Show simple item record

Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom

dc.contributor.authorKeenan, Kathryn E.
dc.contributor.authorAinslie, Maureen
dc.contributor.authorBarker, Alex J.
dc.contributor.authorBoss, Michael A.
dc.contributor.authorCecil, Kim M.
dc.contributor.authorCharles, Cecil
dc.contributor.authorChenevert, Thomas L.
dc.contributor.authorClarke, Larry
dc.contributor.authorEvelhoch, Jeffrey L.
dc.contributor.authorFinn, Paul
dc.contributor.authorGembris, Daniel
dc.contributor.authorGunter, Jeffrey L.
dc.contributor.authorHill, Derek L.G.
dc.contributor.authorJack, Clifford R.
dc.contributor.authorJackson, Edward F.
dc.contributor.authorLiu, Guoying
dc.contributor.authorRussek, Stephen E.
dc.contributor.authorSharma, Samir D.
dc.contributor.authorSteckner, Michael
dc.contributor.authorStupic, Karl F.
dc.contributor.authorTrzasko, Joshua D.
dc.contributor.authorYuan, Chun
dc.contributor.authorZheng, Jie
dc.date.accessioned2018-02-05T16:31:31Z
dc.date.available2019-03-01T21:00:17Zen
dc.date.issued2018-01
dc.identifier.citationKeenan, Kathryn E.; Ainslie, Maureen; Barker, Alex J.; Boss, Michael A.; Cecil, Kim M.; Charles, Cecil; Chenevert, Thomas L.; Clarke, Larry; Evelhoch, Jeffrey L.; Finn, Paul; Gembris, Daniel; Gunter, Jeffrey L.; Hill, Derek L.G.; Jack, Clifford R.; Jackson, Edward F.; Liu, Guoying; Russek, Stephen E.; Sharma, Samir D.; Steckner, Michael; Stupic, Karl F.; Trzasko, Joshua D.; Yuan, Chun; Zheng, Jie (2018). "Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom." Magnetic Resonance in Medicine 79(1): 48-61.
dc.identifier.issn0740-3194
dc.identifier.issn1522-2594
dc.identifier.urihttps://hdl.handle.net/2027.42/141340
dc.publisherInternational Society of Magnetic Resonance in Medicine
dc.publisherWiley Periodicals, Inc.
dc.subject.otherquality assurance
dc.subject.otherphantom
dc.subject.otherquantitative
dc.subject.othersystem consistency
dc.titleQuantitative magnetic resonance imaging phantoms: A review and the need for a system phantom
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141340/1/mrm26982.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141340/2/mrm26982_am.pdf
dc.identifier.doi10.1002/mrm.26982
dc.identifier.sourceMagnetic Resonance in Medicine
dc.identifier.citedreferenceKomlosh ME, Ozarslan E, Lizak MJ, Horkay F, Schram V, Shemesh N, Cohen Y, Basser PJ. Pore diameter mapping using double pulsed‐field gradient MRI and its validation using a novel glass capillary array phantom. J Magn Reson 2011; 208: 128 – 135.
dc.identifier.citedreferenceGuise C, Fernandes MM, Nobrega JM, Pathak S, Schneider W, Fangueiro R. Hollow polypropylene yarns as a biomimetic brain phantom for the validation of high‐definition fiber tractography imaging. ACS Appl Mater Interfaces 2016; 8: 29960 – 29967.
dc.identifier.citedreferenceArheden H, Holmqvist C, Thilen U, Hanseus K, Bjorkhem G, Pahlm O, Laurin S, Stahlberg F. Left‐to‐right cardiac shunts: comparison of measurements obtained with MR velocity mapping and with radionuclide angiography. Radiology 1999; 211: 453 – 458.
dc.identifier.citedreferenceLey S, Mereles D, Puderbach M, Gruenig E, Schock H, Eichinger M, Ley‐Zaporozhan J, Fink C, Kauczor HU. Value of MR phase‐contrast flow measurements for functional assessment of pulmonary arterial hypertension. Eur Radiol 2007; 17: 1892 – 1897.
dc.identifier.citedreferenceHope MD, Hope TA, Meadows AK, Ordovas KG, Urbania TH, Alley MT, Higgins CB. Bicuspid aortic valve: four‐dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology 2010; 255: 53 – 61.
dc.identifier.citedreferenceHodnett PA, Glielmi CB, Davarpanah AH, Scanlon TG, Ward E, Collins JD, Weale PJ, Carr JC. Inline directionally independent peak velocity evaluation reduces error in peak antegrade velocity estimation in patients referred for cardiac valvular assessment. AJR Am J Roentgenol 2012; 198: 344 – 350.
dc.identifier.citedreferenceBley TA, Johnson KM, Francois CJ, Reeder SB, Schiebler ML, B RL, Consigny D, Grist TM, Wieben O. Noninvasive assessment of transstenotic pressure gradients in porcine renal artery stenoses by using vastly undersampled phase‐contrast MR angiography. Radiology 2011; 261: 266 – 273.
dc.identifier.citedreferenceDeng Z, Fan Z, Lee SE, et al. Noninvasive measurement of pressure gradient across a coronary stenosis using phase contrast (PC)‐MRI: a feasibility study. Magn Reson Med 2016; 18: 218.
dc.identifier.citedreferenceFrayne R, Steinman DA, Ethier CR, Rutt BK. Accuracy of MR phase contrast velocity measurements for unsteady flow. J Magn Reson Imaging 1995; 5: 428 – 431.
dc.identifier.citedreferenceFrayne R, Gowman LM, Rickey DW, Holdsworth DW, Picot PA, Drangova M, Chu KC, Caldwell CB, Fenster A, Rutt BK. A geometrically accurate vascular phantom for comparative studies of x‐ray, ultrasound, and magnetic resonance vascular imaging: construction and geometrical verification. Med Phys 1993; 20: 415 – 425.
dc.identifier.citedreferenceHoldsworth DW, Rickey DW, Drangova M, Miller DJ, Fenster A. Computer‐controlled positive displacement pump for physiological flow simulation. Med Biol Eng Comput 1991; 29: 565 – 570.
dc.identifier.citedreferenceGatehouse PD, Rolf MP, Graves MJ, et al. Flow measurement by cardiovascular magnetic resonance: a multi‐centre multi‐vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson 2010; 12: 5.
dc.identifier.citedreferenceRolf MP, Hofman MB, Gatehouse PD, et al. Sequence optimization to reduce velocity offsets in cardiovascular magnetic resonance volume flow quantification—a multi‐vendor study. J Cardiovasc Magn Reson 2011; 13: 18.
dc.identifier.citedreferenceGatehouse PD, Rolf MP, Bloch KM, Graves MJ, Kilner PJ, Firmin DN, Hofman MB. A multi‐center inter‐manufacturer study of the temporal stability of phase‐contrast velocity mapping background offset errors. J Cardiovasc Magn Reson 2012; 14: 72.
dc.identifier.citedreferenceBarker AJ, Lanning C, Shandas R. Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase‐contrast MRI. Ann Biomed Eng 2010; 38: 788 – 800.
dc.identifier.citedreferenceCasas B, Lantz J, Dyverfeldt P, Ebbers T. 4D flow MRI‐based pressure loss estimation in stenotic flows: evaluation using numerical simulations. Magn Reson Med 2016; 75: 1808 – 1821.
dc.identifier.citedreferenceCanstein C, Cachot P, Faust A, Stalder AF, Bock J, Frydrychowicz A, Kuffer J, Hennig J, Markl M. 3D MR flow analysis in realistic rapid‐prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries. Magn Reson Med 2008; 59: 535 – 546.
dc.identifier.citedreferenceSummers PE, Holdsworth DW, Nikolov HN, Rutt BK, Drangova M. Multisite trial of MR flow measurement: phantom and protocol design. J Magn Reson Imaging 2005; 21: 620 – 631.
dc.identifier.citedreferenceNordell B, Stahlberg F, Ericsson A, Ranta C. A rotating phantom for the study of flow effects in MR imaging. Magn Reson Imaging 1988; 6: 695 – 705.
dc.identifier.citedreferenceDurand EP, Jolivet O, Itti E, Tasu JP, Bittoun J. Precision of magnetic resonance velocity and acceleration measurements: theoretical issues and phantom experiments. J Magn Reson Imaging 2001; 13: 445 – 451.
dc.identifier.citedreferenceNilsson A, Bloch KM, Töger J, Heiberg E, Ståhlberg F. Accuracy of four‐dimensional phase‐contrast velocity mapping for blood flow visualizations: a phantom study. Acta Radiologica 2013; 54: 663 – 671.
dc.identifier.citedreferenceTuong B, Gardiner I. Development of a novel breast MRI phantom for quality control. AJR Am J Roentgenol 2013; 201: W511 – W515.
dc.identifier.citedreferenceFreed M, de Zwart JA, Loud JT, El Khouli RH, Myers KJ, Greene MH, Duyn JH, Badano A. An anthropomorphic phantom for quantitative evaluation of breast MRI. Med Phys 2011; 38: 743 – 753.
dc.identifier.citedreferenceFreed M, de Zwart JA, Hariharan P, Myers MR, Badano A. Development and characterization of a dynamic lesion phantom for the quantitative evaluation of dynamic contrast‐enhanced MRI. Med Phys 2011; 38: 5601 – 5611.
dc.identifier.citedreferenceKeenan KE, Peskin AP, Wilmes LJ, Aliu SO, Jones EF, Li W, Kornak J, Newitt DC, Hylton NM. Variability and bias assessment in breast ADC measurement across multiple systems. J Magn Reson Imaging 2016; 44: 846 – 855.
dc.identifier.citedreferenceReeder SB, Hu HH, Sirlin CB. Proton density fat‐fraction: a standardized MR‐based biomarker of tissue fat concentration. J Magn Reson Imaging 2012; 36: 1011 – 1014.
dc.identifier.citedreferenceHines CD, Yu H, Shimakawa A, McKenzie CA, Brittain JH, Reeder SB. T1 independent, T2* corrected MRI with accurate spectral modeling for quantification of fat: validation in a fat‐water‐SPIO phantom. J Magn Reson Imaging 2009; 30: 1215 – 1222.
dc.identifier.citedreferenceMashhood A, Railkar R, Yokoo T, Levin Y, Clark L, Fox‐Bosetti S, Middleton MS, Riek J, Kauh E, Dardzinski BJ. Reproducibility of hepatic fat fraction measurement by magnetic resonance imaging. J Magn Reson Imaging 2013; 37: 1359 – 1370.
dc.identifier.citedreferenceHernando D, Sharma SD, Aliyari Ghasabeh M, et al. Multisite, multivendor validation of the accuracy and reproducibility of proton‐density fat‐fraction quantification at 1.5T and 3T using a fat‐water phantom. Magn Reson Med 2017; 77: 1516 – 1524.
dc.identifier.citedreferenceMeisamy S, Hines CD, Hamilton G, Sirlin CB, McKenzie CA, Yu H, Brittain JH, Reeder SB. Quantification of hepatic steatosis with T1‐independent, T2‐corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 2011; 258: 767 – 775.
dc.identifier.citedreferenceHorng DE, Hernando D, Hines CD, Reeder SB. Comparison of R2* correction methods for accurate fat quantification in fatty liver. J Magn Reson Imaging 2013; 37: 414 – 422.
dc.identifier.citedreferenceChenevert TL, Malyarenko DI, Newitt D, et al. Errors in quantitative image analysis due to platform‐dependent image scaling. Transl Oncol 2014; 7: 65 – 71.
dc.identifier.citedreferenceBecker GJ. 2007 Report of the Chairman of the Board of Directors. https://rsna.org/2007_Report_of_the_Chairman_of_the_Board_of_Directors.aspx. 2007. Accessed July 24, 2015.
dc.identifier.citedreferenceMa D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, Griswold MA. Magnetic resonance fingerprinting. Nature 2013; 495: 187 – 192.
dc.identifier.citedreferenceLustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58: 1182 – 1195.
dc.identifier.citedreferenceDoneva M, Bornert P, Eggers H, Stehning C, Senegas J, Mertins A. Compressed sensing reconstruction for magnetic resonance parameter mapping. Magn Reson Med 2010; 64: 1114 – 1120.
dc.identifier.citedreferenceRussek S, Boss M, Jackson E, Jennings D, Evelhoch J, Gunter J, Sorensen A, editors. Characterization of NIST/ISMRM MRI system phantom. In Proceedings of the 20th Annual Meeting of ISMRM, Melbourne, Australia, 2012. p. 2456.
dc.identifier.citedreferenceKeenan K, Stupic K, Boss M, et al., editors. Multi‐site, multi‐vendor comparison of T1 measurement using NIST/ISMRM system phantom. In Proceedings of the 24th Annual Meeting of ISMRM, Singapore, 2016. p. 3290.
dc.identifier.citedreferenceKeenan K, Jackson E, Boss M, Kown S, Jennings D, Russek S, editors. ISMRM/NIST system phantom: T1 measurements on multiple MRI systems. In Proceedings of the 21st Annual Meeting of ISMRM, Salt Lake City, Utah, USA, 2013. p. 4338.
dc.identifier.citedreferenceBosca RJ. Methodological development of a multi‐parametric quantitative imaging biomarker framework for assessing treatment response with MRI. Houston, Texas, USA: The University of Texas Graduate School of Biomedical Sciences at Houston; 2014.
dc.identifier.citedreferenceAtkinson AJ, Colburn WA, DeGruttola VG, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69: 89 – 95.
dc.identifier.citedreferenceKessler LG, Barnhart HX, Buckler AJ, et al. The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions. Stat Methods Med Res 2015; 24: 9 – 26.
dc.identifier.citedreferenceRaunig DL, McShane LM, Pennello G, et al. Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment. Stat Methods Med Res 2015; 24: 27 – 67.
dc.identifier.citedreferencePartridge SC, Gibbs JE, Lu Y, Esserman LJ, Tripathy D, Wolverton DS, Rugo HS, Hwang ES, Ewing CA, Hylton NM. MRI measurements of breast tumor volume predict response to neoadjuvant chemotherapy and recurrence‐free survival. AJR Am J Roentgenol 2005; 184: 1774 ‐ 1781.
dc.identifier.citedreferenceVaidyanathan M, Clarke LP, Hall LO, Heidtman C, Velthuizen R, Gosche K, Phuphanich S, Wagner H, Greenberg H, Silbiger ML. Monitoring brain tumor response to therapy using MRI segmentation. Magn Reson Imaging 1997; 15: 323 – 334.
dc.identifier.citedreferenceMayr NA, Taoka T, Yuh WT, et al. Method and timing of tumor volume measurement for outcome prediction in cervical cancer using magnetic resonance imaging. Int J Radiat Oncol Biol Phys 2002; 52: 14 – 22.
dc.identifier.citedreferenceLemieux L, Hagemann G, Krakow K, Woermann FG. Fast, accurate, and reproducible automatic segmentation of the brain in T1‐weighted volume MRI data. Magn Reson Med 1999; 42: 127 – 135.
dc.identifier.citedreferenceJack CR Jr, Shiung MM, Gunter JL, et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 2004; 62: 591 – 600.
dc.identifier.citedreferenceResnick SM, Goldszal AF, Davatzikos C, Golski S, Kraut MA, Metter EJ, Bryan RN, Zonderman AB. One‐year age changes in MRI brain volumes in older adults. Cereb Cortex 2000; 10: 464 – 472.
dc.identifier.citedreferenceSchuff N, Amend DL, Knowlton R, Norman D, Fein G, Weiner MW. Age‐related metabolite changes and volume loss in the hippocampus by magnetic resonance spectroscopy and imaging. Neurobiol Aging 1999; 20: 279 – 285.
dc.identifier.citedreferenceGreicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 2003; 100: 253 – 258.
dc.identifier.citedreferenceGreicius MD, Srivastava G, Reiss AL, Menon V. Default‐mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 2004; 101: 4637 – 4642.
dc.identifier.citedreferenceWu X, Li R, Fleisher AS, Reiman EM, Guan X, Zhang Y, Chen K, Yao L. Altered default mode network connectivity in Alzheimer’s disease—a resting functional MRI and Bayesian network study. Hum Brain Mapp 2011; 32: 1868 – 1881.
dc.identifier.citedreferenceMoffat BA, Chenevert TL, Lawrence TS, et al. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci U S A 2005; 102: 5524 – 5529.
dc.identifier.citedreferenceLiimatainen T, Hakumaki JM, Kauppinen RA, Ala‐Korpela M. Monitoring of gliomas in vivo by diffusion MRI and (1)H MRS during gene therapy‐induced apoptosis: interrelationships between water diffusion and mobile lipids. NMR Biomed 2009; 22: 272 – 279.
dc.identifier.citedreferenceHuisman TA, Schwamm LH, Schaefer PW, Koroshetz WJ, Shetty‐Alva N, Ozsunar Y, Wu O, Sorensen AG. Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR Am J Neuroradiol 2004; 25: 370 – 376.
dc.identifier.citedreferenceMayer AR, Ling J, Mannell MV, Gasparovic C, Phillips JP, Doezema D, Reichard R, Yeo RA. A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology 2010; 74: 643 – 650.
dc.identifier.citedreferencePadhani AR, Liu G, Koh DM, et al. Diffusion‐weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009; 11: 102 – 125.
dc.identifier.citedreferenceParsons MW, Li T, Barber PA, Yang Q, Darby DG, Desmond PM, Gerraty RP, Tress BM, Davis SM. Combined (1)H MR spectroscopy and diffusion‐weighted MRI improves the prediction of stroke outcome. Neurology 2000; 55: 498 – 505.
dc.identifier.citedreferenceGolman K, Zandt RI, Lerche M, Pehrson R, Ardenkjaer‐Larsen JH. Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res 2006; 66: 10855 – 10860.
dc.identifier.citedreferenceReference Values for Arterial Stiffness Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J 2010; 31: 2338 – 2350.
dc.identifier.citedreferenceAnces BM, Sisti D, Vaida F, et al. Resting cerebral blood flow: a potential biomarker of the effects of HIV in the brain. Neurology 2009; 73: 702 – 708.
dc.identifier.citedreferenceMarkl M, Wallis W, Strecker C, Gladstone BP, Vach W, Harloff A. Analysis of pulse wave velocity in the thoracic aorta by flow‐sensitive four‐dimensional MRI: reproducibility and correlation with characteristics in patients with aortic atherosclerosis. J Magn Reson Imaging 2012; 35: 1162 – 1168.
dc.identifier.citedreferenceIdilman IS, Aniktar H, Idilman R, Kabacam G, Savas B, Elhan A, Celik A, Bahar K, Karcaaltincaba M. Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology 2013; 267: 767 – 775.
dc.identifier.citedreferenceQayyum A, Goh JS, Kakar S, Yeh BM, Merriman RB, Coakley FV. Accuracy of liver fat quantification at MR imaging: comparison of out‐of‐phase gradient‐echo and fat‐saturated fast spin‐echo techniques—initial experience. Radiology 2005; 237: 507 – 511.
dc.identifier.citedreferencePacifico L, Celestre M, Anania C, Paolantonio P, Chiesa C, Laghi A. MRI and ultrasound for hepatic fat quantification:relationships to clinical and metabolic characteristics of pediatric nonalcoholic fatty liver disease. Acta Paediatr 2007; 96: 542 – 547.
dc.identifier.citedreferenceReeder SB, Robson PM, Yu H, Shimakawa A, Hines CD, McKenzie CA, Brittain JH. Quantification of hepatic steatosis with MRI: the effects of accurate fat spectral modeling. J Magn Reson Imaging 2009; 29: 1332 – 1339.
dc.identifier.citedreferenceMentore K, Froh DK, de Lange EE, Brookeman JR, Paget‐Brown AO, Altes TA. Hyperpolarized HHe 3 MRI of the lung in cystic fibrosis: assessment at baseline and after bronchodilator and airway clearance treatment. Acad Radiol 2005; 12: 1423 – 1429.
dc.identifier.citedreferenceOhno Y, Koyama H, Yoshikawa T, Matsumoto K, Takahashi M, Van Cauteren M, Sugimura K. T2* measurements of 3‐T MRI with ultrashort TEs: capabilities of pulmonary function assessment and clinical stage classification in smokers. AJR Am J Roentgenol 2011; 197: W279 – W285.
dc.identifier.citedreferenceBabourina‐Brooks B, Simpson R, Arvanitis TN, Machin G, Peet AC, Davies NP. MRS thermometry calibration at 3 T: effects of protein, ionic concentration and magnetic field strength. NMR Biomed 2015; 28: 792 – 800.
dc.identifier.citedreferenceBabourina‐Brooks B, Wilson M, Arvanitis TN, Peet AC, Davies NP. MRS water resonance frequency in childhood brain tumours: a novel potential biomarker of temperature and tumour environment. NMR Biomed 2014; 27: 1222 – 1229.
dc.identifier.citedreferenceRieke V, Instrella R, Rosenberg J, Grissom W, Werner B, Martin E, Pauly KB. Comparison of temperature processing methods for monitoring focused ultrasound ablation in the brain. J Magn Reson Imaging 2013; 38: 1462 – 1471.
dc.identifier.citedreferenceLoomba R, Wolfson T, Ang B, et al. Magnetic resonance elastography predicts advanced fibrosis in patients with nonalcoholic fatty liver disease: a prospective study. Hepatology 2014; 60: 1920 – 1928.
dc.identifier.citedreferenceYin M, Talwalkar JA, Glaser KJ, Manduca A, Grimm RC, Rossman PJ, Fidler JL, Ehman RL. Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol 2007; 5: 1207 – 1213.e2.
dc.identifier.citedreferenceClarke L, Sriram RD. Imaging as a biomarker: standards for change measurements in therapy workshop summary. Acad Radiol 2008; 15: 501 – 530.
dc.identifier.citedreferenceWoodcock J, Woosley R. The FDA critical path initiative and its influence on new drug development. Ann Rev Med 2008; 59: 1 – 12.
dc.identifier.citedreferenceGlaser KJ, Manduca A, Ehman RL. Review of MR elastography applications and recent developments. J Magn Reson Imaging 2012; 36: 757 – 774.
dc.identifier.citedreferencePadhani AR. Dynamic contrast‐enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 2002; 16: 407 – 422.
dc.identifier.citedreferenceHuisman TA, Boltshauser E, Martin E, Nadal D. Diffusion tensor imaging in progressive multifocal leukoencephalopathy: early predictor for demyelination? AJNR Am J Neuroradiol 2005; 26: 2153 – 2156.
dc.identifier.citedreferenceRadiological Society of North America. Quantitative Imaging Biomarkers Alliance. http://www.rsna.org/qiba/. Accessed August 24, 2016.
dc.identifier.citedreferenceClarke LP, Croft BS, Nordstrom R, Zhang H, Kelloff G, Tatum J. Quantitative imaging for evaluation of response to cancer therapy. Transl Oncol 2009; 2: 195 – 197.
dc.identifier.citedreferenceNordstrom RJ. The quantitative imaging network in precision medicine. Tomography 2016; 2: 239 – 241.
dc.identifier.citedreferenceKeenan KE, Wilmes LJ, Aliu SO, Newitt DC, Jones EF, Boss MA, Stupic KF, Russek SE, Hylton NM. Design of a breast phantom for quantitative MRI. J Magn Reson Imaging 2016; 44: 610 – 619.
dc.identifier.citedreferenceBoss M, Chenevert T, Waterton J, et al. Thermally‐stabilized isotropic diffusion phantom for multisite assessment of apparent diffusion coefficient reproducibilty. Med Phys 2014; 41: 464.
dc.identifier.citedreferenceFriedman L, Glover GH. Report on a multicenter fMRI quality assurance protocol. J Magn Reson Imaging 2006; 23: 827 – 839.
dc.identifier.citedreferenceCheng HL, Wright GA. Rapid high‐resolution T(1) mapping by variable flip angles: accurate and precise measurements in the presence of radiofrequency field inhomogeneity. Magn Reson Med 2006; 55: 566 – 574.
dc.identifier.citedreferenceStikov N, Boudreau M, Levesque IR, Tardif CL, Barral JK, Pike GB. On the accuracy of T1 mapping: searching for common ground. Magn Reson Med 2015; 73: 514 – 22.
dc.identifier.citedreferenceNational Electrical Manufacturers Association (NEMA). Determination of signal‐to‐noise ratio SNR in diagnostic MRI. In: NEMA standards publication MS 1‐2008 R2014; 2014.
dc.identifier.citedreferenceInternational Electrotechnical Commission (IEC). Magnetic resonance equipment for medical imaging. 1: Determination of essential image quality parameters. In: IEC standards 62464‐1; 2007.
dc.identifier.citedreferenceNational Electrical Manufacturers Association (NEMA). Determination of image uniformity in diagnostic magnetic resonance images. In: NEMA standards publication MS 3‐2008 R2014 image uniformity; 2014.
dc.identifier.citedreferenceNewitt DC, Tan ET, Wilmes LJ, Chenevert TL, Kornak J, Marinelli L, Hylton N. Gradient nonlinearity correction to improve apparent diffusion coefficient accuracy and standardization in the American College of Radiology Imaging Network 6698 breast cancer trial. J Magn Reson Imaging 2015; 42: 908 – 919.
dc.identifier.citedreferenceTao S, Trzasko JD, Shu Y, Huston J 3rd, Bernstein MA. Integrated image reconstruction and gradient nonlinearity correction. Magn Reson Med 2015; 74: 1019 – 1031.
dc.identifier.citedreferenceGunter JL, Britson PJ, Felmlee JP, Ward CP, Schuff N, Weiner M, Levy J, Jack CR, editors. The ADNI phantom and analysis algorithm: a new and accurate tool to measure scanner performance. Berlin, Germany: International Society of Magnetic Resonance in Medicine; 2007.
dc.identifier.citedreferenceGunter JL, Bernstein MA, Borowski BJ, Ward CP, Britson PJ, Felmlee JP, Schuff N, Weiner M, Jack CR. Measurement of MRI scanner performance with the ADNI phantom. Med Phys 2009; 36: 2193 – 205.
dc.identifier.citedreferencePrice RR, Allison J, Clarke GD, Dennis M, Hendrick E, Keener C, Masten J, Nessaiver M, Och J, Reeve D. 2015 MRI quality control manual. Reston, VA: American College of Radiology; 2015.
dc.identifier.citedreferenceAmerican College of Radiology. MRI accreditation program requirements. 2016. http://www.acraccreditation.org/~/media/ACRAccreditation/Documents/MRI/Requirements.pdf. Accessed June 23, 2016.
dc.identifier.citedreferenceXu D, Maier JK, King KF, Collick BD, Wu G, Peters RD, Hinks RS. Prospective and retrospective high order eddy current mitigation for diffusion weighted echo planar imaging. Magn Reson Med 2013; 70: 1293 – 1305.
dc.identifier.citedreferenceJackson EF, Bronskill MJ, Drost DJ, Och J, Pooley RA, Sobol WT, Clarke GD. Acceptance testing and quality assurance procedures for magnetic resonance imaging facilities. Alexandria, VA: American Association of Physicists in Medicine; 2010.
dc.identifier.citedreferencePrice RR, Axel L, Morgan T, Newman R, Perman W, Schneiders N, Selikson M, Wood ML, Thomas SR. Quality assurance methods and phantoms for magnetic resonance imaging. Alexandria, VA: American Association of Physicists in Medicine; 1990. p 17.
dc.identifier.citedreferenceFirbank MJ, Harrison RM, Williams ED, Coulthard A. Quality assurance for MRI: practical experience. Brit J Radiol 2000; 73: 376 – 383.
dc.identifier.citedreferenceLerski RA, de Certaines JD. Performance assessment and quality control in MRI by Eurospin test objects and protocols. Magn Reson Imaging 1993; 11: 817 – 833.
dc.identifier.citedreferenceLerski RA, McRobbie DW, Straughan K, Walker PM, de Certaines JD, Bernard AM. Multi‐center trial with protocols and prototype test objects for the assessment of MRI equipment. EEC Concerted Research Project. Magn Reson Imaging 1988; 6: 201 – 214.
dc.identifier.citedreferenceDe Wilde JP, Price D, Curran J, Williams J, Kitney RI. Standardization of performance evaluation in MRI: 13 years’ experience of intersystem comparison. Concepts Magn Reson 2002; 15: 111 – 116.
dc.identifier.citedreferenceDe Wilde JP, Price D, Papadaki AM, Curran J, Kitney RI. Siemens Magnetom Symphony Quantum gradient system 1.5T MR imaging system: technical and user evaluation. MDA 01014. 2001.
dc.identifier.citedreferenceDelakis I, Moore EM, Leach MO, De Wilde JP. Developing a quality control protocol for diffusion imaging on a clinical MRI system. Phys Med Biol 2004; 49: 1409 – 1422.
dc.identifier.citedreferencePrice DL, De Wilde JP, Papadaki AM, Curran JS, Kitney RI. Investigation of acoustic noise on 15 MRI scanners from 0.2 T to 3 T. J Magn Reson Imaging 2001; 13: 288 – 293.
dc.identifier.citedreferenceWilliams J. MagNET’s MRI test objects. http://magnet-mri.org/products/testobjects/index.htm. 2005. Accessed June 16, 2006.
dc.identifier.citedreferenceMarquez D. Personal communication. 2016.
dc.identifier.citedreferencePrice R, Allison J, Clarke G, Dennis M, Hendrick E, Keener C, Masten J, Nessaiver M, Och J, Reeve D. MRI quality control manual. Reston, VA: American College of Radiology; 2015.
dc.identifier.citedreferenceGunter JL. Personal communication. 2016.
dc.identifier.citedreferenceBosca R, Ashton E, Zahlmann G, Jackson E, editors. RSNA Quantitative Imaging Biomarker Alliance (QIBA) DCE‐MRI phantom: goal, design, and initial results. In Proceedings of the 98th Scientific Assembly and Annual Meeting of RSNA, Chicago, Illinois, USA, 2012.
dc.identifier.citedreferenceRepeatability assessment of quantitative DCE‐MRI and DWI: a multicenter study of functional imaging standardization in the prostate. https://www.acrin.org/6701_protocol.aspx. Accessed March 20, 2017.
dc.identifier.citedreferenceLaubach HJ, Jakob PM, Loevblad KO, Baird AE, Bovo MP, Edelman RR, Warach S. A phantom for diffusion‐weighted imaging of acute stroke. J Magn Reson Imaging 1998; 8: 1349 – 1354.
dc.identifier.citedreferenceTofts PS, Lloyd D, Clark CA, Barker GJ, Parker GJ, McConville P, Baldock C, Pope JM. Test liquids for quantitative MRI measurements of self‐diffusion coefficient in vivo. Magn Reson Med 2000; 43: 368 – 374.
dc.identifier.citedreferenceWang X, Reeder SB, Hernando D. An acetone based phantom for quantitative diffusion magnetic resonance imaging. J Magn Reson Imaging 2017; 46: 1683 – 1692.
dc.identifier.citedreferenceCollins D, Koh DM. IMI‐QuiConCePT conference call. 2013.
dc.identifier.citedreferenceChenevert TL, Galban CJ, Ivancevic MK, Rohrer SE, Londy FJ, Kwee TC, Meyer CR, Johnson TD, Rehemtulla A, Ross BD. Diffusion coefficient measurement using a temperature‐controlled fluid for quality control in multicenter studies. J Magn Reson Imaging 2011; 34: 983 – 987.
dc.identifier.citedreferenceMalyarenko D, Galbán CJ, Londy FJ, Meyer CR, Johnson TD, Rehemtulla A, Ross BD, Chenevert TL. Multi‐system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice‐water phantom. J Magn Reson Imaging 2013; 37: 1238 – 1246.
dc.identifier.citedreferencePierpaoli C, Sarlls J, Nevo U, Basser PJ, Horkay F. Polyvinylpyrrolidone (PVP) water solutions as isotropic phantoms for diffusion MRI studies. In Proceedings of the 17th Annual Meeting of ISMRM, Honolulu, Hawaii, USA, 2009. p. 1414.
dc.identifier.citedreferencePullens P, Roebroeck A, Goebel R. Ground truth hardware phantoms for validation of diffusion‐weighted MRI applications. J Magn Reson Imaging 2010; 32: 482 – 488.
dc.identifier.citedreferenceHubbard PL, Zhou FL, Eichhorn SJ, Parker GJ. Biomimetic phantom for the validation of diffusion magnetic resonance imaging. Magn Reson Med 2015; 73: 299 – 305.
dc.identifier.citedreferenceFieremans E, De Deene Y, Delputte S, Ozdemir MS, D’Asseler Y, Vlassenbroeck J, Deblaere K, Achten E, Lemahieu I. Simulation and experimental verification of the diffusion in an anisotropic fiber phantom. J Magn Reson. 2008; 190: 189 – 199.
dc.identifier.citedreferenceMattila S, Renvall V, Hiltunen J, Kirven D, Sepponen R, Hari R, Tarkiainen A. Phantom‐based evaluation of geometric distortions in functional magnetic resonance and diffusion tensor imaging. Magn Reson Med 2007; 57: 754 – 763.
dc.identifier.citedreferenceBastin ME. Correction of eddy current‐induced artefacts in diffusion tensor imaging using iterative cross‐correlation. Magn Reson Imaging 1999; 17: 1011 – 1024.
dc.identifier.citedreferenceBastin ME, Armitage PA. On the use of water phantom images to calibrate and correct eddy current induced artefacts in MR diffusion tensor imaging. Magn Reson Imaging 2000; 18: 681 – 687.
dc.identifier.citedreferencePerrin M, Poupon C, Rieul B, Leroux P, Constantinesco A, Mangin JF, Lebihan D. Validation of q‐ball imaging with a diffusion fibre‐crossing phantom on a clinical scanner. Philos Trans R Soc Lond B Biol Sci 2005; 360: 881 – 891.
dc.identifier.citedreferenceQin EC, Sinkus R, Geng G, Cheng S, Green M, Rae CD, Bilston LE. Combining MR elastography and diffusion tensor imaging for the assessment of anisotropic mechanical properties: a phantom study. J Magn Reson Imaging 2013; 37: 217 – 226.
dc.identifier.citedreferenceLichenstein SD, Bishop JH, Verstynen TD, Yeh FC. Diffusion capillary phantom vs. human data: outcomes for reconstruction methods depend on evaluation medium. Front Neurosci 2016; 10: 407.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.