Show simple item record

Genotypic variation for condensed tannin production in trembling aspen (POPULUS TREMULOIDES, salicaceae) under elevated CO2 and in high‐ and low‐fertility soil

dc.contributor.authorMansfield, Jennifer L
dc.contributor.authorCurtis, Peter S
dc.contributor.authorZak, Donald R
dc.contributor.authorPregitzer, Kurt S
dc.date.accessioned2018-02-05T16:29:36Z
dc.date.available2018-02-05T16:29:36Z
dc.date.issued1999-08
dc.identifier.citationMansfield, Jennifer L; Curtis, Peter S; Zak, Donald R; Pregitzer, Kurt S (1999). "Genotypic variation for condensed tannin production in trembling aspen (POPULUS TREMULOIDES, salicaceae) under elevated CO2 and in high‐ and low‐fertility soil ." American Journal of Botany 86(8): 1154-1159.
dc.identifier.issn0002-9122
dc.identifier.issn1537-2197
dc.identifier.urihttps://hdl.handle.net/2027.42/141224
dc.publisherBotanical Society of America
dc.publisherWiley Periodicals, Inc.
dc.subject.otherplant–herbivore interaction
dc.subject.otherSalicaceae
dc.subject.otherPopulus tremuloides
dc.subject.otherglobal change
dc.subject.othercondensed tannins
dc.subject.othercarbon dioxide
dc.titleGenotypic variation for condensed tannin production in trembling aspen (POPULUS TREMULOIDES, salicaceae) under elevated CO2 and in high‐ and low‐fertility soil
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBotany
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationum4School of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan 48109; and
dc.contributor.affiliationum3University of Michigan Biological Station, Pellston, Michigan 49769;
dc.contributor.affiliationother2Department of Plant Biology, The Ohio State University, Columbus, Ohio 43210;
dc.contributor.affiliationother5School of Forestry and Lake Superior Ecosystems Research Center, Michigan Technological University, Houghton, Michigan 49931
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141224/1/ajb21154.pdf
dc.identifier.doi10.2307/2656979
dc.identifier.sourceAmerican Journal of Botany
dc.identifier.citedreferenceAyres, M. P. 1993. Plant defense, herbivory, and climate change. In P. M. Kareiva, J. G. Kingsolver, and R. B. Huey [eds.], Biotic interactions and global change, 75 – 94. Sinauer, Boston, MA.
dc.identifier.citedreferenceAuerbach, M., and J. D. Alberts. 1992. Occurrence and performance of the aspen blotch miner, Phyllonorycter salicifoliella, on three host‐tree species. Oecologia 89: 1 – 9.
dc.identifier.citedreferenceGeber, M. A., and T. E. Dawson. 1993. Evolutionary responses of plants to global change. In P. M. Kareiva, J. G. Kingsolver, and R. B. Huey [eds.], Biotic interactions and global change, 179 – 197. Sinauer, Boston, MA.
dc.identifier.citedreferenceHagerman, A. E., and L. G. Butler. 1980. Condensed tannin purification and characterization of tannin‐associated proteins. Journal of Agriculture and Food Chemistry 28: 947 – 952.
dc.identifier.citedreferenceHarinder, P. S. M., R. K. Dawra, and B. Singh. 1991. Tannin levels in leaves of some oak species at different stages of maturity. Journal of Science Food and Agriculture 54: 513 – 519.
dc.identifier.citedreferenceHeagle, A. S., R. B. Philbeck, R. B. Ferrell, and W. W. Heck. 1989. Design and performance of a large, field exposure chamber to measure effects of air quality on plants. Journal of Environmental Quality 18: 361 – 368.
dc.identifier.citedreferenceHemming, J. D. C., and R. L. Lindroth. 1995. Intraspecific variation in aspen phytochemistry: effects on performance of gypsy moths and forest tent caterpillars. Oecologia 103: 79 – 88.
dc.identifier.citedreferenceHoughton, J. T., G. J. Jenkins, and J. J. Ephraums. 1995. Climate change: the IPCC scientific assessment. Cambridge University Press, Cambridge, MA.
dc.identifier.citedreferenceHwang, S.‐Y., and R. L. Lindroth. 1997. Clonal variation in foliar chemisty of aspen: effects on gypsy moths and forest tent caterpillars. Oecologia 111: 99 – 108.
dc.identifier.citedreferenceKleiner, K. W., M. E. Montgomery, and J. C. Schultz. 1989. Variation in leaf quality of two oak species: implications for stand susceptibility to gypsy moth defoliation. Canadian Journal of Forest Research 19: 1445 – 1450.
dc.identifier.citedreferenceLarsson, S. A., A. Wiren, L. Lundgren, and T. Ericsson. 1986. Effects of light and nutrient stress on leaf phenolic chemistry in Salix dasyclados and susceptibility to Galerucella lineola (Coleoptera). Oikos 40: 205 – 210.
dc.identifier.citedreferenceLavola, A., and R. Julkunen‐Tiitto. 1994. The effect of elevated carbon dioxide and fertilization on primary and secondary metabolites in birch, Betula pendula (Roth). Oecologia 99: 315 – 321.
dc.identifier.citedreferenceLege, K. E., C. W. Smith, and J. T. Cothren. 1992. Genotypic and cultural effects on condensed tannin concentration of cotton leaves. Crop Science 32: 1024 – 1028.
dc.identifier.citedreferenceLincoln, D. E., and D. Couvet. 1989. The effect of carbon supply allocation to allelochemicals and caterpillar consumption of peppermint. Oecologia 78: 112 – 114.
dc.identifier.citedreference———, ———, and N. Siont. 1986. Response of an insect herbivore to host plants grown in carbon dioxide enriched atmospheres. Oecologia 69: 556 – 560.
dc.identifier.citedreference———, E. D. Fajer, and R. H. Johnson. 1993. Plant‐insect herbivore interactions in elevated CO 2 environments. Trends in Ecology and Evolution 8: 64 – 68.
dc.identifier.citedreferenceLindroth, R. L. 1996. CO 2 ‐mediated changes in tree chemistry and tree‐Lepidoptera interactions. In G. W. Koch and H. A. Mooney [eds.], Carbon dioxide and terrestrial ecosystems, 105 – 120. Academic Press, New York, NY.
dc.identifier.citedreference———, K. K. Kinney, and C. L. Platz. 1993. Responses of deciduous trees to elevated atmospheric CO 2: productivity, phytochemistry and insect performance. Ecology 74: 763 – 777.
dc.identifier.citedreference———, and S.‐Y. Hwang. 1996a. Clonal variation in foliar chemistry of quaking aspen (Populus tremuloides Michx.). Biochemical Systematics and Ecology 24: 357 – 364.
dc.identifier.citedreference———, and S.‐Y. Hwang. 1996b. Diversity, reduncancy and muliplicity in chemical defense systems of aspen. In J. Romeo [ed.], Recent advances in phytochemistry, vol. 33. Plenum Press, New York, NY.
dc.identifier.citedreference———, G. E. Arteel, and K. K. Kinney. 1995. Responses of three saturniid species to paper birch grown under enriched CO 2 atmospheres. Functional Ecology 9: 306 – 311.
dc.identifier.citedreferenceMauffette, Y., and W. C. Oechel. 1989. Seasonal variation in leaf chemistry of the coast live oak Quercus agrifolia and implications for the California oak moth Phryganidia californica. Oecologia 79: 439 – 445.
dc.identifier.citedreferenceNichols‐Orians, C. M. 1991. The effects of light on foliar chemistry, growth and susceptibility of seedlings of a canopy tree to an attine ant. Oecologia 86: 552 – 560.
dc.identifier.citedreferenceRandlett, D. L., D. R. Zak, K. S. Pregitzer, and P. S. Curtis. 1996. Elevated atmospheric carbon dioxide and leaf litter chemistry: influences on microbial respiration and net nitrogen mineralization. Soil Science Society of America Journal 60: 1571 – 1577.
dc.identifier.citedreferenceSakai, A. K., and T. A. Burris. 1985. Growth in male and female aspen clones: a twenty‐five‐year longitudinal study. Ecology 66: 1921 – 1927.
dc.identifier.citedreferenceSokal, R. R., and F. J. Rohlf. 1981. Biometry. W. H. Freeman, San Francisco, CA.
dc.identifier.citedreferenceTraw, M. B., R. L. Lindroth, and F. A. Bazzaz. 1996. Decline in gypsy moth (Lymantria dispar) performance in an elevated CO 2 atmosphere depends on host plant species. Oecologia 108: 113 – 120.
dc.identifier.citedreferenceWaterman, P. G., J. A. M. Ross, and D. B. McKey. 1984. Factors affecting levels of some phenolic compounds, digestibility, and nitrogen content of the mature leaves of Bartera fistulosa (Passifloraceae). Journal of Chemical Ecology 10: 387 – 401.
dc.identifier.citedreferenceFajer, E. D., M. D. Bowers, and F. A. Bazzaz. 1992. The effect of nutrients and enriched CO 2 environments on production of carbon‐based allelochemicals in Plantago: a test of the carbon/nutrient balance hypothesis. American Naturalist 140: 707 – 723.
dc.identifier.citedreferenceDudt, J. F., and D. J. Shure. 1994. The influence of light and nutrients on foliar phenolics and insect herbivory. Ecology 75: 86 – 98.
dc.identifier.citedreferenceGumpertz, M. L., and C. Browne. 1993. Repeated measures in randomized block and split‐plot experiments. Canadian Journal of Forest Research 23: 625 – 639.
dc.identifier.citedreferenceHagerman, A. E. 1987. Radial diffusion method for determining tannin in plant extracts. Journal of Chemical Ecology 13: 437 – 449.
dc.identifier.citedreferenceCurtis, P. S., D. R. Zak, K. S. Pregitzer, J. Lussenhop, and J. A. Teeri. 1996. Linking above‐ and belowground responses to rising CO 2 in northern deciduous forest species. In G. W. Koch, and H. A. Mooney [eds.], Carbon dioxide and terrestrial ecosystems, 41 – 51. Academic Press, New York, NY.
dc.identifier.citedreferenceCurtis, P. S., A. A. Snow, and A. S. Miller. 1994. Genotype‐ specific effects of elevated CO 2 on fecundity in wild radish (Raphanus raphanistrum). Oecologia 97: 100 – 105.
dc.identifier.citedreferenceCeulemans, R., and M. Mousseau. 1994. Tansley Review Number 71: effects of elevated atmospheric CO 2 on woody plants. New Phytologist 127: 425 – 446.
dc.identifier.citedreferenceCase, A. L., P. S. Curtis, and A. A. Snow. 1998. Heritable variation in stomatal response to elevated CO 2 in wild radish, Raphanus raphanistrum (Brassicaceae). American Journal of Botany 85: 253 – 258.
dc.identifier.citedreference———, T. P. Clausen, P. B. Reichard, M. C. McCarthy, and R. A. Werner. 1987. Effect of nitrogen fertilization upon the secondary chemistry and nutritional value of quaking aspen (Populus tremuloides Michx.) leaves for the large aspen tortrix (Choristoneura conflictana (Walker)). Oecologia 73: 513 – 517.
dc.identifier.citedreferenceBryant, J. P., F. S. Chapin, and D. R. Klein. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40: 357 – 368.
dc.identifier.citedreferenceBarnes, B. V. 1959. Natural variation and clonal development of Populus tremuloides and P. grandidentata in northern lower Michigan. Ph.D. dissertation, University of Michigan, Ann Arbor, MI.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.