Show simple item record

Effect of Bisphosphonates on Anodized and Heatâ Treated Titanium Surfaces: An Animal Experimental Study

dc.contributor.authorLee, Seung‐jae
dc.contributor.authorOh, Tae‐ju
dc.contributor.authorBae, Tae‐sung
dc.contributor.authorLee, Min‐ho
dc.contributor.authorSoh, Yunjo
dc.contributor.authorKim, Byung‐il
dc.contributor.authorKim, Hyung Seop
dc.date.accessioned2018-02-05T16:29:55Z
dc.date.available2018-02-05T16:29:55Z
dc.date.issued2011-07
dc.identifier.citationLee, Seung‐jae ; Oh, Tae‐ju ; Bae, Tae‐sung ; Lee, Min‐ho ; Soh, Yunjo; Kim, Byung‐il ; Kim, Hyung Seop (2011). "Effect of Bisphosphonates on Anodized and Heatâ Treated Titanium Surfaces: An Animal Experimental Study." Journal of Periodontology 82(7): 1035-1042.
dc.identifier.issn0022-3492
dc.identifier.issn1943-3670
dc.identifier.urihttps://hdl.handle.net/2027.42/141247
dc.publisherAmerican Academy of Periodontology
dc.publisherWiley Periodicals, Inc.
dc.subject.otherBisphosphonates
dc.subject.otherosseointegration
dc.subject.othernanotubes
dc.subject.otherdental implants
dc.titleEffect of Bisphosphonates on Anodized and Heatâ Treated Titanium Surfaces: An Animal Experimental Study
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI.
dc.contributor.affiliationotherDepartment of Periodontology, School of Dentistry, Chonbuk National University, Jeonju, Jeonbuk, South Korea.
dc.contributor.affiliationotherResearch Institute of Clinical Medicine, Chonbuk National University.
dc.contributor.affiliationotherDepartment of Future Plan and New Material Engineering, Sunchon National University, Sunchon, Jeonnam, South Korea.
dc.contributor.affiliationotherDepartment of Dental Pharmacology, School of Dentistry, Chonbuk National University.
dc.contributor.affiliationotherInstitute of Oral Bioscience and Brain Korea 21 Project, Chonbuk National University.
dc.contributor.affiliationotherDepartment of Dental Biomaterials, School of Dentistry, Chonbuk National University.
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141247/1/jper1035.pdf
dc.identifier.doi10.1902/jop.2010.100608
dc.identifier.sourceJournal of Periodontology
dc.identifier.citedreferenceGao Y, Zou S, Liu X, Bao C, Hu J. The effect of surface immobilized bisphosphonates on the fixation of hydroxyapatiteâ coated titanium implants in ovariectomized rats. Biomaterials 2009; 30: 1790 â 1796.
dc.identifier.citedreferencePjetursson BE, Karoussis I, Bürgin W, Brägger U, Lang NP. Patientsâ satisfaction following implant therapy. A 10â year prospective cohort study. Clin Oral Implants Res 2005; 16: 185 â 193.
dc.identifier.citedreferenceTextor M, Sittig C, Frauchiger V, Tosatti S, Brunnete DM. Properties and biological significance of natural oxide films on titanium and its alloys. In: Brunette DM, Tengvall P, Textor M, Thomsen P, eds. Titanium in Medicine. Berlin: Springerâ Verlag; 2001: 171 â 230.
dc.identifier.citedreferenceEllingsen JE, Johansson CB, Wennerberg A, Holmen A. Improved retention and bone implant contact with fluorideâ modified titanium implant. J Oral Maxillofac Implants 2004; 19: 659 â 666.
dc.identifier.citedreferenceAlbrektsson T, Wennerberg A. Oral implant surfaces: Part 1 â Review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 2004; 17: 536 â 543.
dc.identifier.citedreferenceAlbrektsson T, Wennerberg A. Oral implant surfaces: Part 2 â Review focusing on clinical knowledge of different surfaces. Int J Prosthodont 2004; 17: 544 â 564.
dc.identifier.citedreferenceBrammer KS, Oh S, Cobb CJ, Bjursten LM, van der Heyde H, Jin S. Improved boneâ forming functionality on diameterâ controlled TiO( 2 ) nanotube surface. Acta Biomater 2009; 5: 3215 â 3223.
dc.identifier.citedreferencePopat KC, Eltgroth M, Latempa TJ, Grimes CA, Desai TA. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibioticâ loaded titania nanotubes. Biomaterials 2007; 28: 4880 â 4888.
dc.identifier.citedreferenceBalasundaram G, Yao C, Webster TJ. TiO 2 nanotubes functionalized with regions of bone morphogenetic proteinâ 2 increases osteoblast adhesion. J Biomed Mater Res A 2008; 84: 447 â 453.
dc.identifier.citedreferencePopat KC, Leoni L, Grimes CA, Desai TA. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 2007; 28: 3188 â 3197.
dc.identifier.citedreferenceOh S, Brammer KS, Li YS, et al. Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci USA 2009; 106: 2130 â 2135.
dc.identifier.citedreferencePark J, Bauer S, Schlegel KA, Neukam FW, von der Mark K, Schmuki P. TiO 2 nanotube surfaces: 15 nm â An optimal length scale of surface topography for cell adhesion and differentiation. Small 2009; 5: 666 â 671.
dc.identifier.citedreferenceBjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S. Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A 2010; 92: 1218 â 1224.
dc.identifier.citedreferenceIshizawa H, Ogino M. Formation and characterization of anodic titanium oxide films containing Ca and P. J Biomed Mater Res 1995; 29: 65 â 72.
dc.identifier.citedreferenceYao C, Webster TJ. Prolonged antibiotic delivery from anodized nanotubular titanium using a coâ precipitation drug loading method. J Biomed Mater Res B Appl Biomater 2009; 91: 587 â 595.
dc.identifier.citedreferenceBae IH, Yun KD, Kim HS, et al. Anodic oxidized nanotubular titanium implants enhance bone morphogenetic proteinâ 2 delivery. J Biomed Mater Res B Appl Biomater 2010; 93: 484 â 491.
dc.identifier.citedreferenceMoreau MF, Guillet C, Massin P, et al. Comparative effects of five bisphosphonates on apoptosis of macrophage cells in vitro. Biochem Pharmacol 2007; 73: 718 â 723.
dc.identifier.citedreferenceMeraw SJ, Reeve CM, Wollan PC. Use of alendronate in periâ implant defect regeneration. J Periodontol 1999; 70: 151 â 158.
dc.identifier.citedreferenceMeraw SJ, Reeve CM. Qualitative analysis of peripheral periâ implant bone and influence of alendronate sodium on early bone regeneration. J Periodontol 1999; 70: 1228 â 1233.
dc.identifier.citedreferenceZuffetti F, Bianchi F, Volpi R, et al. Clinical application of bisphosphonates in implant dentistry: Histomorphometric evaluation. Int J Periodontics Restorative Dent 2009; 29: 31 â 39.
dc.identifier.citedreferencePeter B, Gauthier O, Laïb S, et al. Local delivery of bisphosphonate from coated orthopedic implants increases implants mechanical stability in osteoporotic rats. J Biomed Mater Res A 2006; 76: 133 â 143.
dc.identifier.citedreferenceAbtahi J, Tengvall P, Aspenberg P. Bisphosphonate coating might improve fixation of dental implants in the maxilla: A pilot study. Int J Oral Maxillofac Surg 2010; 39: 673 â 677.
dc.identifier.citedreferenceCrawford GA, Chawla N, Das K, Bose S, Bandyopadhyay A. Microstructure and deformation behavior of biocompatible TiO 2 nanotubes on titanium substrate. Acta Biomater 2007; 3: 359 â 367.
dc.identifier.citedreferenceReddy MS, Weatherford TW 3rd, Smith CA, West BD, Jeffcoat MK, Jacks TM. Alendronate treatment of naturallyâ occurring periodontitis in beagle dogs. J Periodontol 1995; 66: 211 â 217.
dc.identifier.citedreferenceWeinreb M, Quartuccio H, Seedor JG, et al. Histomorphometrical analysis of the effects of the bisphosphonate alendronate on bone loss caused by experimental periodontitis in monkeys. J Periodontal Res 1994; 29: 35 â 40.
dc.identifier.citedreferenceGiro G, Sakakura CE, Gonçalves D, Pereira RM, Marcantonio E Jr., Orrico SR. Effect of 17betaâ estradiol and alendronate on the removal torque of osseointegrated titanium implants in ovariectomized rats. J Periodontol 2007; 78: 1316 â 1321.
dc.identifier.citedreferenceNarai S, Nagahata S. Effects of alendronate on the removal torque of implants in rats with induced osteoporosis. Int J Oral Maxillofac Implants 2003; 18: 218 â 223.
dc.identifier.citedreferenceMarx RE. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: A growing epidemic. J Oral Maxillofac Surg 2003; 61: 1115 â 1117.
dc.identifier.citedreferenceMarx RE, Sawatari Y, Fortin M, Broumand V. Bisphosphonateâ induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: Risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg 2005; 63: 1567 â 1575.
dc.identifier.citedreferenceLo JC, O’Ryan FS, Gordon NP, et al. Prevalence of osteonecrosis of the jaw in patients with oral bisphosphonate exposure. J Oral Maxillofac Surg 2010; 68: 243 â 253.
dc.identifier.citedreferenceKhan AA, Sándor GK, Dore E, et al. Bisphosphonate associated osteonecrosis of the jaw. J Rheumatol 2009; 36: 478 â 490.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.