2010. Probabilistic models of chromosome number evolution and the inference of polyploidy. Systematic Biology 59: 132 – 144.
dc.identifier.citedreferenceMayrose I, Zhan S, Rothfels C, Magnuson‐Ford K, Barker M, Rieseberg L, Otto S. 2011. Recently formed polyploid plants diversify at lower rates. Science 333: 1257.
dc.identifier.citedreferenceMirarab S, Nguyen N, Warnow T. 2014a. PASTA: ultra‐large multiple sequence alignment. In: Sharan R, ed. RECOMB 2014, LNBI 8394. Basel, Switzerland: Springer International Publishing, 177 – 191.
dc.identifier.citedreferenceMirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T. 2014b. ASTRAL: genome‐scale coalescent‐based species tree estimation. Bioinformatics 30: i541 – i548.
dc.identifier.citedreferenceMirarab S, Warnow T. 2015. ASTRAL‐II: coalescent‐based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31: 44 – 52.
dc.identifier.citedreferenceMoore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE. 2010. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proceedings of the National Academy of Sciences, USA 107: 4623 – 4628.
dc.identifier.citedreferenceNyffeler R, Eggli U. 2010. Disintegrating Portulacaceae: a new familial classification of the suborder Portulacineae (Caryophyllales) based on molecular and morphological data. Taxon 59: 227 – 240.
dc.identifier.citedreferenceNyffeler R, Eggli U, Ogburn M, Edwards E. 2008. Variations on a theme: repeated evolution of succulent life forms in the Portulacineae (Caryophyllales). Haseltonia 14: 26 – 36.
dc.identifier.citedreferenceOgburn RM, Edwards EJ. 2013. Repeated origin of three‐dimensional leaf venation releases constraints on the evolution of succulence in plants. Current Biology 23: 722 – 726.
dc.identifier.citedreferencePrice MN, Dehal PS, Arkin AP. 2010. FastTree 2, approximately maximum‐likelihood trees for large alignments. PLoS ONE 5: e9490.
dc.identifier.citedreferenceRivadavia F, Kondo K, Kato M, Hasebe M. 2003. Phylogeny of the sundews, Drosera (Droseraceae), based on chloroplast rbcL and nuclear 18S ribosomal DNA sequences. American Journal of Botany 90: 123 – 130.
dc.identifier.citedreferenceRognes T. 2011. Faster Smith‐Waterman database searches with inter‐sequence SIMD parallelisation. BMC Bioinformatics 12: 221.
dc.identifier.citedreferenceRoy T, Cole LW, Chang T‐H, Lindqvist C. 2015. Untangling reticulate evolutionary relationships among New World and Hawaiian mints (Stachydeae, Lamiaceae). Molecular Phylogenetics and Evolution 89: 46 – 62.
dc.identifier.citedreferenceSalichos L, Stamatakis A, Rokas A. 2014. Novel information theory‐based measures for quantifying incongruence among phylogenetic trees. Molecular Biology and Evolution 31: 1261 – 1271.
dc.identifier.citedreferenceSchäferhoff B, Müller KF, Borsch T. 2009. Caryophyllales phylogenetics: disentangling Phytolaccaceae and Molluginaceae and description of Microteaceae as a new isolated family. Willdenowia 39: 209 – 228.
dc.identifier.citedreferenceSchuster TM, Setaro SD, Kron KA. 2013. Age estimates for the buckwheat family Polygonaceae based on sequence data calibrated by fossils and with a focus on the amphi‐Pacific Muehlenbeckia. PLoS ONE 8: e61261.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.