Show simple item record

River Restoration Effects on Steelhead Populations in the Manistee River, Michigan: Analysis Using an Individual‐Based Model

dc.contributor.authorTyler, Jeffrey A.
dc.contributor.authorRutherford, Edward S.
dc.date.accessioned2018-02-05T16:31:50Z
dc.date.available2018-02-05T16:31:50Z
dc.date.issued2007-11
dc.identifier.citationTyler, Jeffrey A.; Rutherford, Edward S. (2007). "River Restoration Effects on Steelhead Populations in the Manistee River, Michigan: Analysis Using an Individual‐Based Model." Transactions of the American Fisheries Society 136(6): 1654-1673.
dc.identifier.issn0002-8487
dc.identifier.issn1548-8659
dc.identifier.urihttps://hdl.handle.net/2027.42/141355
dc.description.abstractThe Manistee River, Michigan, watershed includes two dams as well as residential and agricultural development, and the river itself contains a sizeable population of steelhead Oncorhynchus mykiss that supports a valuable recreational fishery. Restoration of the Manistee River and its flow regime may improve steelhead habitat and the fishery. We developed an individual‐based model of steelhead in the Manistee River to assess the population effects of changes in the number of spawners, water discharge from Tippy Dam, and water temperature. The model follows steelhead from spring spawning to the end of the growing season in early fall and depicts the river environment as a series of cells that vary in dimension, water velocity, and substrate. Simulated water discharge, temperature, and prey availability changed daily based on observations from Tippy Dam. Empirically based models describe individual steelhead fry and parr foraging and growth. In the model, steelhead select habitats and maximize individual fitness while accounting for dominance and the availability of feeding territories. We calibrated the model to replicate fish growth, mortality, and population size. Simulation experiments manipulated the number of spawning females, water discharge, and water temperature. The results suggest that Manistee River steelhead incur density limitations in the fry and parr stages and that water discharge and temperature changes affect the number and biomass of parr. Increasing river discharge negatively affected parr numbers and weight. Decreasing maximum midsummer temperature increased parr numbers and weight when the change was large, but otherwise had little effect. These results indicate that restoration of the natural flow regime in the Manistee River will probably increase the quality of the habitat for steelhead but that density limitations in the fry and parr stages may ultimately limit population growth.
dc.publisherTaylor & Francis Group
dc.publisherWiley Periodicals, Inc.
dc.titleRiver Restoration Effects on Steelhead Populations in the Manistee River, Michigan: Analysis Using an Individual‐Based Model
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141355/1/tafs1654.pdf
dc.identifier.doi10.1577/T06-147.1
dc.identifier.sourceTransactions of the American Fisheries Society
dc.identifier.citedreferenceS. Nakano, 1995 Individual differences in resource use, growth, and emigration under the influence of a dominance hierarchy in fluvial red‐spotted masu salmon in a natural habitat, Journal of Animal Ecology, 64, Pages 75 – 84.
dc.identifier.citedreferenceI. D. McCarthy, G. C. Carter and D. F. Houlihan, 1992 The effect of feeding hierarchy on individual variability in daily feeding of rainbow trout, Oncorhynchus mykiss (Walbaum), Journal of Fish Biology, 41, Pages 257 – 263.
dc.identifier.citedreferenceC. B. Meyer, 2003 The importance of measuring biotic and abiotic factors in the lower egg pocket to predict coho salmon egg survival, Journal of Fish Biology, 62, Pages 534 – 548.
dc.identifier.citedreferenceM. Milinski and K. Regelmann, 1985 Fading short‐term memory for patch quality in sticklebacks, Animal Behaviour, 33, Pages 678 – 680.
dc.identifier.citedreferenceJ. J. Nagler, J. E. Parsons and J. G. Cloud, 2000 Single‐pair matings indicate maternal effects on embryo survival in rainbow trout, Oncorhynchus mykiss, Aquaculture, 184, Pages 177 – 183.
dc.identifier.citedreferenceD. B. Osmundson, R. J. Ryel, V. L. Lamarra and J. Pitlick, 2002 Flow‐sediment‐biota relations: Implications for river regulation effects on native fish abundance, Ecological Applications, 12, Pages 1719 – 1739.
dc.identifier.citedreferenceN. L. Poff, J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks and J. C. Stromberg, 1997 The natural flow regime, BioScience, 47, Pages 769 – 784.
dc.identifier.citedreferenceP. S. Rand, D. J. Stewart, P. W. Seelbach and L. R. Wedge, 1993 Modeling steelhead population energetics in Lakes Michigan and Ontario, Transactions of the American Fisheries Society, 122, Pages 977 – 1001.
dc.identifier.citedreferenceH. A. Regier, J. A. Holmes and D. Pauly, 1990 Influences of temperature changes on aquatic ecosystems: An interpretation of empirical data, Transactions of the American Fisheries Society, 119, Pages 374 – 389.
dc.identifier.citedreferenceK. A. Rose, J. A. Tyler, R. C. Chambers, G. Klein‐MacPhee and D. J. Danila, 1996 Simulating winter flounder population dynamics using coupled individual‐based young‐of‐the‐year and age‐structured adult models, Canadian Journal of Fisheries and Aquatic Sciences, 53, Pages 1071 – 1091.
dc.identifier.citedreferenceT. J. Rozich, 1998. In Manistee River assessment, Michigan Department of Natural Resources, Ann Arbor, Special Report 21.
dc.identifier.citedreferenceJ. A. Tyler and M. B. Bolduc, “ Individual variation in bioenergetic rates of YOY rainbow trout ”. In Transactions of the American Fisheries Society, In press.
dc.identifier.citedreferenceJ. A. Tyler and K. A. Rose, 1997 Individual‐based model of fish cohort growth, movement, and survival in a spatially explicit environment, Journal of Animal Ecology, 66, Pages 122 – 136.
dc.identifier.citedreferenceW. Van Winkle, H. I. Jager, S. F. Railsback, B. D. Holcomb, T. K. Studley and J. E. Baldrige, 1998 Individual‐based model of sympatric populations of brown and rainbow trout for instream flow assessment: Model description and calibration, Ecological Modelling, 110, Pages 175 – 207.
dc.identifier.citedreferenceE. E. Werner and J. F. Gilliam, 1984 The ontogenetic niche and species interactions in size‐structured populations, Annual Review of Ecology and Systematics, 15, Pages 393 – 425.
dc.identifier.citedreferenceA. Woldt and E. S. Rutherford, 2002. In Production of juvenile steelhead in two central Lake Michigan tributaries, Michigan Department of Natural Resources, Ann Arbor, Fisheries Division Report 2060.
dc.identifier.citedreferenceR. D. Workman, 2002. In Spawning migrations and habitat selection by steelhead and longnose suckers in the Pere Marquette and St. Joseph rivers, Michigan, Michigan State University, East Lansing, Doctoral dissertation.
dc.identifier.citedreferenceB. Babbitt, 2002 What goes up may come down, BioScience, 52, Pages 656 – 658.
dc.identifier.citedreferenceS. M. Bartell, J. E. Breck, R. H. Gardner and A. L. Brenkert, 1986 Individual parameter perturbation and error analysis of fish bioenergetics models, Canadian Journal of Fisheries and Aquatic Sciences, 43, Pages 160 – 168.
dc.identifier.citedreferenceC. Bernstein, A. C. Kacelnik and J. R. Krebs, 1988 Individual decisions and the distribution of predators in a patchy environment, Journal of Animal Ecology, 57, Pages 1007 – 1026.
dc.identifier.citedreferenceR. M. Biette, D. P. Dodge, R. L. Hassinger and T. M. Stauffer, 1981 Life history and timing of migrations and spawning behavior of rainbow trout (Salmo gairdneri) populations in the Great Lakes, Canadian Journal of Fisheries and Aquatic Sciences, 38, Pages 1759 – 1771.
dc.identifier.citedreferenceT. D. Brock, 1981 Calculating solar radiation for ecological studies, Ecological Modelling, 8, Pages 109 – 132.
dc.identifier.citedreferenceS. E. Bunn and A. H. Arthington, 2002 Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity, Environmental Management, 30, Pages 492 – 507.
dc.identifier.citedreferenceE. L. Charnov, 1976 Optimal foraging, the marginal value theorem, Theoretical Population Biology, 9, Pages 129 – 136.
dc.identifier.citedreferenceM. A. Church, D. G. McLean and J. F. Wolcott, 1987. In Sediment transfer in gravel‐bed rivers, Wiley, New York.
dc.identifier.citedreferenceM. E. Clark and K. A. Rose, 1997 Factors affecting competitive dominance of rainbow trout over brook trout in southern Appalachian streams: Implications of an individual‐based model, Transactions of the American Fisheries Society, 126, Pages 1 – 20.
dc.identifier.citedreferenceD. T. Crisp and P. A. Carling, 1989 Observations on siting, dimensions, and structure of salmonid redds, Journal of Fish Biology, 34, Pages 119 – 134.
dc.identifier.citedreferenceJ. M. Elliott, 1989 Mechanisms responsible for population regulation in young migratory trout, Salmo trutta, I. The critical time for survival, Journal of Animal Ecology, 58, Pages 987 – 1001.
dc.identifier.citedreferenceJ. M. Elliott, 1993 The self‐thinning rule applied to juvenile sea‐trout, Salmo trutta, Journal of Animal Ecology, 62, Pages 371 – 379.
dc.identifier.citedreferenceD. G. Fielder, 1987. In An assessment of the introduction of summer steelhead into Michigan, Michigan Department of Natural Resources, Ann Arbor, Fisheries Research Report 1948.
dc.identifier.citedreferenceM. C. Freeman, Z. H. Bowen, K. D. Bovee and E. R. Irwin, 2001 Flow and habitat effects on juvenile fish abundance in natural and altered flow regimes, Ecological Applications, 11, Pages 179 – 190.
dc.identifier.citedreferenceJ. Gerritsen and J. R. Strickler, 1977 Encounter probabilities and community structure in zooplankton: A mathematical model, Journal of the Fisheries Research Board of Canada, 34, Pages 73 – 82.
dc.identifier.citedreferenceJ. F. Gilliam and D. F. Fraser, 1987 Habitat selection under predation hazard: Test of a model with foraging minnows, Ecology, 68, Pages 1856 – 1862.
dc.identifier.citedreferenceN. A. Godby Jr., 2000. In Growth, diet, and prey availability for juvenile steelhead in Muskegon River, Michigan, University of Michigan, Ann Arbor, Master’s thesis.
dc.identifier.citedreferenceJ‐G. Godin and R. Rangeley, 1989 Living in the fast lane: Effects of cost of locomotion on foraging behavior in juvenile Atlantic salmon, Animal Behaviour, 37, Pages 943 – 954.
dc.identifier.citedreferenceJ. W. A. Grant and D. L. Kramer, 1990 Territory size as a predictor of the upper limit to population density of juvenile salmonids in streams, Canadian Journal of Fisheries and Aquatic Sciences, 47, Pages 1724 – 1737.
dc.identifier.citedreferenceJ. W. A. Grant and D. L. G. Noakes, 1987 A simple model of optimal territory size for drift‐feeding fish, Canadian Journal of Zoology, 65, Pages 270 – 276.
dc.identifier.citedreferenceJ. W. A. Grant, S. O. Steingrimsson, E. R. Keeley and R. A. Cunjak, 1998 Implications of territory size for the measurement and prediction of salmonid abundance in streams, Canadian Journal of Fisheries and Aquatic Sciences, 55, Pages 181 – 190.
dc.identifier.citedreferenceP. C. Hanson, T. B. Johnson, D. E. Schindler and J. F. Kitchell, 1997. In Fish bioenergetics 3.0, University of Wisconsin, Sea Grant Institute, Madison.
dc.identifier.citedreferenceD. D. Hart, T. E. Johnson, K. L. Bushaw‐Newton, R. J. Horwitz, A. T. Bednarek, D. F. Charles, D. A. Kreeger and D. J. Velinsky, 2002 Dam removal: Challenges and opportunities for ecological research and river restoration, BioScience, 52, Pages 669 – 681.
dc.identifier.citedreferenceJ. Hill and G. D. Grossman, 1993 An energetic model of microhabitat use for rainbow trout and rosyside dace, Ecology, 74, Pages 685 – 698.
dc.identifier.citedreferenceK. E. F. Hokanson, C. F. Kleiner and T. W. Thorslund, 1977 Effects of constant temperatures and diel temperature fluctuations on specific growth and mortality rates and yield of juvenile rainbow trout, Salmo gairdneri, Journal of the Fisheries Research Board of Canada, 34, Pages 639 – 948.
dc.identifier.citedreferenceB. D. Horne, E. S. Rutherford and K. H. Wehrly, 2004 Simulating effects of hydro‐dam alteration on the thermal temperature regime and wild steelhead recruitment in the Manistee River, Michigan, River Research and Applications, 20, Pages 185 – 203.
dc.identifier.citedreferenceN. F. Hughes and L. M. Dill, 1990 Position choice by drift‐feeding salmonids: Model and test for Arctic grayling (Thymallus arcticus) in subarctic mountain streams, interior Alaska, Canadian Journal of Fisheries and Aquatic Sciences, 47, Pages 2039 – 2048.
dc.identifier.citedreferenceIchthyological Associates, 1990, “ Instream flow incremental methodology: Hydraulic modeling report for the Tippy project, FERC Project 2580, Manistee River, Michigan ”. In Report to Lawler, Matuskey, and Skelley, Engineers, contracted by Consumers Power Company, Lansing, Michigan.
dc.identifier.citedreferenceE. Kamler, 1992. In Early life history of fishes: An energetics approach, Chapman and Hall, London.
dc.identifier.citedreferenceP. M. Kareiva and G. Odell, 1987 Swarms of predators exhibit “preytaxis” if individuals use area‐restricted search, American Naturalist, 130, Pages 233 – 270.
dc.identifier.citedreferenceJ. F. Kitchell, D. J. Stewart and D. Weininger, 1977 Applications of a bioenergetics model to yellow perch (Perca flavescens) and walleye ( Stizostedion vitreum vitreum ), Journal of the Fisheries Research Board of Canada, 34, Pages 1922 – 1935.
dc.identifier.citedreferenceM. Lapointe, B. Eaton, S. Driscoll and C. Latulippe, 2000 Modelling the probability of salmonid egg pocket scour due to floods, Canadian Journal of Fisheries and Aquatic Sciences, 57, Pages 1120 – 1130.
dc.identifier.citedreferenceD. A. Lytle and N. L. Poff, 2004 Adaptation to natural flow regimes, Trends in Ecology and Evolution, 19, Pages 94 – 100.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.