Show simple item record

Lithologic Effects on Landscape Response to Base Level Changes: A Modeling Study in the Context of the Eastern Jura Mountains, Switzerland

dc.contributor.authorYanites, Brian J.
dc.contributor.authorBecker, Jens K.
dc.contributor.authorMadritsch, Herfried
dc.contributor.authorSchnellmann, Michael
dc.contributor.authorEhlers, Todd A.
dc.date.accessioned2018-02-05T16:31:27Z
dc.date.available2019-01-07T18:34:37Zen
dc.date.issued2017-11
dc.identifier.citationYanites, Brian J.; Becker, Jens K.; Madritsch, Herfried; Schnellmann, Michael; Ehlers, Todd A. (2017). "Lithologic Effects on Landscape Response to Base Level Changes: A Modeling Study in the Context of the Eastern Jura Mountains, Switzerland." Journal of Geophysical Research: Earth Surface 122(11): 2196-2222.
dc.identifier.issn2169-9003
dc.identifier.issn2169-9011
dc.identifier.urihttps://hdl.handle.net/2027.42/141336
dc.description.abstractLandscape evolution is a product of the forces that drive geomorphic processes (e.g., tectonics and climate) and the resistance to those processes. The underlying lithology and structural setting in many landscapes set the resistance to erosion. This study uses a modified version of the Channel‐Hillslope Integrated Landscape Development (CHILD) landscape evolution model to determine the effect of a spatially and temporally changing erodibility in a terrain with a complex base level history. Specifically, our focus is to quantify how the effects of variable lithology influence transient base level signals. We set up a series of numerical landscape evolution models with increasing levels of complexity based on the lithologic variability and base level history of the Jura Mountains of northern Switzerland. The models are consistent with lithology (and therewith erodibility) playing an important role in the transient evolution of the landscape. The results show that the erosion rate history at a location depends on the rock uplift and base level history, the range of erodibilities of the different lithologies, and the history of the surface geology downstream from the analyzed location. Near the model boundary, the history of erosion is dominated by the base level history. The transient wave of incision, however, is quite variable in the different model runs and depends on the geometric structure of lithology used. It is thus important to constrain the spatiotemporal erodibility patterns downstream of any given point of interest to understand the evolution of a landscape subject to variable base level in a quantitative framework.Key PointsA landscape evolution model is used to show how topographic history is influenced by regional geologyExhumation of different lithologies modulates the transient response to base level changes over millions of yearsSignificantly different erosion and topographic histories result depending on the stratigraphic architecture, even over a small range in erodibility
dc.publisherWiley
dc.subject.otherlandscape evolution model
dc.subject.otherSwitzerland
dc.subject.otherJura Mountains
dc.subject.othererosion
dc.subject.othererodibility
dc.subject.otherlithology
dc.titleLithologic Effects on Landscape Response to Base Level Changes: A Modeling Study in the Context of the Eastern Jura Mountains, Switzerland
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141336/1/jgrf20766_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141336/2/jgrf20766.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141336/3/jgrf20766-sup-0001-Data_S1.pdf
dc.identifier.doi10.1002/2016JF004101
dc.identifier.sourceJournal of Geophysical Research: Earth Surface
dc.identifier.citedreferenceTucker, G. E., & Slingerland, R. ( 1997 ). Drainage basin responses to climate change. Water Resources Research, 33 ( 8 ), 2031 – 2047. https://doi.org/10.1029/97WR00409
dc.identifier.citedreferenceSklar, L. S., & Dietrich, W. E. ( 2001 ). Sediment and rock strength controls on river incision into bedrock. Geology, 29 ( 12 ), 1,087 – 1,090. https://doi.org/10.1130/0091-7613(2001)029%3C1087:SARSCO%3E2.0.CO;2
dc.identifier.citedreferenceSnyder, N. P., Whipple, K. X., Tucker, G. E., & Merritts, D. J. ( 2000 ). Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geological Society of America Bulletin, 112 ( 8 ), 1250 – 1263. https://doi.org/10.1130/0016-7606(2000)112%3C1250:LRTTFD%3E2.0.CO;2
dc.identifier.citedreferenceStaškovanová, V., & Minár, J. ( 2016 ). Modelling the geomorphic history of the Tribeč Mts. and the Pohronský Inovec Mts. (Western Carpathians) with the CHILD model. Open Geoscience, 8 ( 1 ), 371 – 389. https://doi.org/10.1515/geo‐2016‐0038
dc.identifier.citedreferenceStock, J. D., & Montgomery, D. R. ( 1999 ). Geologic constraints on bedrock river incision using the stream power law. Journal of Geophysical Research, 104 ( B3 ), 4983 – 4993. https://doi.org/10.1029/98JB02139
dc.identifier.citedreferenceTucker, G. E. ( 2004 ). Drainage basin sensitivity to tectonic and climatic forcing: Implications of a stochastic model for the role of entrainment and erosion thresholds. Earth Surface Processes and Landforms, 29 ( 2 ), 185 – 205. https://doi.org/10.1002/esp.1020
dc.identifier.citedreferenceTucker, G. E., & Slingerland, R. ( 1996 ). Predicting sediment flux from fold and thrust belts. Basin Research, 8 ( 3 ), 329 – 349. https://doi.org/10.1046/j.1365‐2117.1996.00238.x
dc.identifier.citedreferenceTucker, G. E., Lancaster, S. T., Gasparini, N. M., Bras, R. L., & Rybarczyk, S. M. ( 2001 ). An object‐oriented framework for distributed hydrologic and geomorphic modeling using triangulated irregular networks. Computational Geosciences, 27 ( 8 ), 959 – 973. https://doi.org/16/S0098‐3004(00)00134‐5
dc.identifier.citedreferencevan der Beek, P., Pulford, A., & Braun, J. ( 2001 ). Cenozoic landscape development in the Blue Mountains (SE Australia): Lithological and tectonic controls on rifted margin. Journal of Geology, 109 ( 1 ), 35 – 56. https://doi.org/10.1086/317963
dc.identifier.citedreferenceVan Der Beek, P., & Braun, J. ( 1998 ). Numerical modelling of landscape evolution on geological time‐scales: A parameter analysis and comparison with the south‐eastern highlands of Australia. Basin Research, 10 ( 1 ), 49 – 68. https://doi.org/10.1046/j.1365‐2117.1998.00056.x
dc.identifier.citedreferencevon Hagke, C., Cederbom, C. E., Oncken, O., Stöckli, D. F., Rahn, M. K., & Schlunegger, F. ( 2012 ). Linking the northern Alps with their foreland: The latest exhumation history resolved by low‐temperature thermochronology. Tectonics, 31 ( 5 ), TC5010. https://doi.org/10.1029/2011TC003078
dc.identifier.citedreferenceWhipple, K. X. ( 2001 ). Fluvial landscape response time: How plausible is steady‐state denudation? American Journal of Science, 301 ( 4‐5 ), 313 – 325. https://doi.org/10.2475/ajs.301.4‐5.313
dc.identifier.citedreferenceWhipple, K. X., & Meade, B. J. ( 2006 ). Orogen response to changes in climatic and tectonic forcing. Earth and Planetary Science Letters, 243 ( 1–2 ), 218 – 228. https://doi.org/10.1016/j.epsl.2005.12.022
dc.identifier.citedreferenceWhipple, K. X., & Tucker, G. E. ( 1999 ). Dynamics of the stream‐power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research, 104 ( B8 ), 17,661 – 17,674. https://doi.org/10.1029/1999JB900120
dc.identifier.citedreferenceWhipple, K. X., & Tucker, G. E. ( 2002 ). Implications of sediment‐flux‐dependent river incision models for landscape evolution. Journal of Geophysical Research, 107, 2039. https://doi.org/10.1029/2000JB000044
dc.identifier.citedreferenceWhipple, K. X., Forte, A. M., DiBiase, R. A., Gasparini, N. M., & Ouimet, W. B. ( 2017 ). Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution. Journal of Geophysical Research: Earth Surface, 122, 248 – 273. https://doi.org/10.1002/2016JF003973
dc.identifier.citedreferenceWhitbread, K., Jansen, J., Bishop, P., & Attal, M. ( 2015 ). Substrate, sediment, and slope controls on bedrock channel geometry in postglacial streams. Journal of Geophysical Research: Earth Surface, 120, 779 – 798. https://doi.org/10.1002/2014JF003295
dc.identifier.citedreferenceWillenbring, J. K., & von Blanckenburg, F. ( 2010 ). Long‐term stability of global erosion rates and weathering during late‐Cenozoic cooling. Nature, 465 ( 7295 ), 211 – 214. https://doi.org/10.1038/nature09044
dc.identifier.citedreferenceWillett, S. D. ( 1999 ). Orogeny and orography: The effects of erosion on the structure of mountain belts. Journal of Geophysical Research, 104 ( B12 ), 28,957 – 28,981. https://doi.org/10.1029/1999JB900248
dc.identifier.citedreferenceWillett, S. D., & Schlunegger, F. ( 2010 ). The last phase of deposition in the Swiss Molasse Basin: From foredeep to negative‐alpha basin. Basin Research, 22 ( 5 ), 623 – 639. https://doi.org/10.1111/j.1365‐2117.2009.00435.x
dc.identifier.citedreferenceWillett, S. D., McCoy, S. W., Perron, J. T., Goren, L., & Chen, C.‐Y. ( 2014 ). Dynamic reorganization of river basins. Science, 343 ( 6175 ), 1248765. https://doi.org/10.1126/science.1248765
dc.identifier.citedreferenceWobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., … Sheehan, D. ( 2006 ). Tectonics from topography: Procedures, promise, and pitfalls. Geological Society of America Special Papers, 398, 55 – 74. https://doi.org/10.1130/2006.2398(04)
dc.identifier.citedreferenceYanites, B. J., & Kesler, S. E. ( 2015 ). A climate signal in exhumation patterns revealed by porphyry copper deposits. Nature Geoscience, 8 ( 6 ), 462 – 465. https://doi.org/10.1038/ngeo2429
dc.identifier.citedreferenceYanites, B. J., Ehlers, T. A., Becker, J. K., Schnellmann, M., & Heuberger, S. ( 2013 ). High magnitude and rapid incision from river capture: Rhine River, Switzerland. Journal of Geophysical Research: Earth Surface, 118, 1060 – 1084. https://doi.org/10.1002/jgrf.20056
dc.identifier.citedreferenceZiegler, P. A., & Fraefel, M. ( 2009 ). Response of drainage systems to Neogene evolution of the Jura fold‐thrust belt and Upper Rhine Graben. Swiss Journal of Geosciences, 102 ( 1 ), 57 – 75. https://doi.org/10.1007/s00015‐009‐1306‐4
dc.identifier.citedreferenceBecker, A. ( 2000 ). The Jura Mountains—An active foreland fold‐and‐thrust belt? Tectonophysics, 321 ( 4 ), 381 – 406. https://doi.org/10.1016/S0040‐1951(00)00089‐5
dc.identifier.citedreferenceBishop, P., & Goldrick, G. ( 2000 ). Geomorphological evolution of the east Australian continental margin. In M. A.   Summerfield (Ed.), Geomorphology and Global Tectonics (pp. 227 – 255 ). Chichester, UK: Wiley.
dc.identifier.citedreferenceBishop, P., & Goldrick, G. ( 2010 ). Lithology and the evolution of bedrock rivers in post‐orogenic settings: Constraints from the high‐elevation passive continental margin of SE Australia. Geological Society of London, Special Publication, 346 ( 1 ), 267 – 287. https://doi.org/10.1144/SP346.14
dc.identifier.citedreferenceBishop, P., Young, R. W., & McDougall, I. ( 1985 ). Stream profile change and longterm landscape evolution: Early Miocene and modern rivers of the east Australian highland crest, central New South Wales, Australia. Journal of Geology, 93 ( 4 ), 455 – 474. https://doi.org/10.1086/628966
dc.identifier.citedreferenceBrocard, G. Y., & van der Beek, P. A. ( 2006 ). Influence of incision rate, rock strength, and bedload supply on bedrock river gradients and valley‐flat widths: Field‐based evidence and calibrations from western alpine rivers (southeast France). Geological Society of America Special Papers, 398, 101 – 126. https://doi.org/10.1130/2006.2398(07)
dc.identifier.citedreferenceBurkhard, M. ( 1990 ). Aspects of the large‐scale Miocene deformation in the most external part of the Swiss Alps (sub‐Alpine molasse to Jura fold belt). Eclogae Geologicae Helvetiae, 83 ( 3 ), 559 – 583.
dc.identifier.citedreferenceBurkhard, M., & Sommaruga, A. ( 1998 ). Evolution of the western Swiss Molasse basin: Structural relations with the Alps and the Jura belt. Geological Society of London, Special Publication, 134 ( 1 ), 279 – 298. https://doi.org/10.1144/GSL.SP.1998.134.01.13
dc.identifier.citedreferenceBursztyn, N., Pederson, J. L., Tressler, C., Mackley, R. D., & Mitchell, K. J. ( 2015 ). Rock strength along a fluvial transect of the Colorado Plateau—Quantifying a fundamental control on geomorphology. Earth and Planetary Science Letters, 429, 90 – 100. https://doi.org/10.1016/j.epsl.2015.07.042
dc.identifier.citedreferenceChampel, B., van der Beek, P., Mugnier, J.‐L., & Leturmy, P. ( 2002 ). Growth and lateral propagation of fault‐related folds in the Siwaliks of western Nepal: Rates, mechanisms, and geomorphic signature. Journal of Geophysical Research, 107 ( B6 ), ETG 2‐1. https://doi.org/10.1029/2001JB000578
dc.identifier.citedreferenceCovington, M. D., Gulley, J. D., & Gabrovšek, F. ( 2015 ). Natural variations in calcite dissolution rates in streams: Controls, implications, and open questions. Geophysical Research Letters, 42 ( 8 ), 2,836 – 2,843. https://doi.org/10.1002/2015GL063044
dc.identifier.citedreferenceDiebold, P., & Noack, T. ( 1997 ). Late Palaeozoic troughs and Tertiary structures in the eastern folded Jura. In O. A.   Pfiffner, et al. (Eds.), Deep Structure of the Swiss Alps (pp. 59 – 63 ). Basel, CH: Birkhäuser.
dc.identifier.citedreferenceDiebold, P., Bitterli‐Brunner, P., & Naef, H. ( 2005 ). Geologischer Atlas der Schweiz 1:25′000, Blätter 1069/1049 Frick‐Laufenburg, mit Erläuterungen. Wabern, CH: Bundesamt für Landestopographie swisstopo.
dc.identifier.citedreferenceForte, A. M., Yanites, B. J., & Whipple, K. X. ( 2016 ). Complexities of landscape evolution during incision through layered stratigraphy with contrasts in rock strength. Earth Surface Processes and Landforms, 41 ( 12 ), 1736 – 1757. https://doi.org/10.1002/esp.3947
dc.identifier.citedreferenceGiamboni, M., Wetzel, A., Nivière, B., & Schumacher, M. ( 2004 ). Plio‐Pleistocene folding in the southern Rhinegraben recorded by the evolution of the drainage network (Sundgau area; northwestern Switzerland and France). Eclogae Geologicae Helvetiae, 97 ( 1 ), 17 – 31. https://doi.org/10.1007/s00015‐004‐1112‐4
dc.identifier.citedreferenceGilbert, G. K. ( 1877 ). Report on the geology of the Henry Mountains, Dept. of the Interior, U.S. Geographical and Geological Survey of the Rocky Mountain Region.
dc.identifier.citedreferenceGoudie, A. S. ( 2016 ). Quantification of rock control in geomorphology. Earth Science Reviews, 159, 374 – 387. https://doi.org/10.1016/j.earscirev.2016.06.012
dc.identifier.citedreferenceGraf, H. R., Bitterli‐Dreher, P., Burger, H., Bitterli, T., Diebold, P., & Naef, H. ( 2006 ). Geologischer Atlas der Schweiz 1:25′000, Blatt 1070 Baden, mit Erläuterungen. Wabern, CH: Bundesamt für Landestopographie swisstopo.
dc.identifier.citedreferenceHerman, F., Seward, D., Valla, P. G., Carter, A., Kohn, B., Willett, S. D., & Ehlers, T. A. ( 2013 ). Worldwide acceleration of mountain erosion under a cooling climate. Nature, 504 ( 7480 ), 423 – 426. https://doi.org/10.1038/nature12877
dc.identifier.citedreferenceHoward, A. D., & Kerby, G. ( 1983 ). Channel changes in badlands. Geological Society of America Bulletin, 94 ( 6 ), 739 – 752. https://doi.org/10.1130/0016-7606(1983)94%3C739:CCIB%3E2.0.CO;2
dc.identifier.citedreferenceIsler, A., Pasquier, F., & Huber, M. ( 1984 ). Geologische Karte der zentralen Nordschweiz 1:100 000 mit angrenzenden Gebieten von Baden‐Württemberg. Geologische Spezialkarte 121. Wabern, CH: Bundesamt für Landestopographie swisstopo.
dc.identifier.citedreferenceJansen, J. D., Codilean, A. T., Bishop, P., & Hoey, T. B. ( 2010 ). Scale dependence of lithological control on topography: Bedrock channel geometry and catchment morphometry in western Scotland. Journal of Geology, 118 ( 3 ), 223 – 246. https://doi.org/10.1086/651273
dc.identifier.citedreferenceJeffery, M. L., Ehlers, T. A., Yanites, B. J., & Poulsen, C. J. ( 2013 ). Quantifying the role of paleoclimate and Andean Plateau uplift on river incision. Journal of Geophysical Research: Earth Surface, 118 ( 2 ), 852 – 871. https://doi.org/10.1002/jgrf.20055
dc.identifier.citedreferenceJordan, P. ( 1992 ). Evidence for large‐scale decoupling in the Triassic evaporites of northern Switzerland: An overview. Eclogae Geologicae Helvetiae, 85 ( 3 ), 677 – 693.
dc.identifier.citedreferenceJordan, P., Malz, A., Heuberger, S., Pietsch, J., Kley, J., & Madritsch, H. ( 2015 ). Regionale geologische Profilschnitte durch die Nordschweiz und 2D‐Bilanzierung der Fernschubdeformation im östlichen Faltenjura: Arbeitsbericht zu SGT Etappe 2. Nagra Arbeitsbericht NAB 14‐105. Wettingen, CH: Nagra.
dc.identifier.citedreferenceKeen‐Zebert, A., Tooth, S., & Stuart, F. M. ( 2016 ). Cosmogenic 3 He measurements provide insight into lithologic controls on bedrock channel incision: Examples from the South African Interior. Journal of Geology, 124 ( 3 ), 423 – 434. https://doi.org/10.1086/685506
dc.identifier.citedreferenceLaubscher, H. P. ( 1972 ). Some overall aspects of Jura dynamics. American Journal of Science, 272 ( 4 ), 293 – 304. https://doi.org/10.2475/ajs.272.4.293
dc.identifier.citedreferenceLease, R. O., & Ehlers, T. A. ( 2013 ). Incision into the eastern Andean Plateau during Pliocene cooling. Science, 341 ( 6,147 ), 774 – 776. https://doi.org/10.1126/science.1239132
dc.identifier.citedreferenceMadritsch, H. ( 2015 ). Outcrop‐scale fracture systems in the Alpine foreland of central northern Switzerland: Kinematics and tectonic context. Swiss Journal of Geosciences, 108 ( 2‐3 ), 155 – 181. https://doi.org/10.1007/s00015‐015‐0203‐2
dc.identifier.citedreferenceMadritsch, H., Fabbri, O., Hagedorn, E.‐M., Preusser, F., Schmid, S. M., & Ziegler, P. A. ( 2010 ). Feedback between erosion and active deformation: Geomorphic constraints from the frontal Jura fold‐and‐thrust belt (eastern France). International Journal of Earth Sciences, 99 ( S1 ), 103 – 122. https://doi.org/10.1007/s00531‐009‐0468‐7
dc.identifier.citedreferenceMalz, A., Madritsch, H., & Kley, J. ( 2015 ). Improving 2D seismic interpretation in challenging settings by integration of restoration techniques: A case study from the Jura fold‐and‐thrust belt (Switzerland). Interpretation, 3 ( 4 ), SAA37 – SAA58. https://doi.org/10.1190/INT‐2015‐0012.1
dc.identifier.citedreferenceMazurek, M., Hurford, A. J., & Leu, W. ( 2006 ). Unravelling the multi‐stage burial history of the Swiss Molasse Basin: Integration of apatite fission track, vitrinite reflectance and biomarker isomerisation analysis. Basin Research, 18 ( 1 ), 27 – 50. https://doi.org/10.1111/j.1365‐2117.2006.00286.x
dc.identifier.citedreferenceMiller, S. R., & Slingerland, R. L. ( 2006 ). Topographic advection on fault‐bend folds: Inheritance of valley positions and the formation of wind gaps. Geology, 34 ( 9 ), 769 – 772. https://doi.org/10.1130/G22658.1
dc.identifier.citedreferencePelletier, J. D., Engelder, T., Comeau, D., Hudson, A., Leclerc, M., Youberg, A., & Diniega, S. ( 2009 ). Tectonic and structural control of fluvial channel morphology in metamorphic core complexes: The example of the Catalina‐Rincon core complex, Arizona. Geosphere, 5 ( 4 ), 363 – 384. https://doi.org/10.1130/GES00221.1
dc.identifier.citedreferencePerne, M., Covington, M. D., Thaler, E. A., & Myre, J. M. ( 2017 ). Steady state, erosional continuity, and the topography of landscapes developed in layered rocks. Earth Surface Dynamics, 5 ( 1 ), 85 – 100. https://doi.org/10.5194/esurf‐5‐85‐2017
dc.identifier.citedreferencePerron, J. T., & Royden, L. ( 2013 ). An integral approach to bedrock river profile analysis. Earth Surface Processes and Landforms, 38 ( 6 ), 570 – 576. https://doi.org/10.1002/esp.3302
dc.identifier.citedreferencePetit, C., Campy, M., Chaline, J., & Bonvalot, J. ( 1996 ). Major palaeohydrographic changes in Alpine foreland during the Pliocene‐Pleistocene. Boreas, 25 ( 2 ), 131 – 143.
dc.identifier.citedreferencePowell, J. W., Thompson, A. H., Coues, E., & Goode, G. B. ( 1875 ). Exploration of the Colorado River of the West and Its Tributaries: Explored in 1869, 1870, 1871, and 1872, Under the Direction of the Secretary of the Smithsonian Institution, U.S. government printing office.
dc.identifier.citedreferencePreusser, F., Graf, H. R., Keller, O., Krayss, E., & Schlüchter, C. ( 2011 ). Quaternary glaciation history of northern Switzerland. EG Journal of Quaternary Science, 60, 282 – 305.
dc.identifier.citedreferenceRabin, M., Sue, C., Valla, P. G., Champagnac, J.‐D., Carry, N., Bichet, V., … Mudry, J. ( 2015 ). Deciphering neotectonics from river profile analysis in the karst Jura Mountains (northern alpine foreland). Swiss Journal of Geosciences, 108 ( 2–3 ), 401 – 424. https://doi.org/10.1007/s00015‐015‐0200‐5
dc.identifier.citedreferenceRahn, M. K., & Selbekk, R. ( 2007 ). Absolute dating of the youngest sediments of the Swiss Molasse basin by apatite fission track analysis. Swiss Journal of Geosciences, 100 ( 3 ), 371 – 381. https://doi.org/10.1007/s00015‐007‐1234‐0
dc.identifier.citedreferenceRoy, S. G., Tucker, G. E., Koons, P. O., Smith, S. M., & Upton, P. ( 2016 ). A fault runs through it: Modeling the influence of rock strength and grain‐size distribution in a fault‐damaged landscape. Journal of Geophysical Research: Earth Surface, 121 ( 10 ), 1911 – 1930. https://doi.org/10.1002/2015JF003662
dc.identifier.citedreferenceScharf, T. E., Codilean, A. T., de Wit, M., Jansen, J. D., & Kubik, P. W. ( 2013 ). Strong rocks sustain ancient postorogenic topography in southern Africa. Geology, 41 ( 3 ), 331 – 334. https://doi.org/10.1130/G33806.1
dc.identifier.citedreferenceSchlunegger, F., & Mosar, J. ( 2010 ). The last erosional stage of the Molasse Basin and the Alps. International Journal of Earth Sciences, 100 ( 5 ), 1147 – 1162. https://doi.org/10.1007/s00531‐010‐0607‐1
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.