Show simple item record

Investigating the Direct Meltwater Effect in Terrestrial Oxygenâ Isotope Paleoclimate Records Using an Isotopeâ Enabled Earth System Model

dc.contributor.authorZhu, Jiang
dc.contributor.authorLiu, Zhengyu
dc.contributor.authorBrady, Esther C.
dc.contributor.authorOtto‐bliesner, Bette L.
dc.contributor.authorMarcott, Shaun A.
dc.contributor.authorZhang, Jiaxu
dc.contributor.authorWang, Xianfeng
dc.contributor.authorNusbaumer, Jesse
dc.contributor.authorWong, Tony E.
dc.contributor.authorJahn, Alexandra
dc.contributor.authorNoone, David
dc.date.accessioned2018-02-05T16:32:13Z
dc.date.available2019-01-07T18:34:37Zen
dc.date.issued2017-12-28
dc.identifier.citationZhu, Jiang; Liu, Zhengyu; Brady, Esther C.; Otto‐bliesner, Bette L. ; Marcott, Shaun A.; Zhang, Jiaxu; Wang, Xianfeng; Nusbaumer, Jesse; Wong, Tony E.; Jahn, Alexandra; Noone, David (2017). "Investigating the Direct Meltwater Effect in Terrestrial Oxygenâ Isotope Paleoclimate Records Using an Isotopeâ Enabled Earth System Model." Geophysical Research Letters 44(24): 12,501-12,510.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/141374
dc.description.abstractVariations in terrestrial oxygenâ isotope reconstructions from ice cores and speleothems have been primarily attributed to climatic changes of surface air temperature, precipitation amount, or atmospheric circulation. Here we demonstrate with the fully coupled isotopeâ enabled Community Earth System Model an additional process contributing to the oxygenâ isotope variations during glacial meltwater events. This process, termed â the direct meltwater effect,â involves propagating large amounts of isotopically depleted meltwater throughout the hydrological cycle and is independent of climatic changes. We find that the direct meltwater effect can make up 15â 35% of the δ18O signals in precipitation over Greenland and eastern Brazil for large freshwater forcings (0.25â 0.50 sverdrup (106 m3/s)). Model simulations further demonstrate that the direct meltwater effect increases with the magnitude and duration of the freshwater forcing and is sensitive to both the location and shape of the meltwater. These new modeling results have important implications for past climate interpretations of δ18O.Key PointsA portion of the δ18O signal in landâ based paleoclimate proxies can be attributed to the direct meltwater effect instead of climatic changesThe direct meltwater effect can make up 15â 35% of the δ18O signals in precipitation in Greenland and eastern Brazil for large meltwater eventsThe direct meltwater effect increases with the magnitude and duration of the freshwater forcing and is sensitive to location and shape dependent
dc.publisherThe University of Wisconsin â Madison
dc.publisherWiley Periodicals, Inc.
dc.subject.otheroxygenâ isotope records
dc.subject.otherspeleothem records
dc.subject.othermeltwater
dc.subject.otherdirect meltwater effect
dc.subject.otherice cores
dc.titleInvestigating the Direct Meltwater Effect in Terrestrial Oxygenâ Isotope Paleoclimate Records Using an Isotopeâ Enabled Earth System Model
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141374/1/grl56782_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141374/2/grl56782-sup-0001-Supporting_Information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141374/3/grl56782.pdf
dc.identifier.doi10.1002/2017GL076253
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceRisi, C., Bony, S., & Vimeux, F. ( 2008 ). Influence of convective processes on the isotopic composition (δ 18 O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. Journal of Geophysical Research, 113, D19306. https://doi.org/10.1029/2008JD009943
dc.identifier.citedreferenceLiu, Z., Carlson, A. E., He, F., Brady, E. C., Ottoâ Bliesner, B. L., Briegleb, B. P., â ¦ Zhu, J. ( 2012 ). Younger Dryas cooling and the Greenland climate response to CO 2. Proceedings of the National Academy of Sciences, 109 ( 28 ), 11,101 â 11,104. https://doi.org/10.1073/pnas.1202183109
dc.identifier.citedreferenceLiu, Z., Wen, X., Brady, E. C., Ottoâ Bliesner, B., Yu, G., Lu, H., â ¦ Yang, H. ( 2014 ). Chinese cave records and the East Asia Summer Monsoon. Quaternary Science Reviews, 83, 115 â 128. https://doi.org/10.1016/j.quascirev.2013.10.021
dc.identifier.citedreferenceMcManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D., & Brownâ Leger, S. ( 2004 ). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428 ( 6985 ), 834 â 837. https://doi.org/10.1038/nature02494
dc.identifier.citedreferenceNEEM community members ( 2013 ). Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 493 ( 7433 ), 489 â 494. https://doi.org/10.1038/nature11789
dc.identifier.citedreferenceMoore, M., Kuang, Z., & Blossey, P. N. ( 2014 ). A moisture budget perspective of the amount effect. Geophysical Research Letters, 41, 1329 â 1335. https://doi.org/10.1002/2013GL058302
dc.identifier.citedreferenceNoone, D. ( 2008 ). The influence of midlatitude and tropical overturning circulation on the isotopic composition of atmospheric water vapor and Antarctic precipitation. Journal of Geophysical Research, 113, D04102. https://doi.org/10.1029/2007JD008892
dc.identifier.citedreferenceNusbaumer, J., Wong, T., Bardeen, C., & Noone, D. ( 2017 ). Evaluating hydrological processes in the Community Atmosphere Model Version 5 (CAM5) using stable isotope ratios of water. Journal of Advances in Modeling Earth Systems, 9 ( 2 ), 949 â 977. https://doi.org/10.1002/2016MS000839
dc.identifier.citedreferenceOttoâ Bliesner, B. L., & Brady, E. C. ( 2010 ). The sensitivity of the climate response to the magnitude and location of freshwater forcing: Last glacial maximum experiments. Quaternary Science Reviews, 29 ( 1â 2 ), 56 â 73. https://doi.org/10.1016/j.quascirev.2009.07.004
dc.identifier.citedreferencePartin, J. W., Cobb, K. M., Adkins, J. F., Clark, B., & Fernandez, D. P. ( 2007 ). Millennialâ scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum. Nature, 449 ( 7161 ), 452 â 455. https://doi.org/10.1038/nature06164
dc.identifier.citedreferenceRhines, A., & Huybers, P. J. ( 2014 ). Sea ice and dynamical controls on preindustrial and Last Glacial Maximum accumulation in Central Greenland. Journal of Climate, 27 ( 23 ), 8902 â 8917. https://doi.org/10.1175/JCLI-D-14-00075.1
dc.identifier.citedreferenceRoche, D. M., Paillard, D., Caley, T., & Waelbroeck, C. ( 2014 ). LGM hosing approach to Heinrich Event 1: Results and perspectives from dataâ model integration using water isotopes. Quaternary Science Reviews, 106, 247 â 261. https://doi.org/10.1016/j.quascirev.2014.07.020
dc.identifier.citedreferenceRozanski, K., Araguásâ Araguás, L., & Gonfiantini, R. ( 1993 ). Isotopic patterns in modern global precipitation (pp. 1 â 36 ). Washington, DC: American Geophysical Union.
dc.identifier.citedreferenceSima, A., Paul, A., Schulz, M., & Oerlemans, J. ( 2006 ). Modeling the oxygenâ isotopic composition of the North American Ice Sheet and its effect on the isotopic composition of the ocean during the last glacial cycle. Geophysical Research Letters, 33, L15706. https://doi.org/10.1029/2006GL026923
dc.identifier.citedreferenceSime, L. C., Risi, C., Tindall, J. C., Sjolte, J., Wolff, E. W., Massonâ Delmotte, V., & Capron, E. ( 2013 ). Warm climate isotopic simulations: What do we learn about interglacial signals in Greenland ice cores? Quaternary Science Reviews, 67, 59 â 80. https://doi.org/10.1016/j.quascirev.2013.01.009
dc.identifier.citedreferenceSodemann, H., Schwierz, C., & Wernli, H. ( 2008 ). Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. Journal of Geophysical Research, 113, D03107. https://doi.org/10.1029/2007JD008503
dc.identifier.citedreferenceSteenâ Larsen, H. C., Massonâ Delmotte, V., Hirabayashi, M., Winkler, R., Satow, K., Prié, F., â ¦ Sveinbjörnsdottír, A. E. ( 2014 ). What controls the isotopic composition of Greenland surface snow? Climate of the Past, 10 ( 1 ), 377 â 392. https://doi.org/10.5194/cp-10-377-2014
dc.identifier.citedreferenceStouffer, R. J., Yin, J., Gregory, J. M., Dixon, K. W., Spelman, M. J., Hurlin, W., â ¦ Weber, S. L. ( 2006 ). Investigating the cause of the response of the thermohaline circulation to past and future climage changes. Journal of Climate, 19 ( 8 ), 1365 â 1387. https://doi.org/10.1175/JCLI3689.1
dc.identifier.citedreferenceStríkis, N. M., Chiessi, C. M., Cruz, F. W., Vuille, M., Cheng, H., de Souza Barreto, E. A., â ¦ Sales, H. R. ( 2015 ). Timing and structure of Megaâ SACZ events during Heinrich Stadial 1. Geophysical Research Letters, 42, 5477 â 5484. https://doi.org/10.1002/2015GL064048
dc.identifier.citedreferenceTierney, J. E., Russell, J. M., Huang, Y., Damsté, J. S. S., Hopmans, E. C., & Cohen, A. S. ( 2008 ). Northern Hemisphere controls on tropical southeast African climate during the past 60,000 years. Science, 322 ( 5899 ), 252 â 255. https://doi.org/10.1126/science.1160485
dc.identifier.citedreferenceTown, M. S., Warren, S. G., Walden, V. P., & Waddington, E. D. ( 2008 ). Effect of atmospheric water vapor on modification of stable isotopes in nearâ surface snow on ice sheets. Journal of Geophysical Research, 113, D24303. https://doi.org/10.1029/2008JD009852
dc.identifier.citedreferenceWang, X., Auler, A. S., Edwards, R. L., Cheng, H., Ito, E., Wang, Y., â ¦ Solheid, M. ( 2007 ). Millennialâ scale precipitation changes in southern Brazil over the past 90,000 years. Geophysical Research Letters, 34, L23701. https://doi.org/10.1029/2007GL031149
dc.identifier.citedreferenceWang, Y., Cheng, H., Edwards, R. L., Kong, X., Shao, X., Chen, S., â ¦ An, Z. ( 2008 ). Millennialâ and orbitalâ scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451 ( 7182 ), 1090 â 1093. https://doi.org/10.1038/nature06692
dc.identifier.citedreferenceWang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C., & Dorale, J. A. ( 2001 ). A highâ resolution absoluteâ dated Late Pleistocene monsoon record from Hulu Cave, China. Science, 294 ( 5550 ), 2345 â 2348. https://doi.org/10.1126/science.1064618
dc.identifier.citedreferenceWerner, M., Mikolajewicz, U., Heimann, M., & Hoffmann, G. ( 2000 ). Borehole versus isotope temperatures on Greenland: Seasonality does matter. Geophysical Research Letters, 27, 723 â 726. https://doi.org/10.1029/1999GL006075
dc.identifier.citedreferenceWerner, M., Mikolajewicz, U., Hoffmann, G., & Heimann, M. ( 2000 ). Possible changes of δ 18 O in precipitation caused by a meltwater event in the North Atlantic. Journal of Geophysical Research, 105, 10,161 â 10,167. https://doi.org/10.1029/1999JD901196
dc.identifier.citedreferenceWong, T., Nusbaumer, J., & Noone, D. ( 2017 ). Evaluation of modeled landâ atmosphere exchanges with a comprehensive water isotope fractionation scheme in version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems, 9 ( 2 ), 978 â 1001. https://doi.org/10.1002/2016MS000842
dc.identifier.citedreferenceYuan, D., Cheng, H., Edwards, R. L., Dykoski, C. A., Kelly, M. J., Zhang, M., â ¦ Cai, Y. ( 2004 ). Timing, duration, and transitions of the Last Interglacial Asian Monsoon. Science, 304 ( 5670 ), 575 â 578. https://doi.org/10.1126/science.1091220
dc.identifier.citedreferenceZhang, J., Liu, Z., Brady, E. C., Oppo, D. W., Clark, P. U., Jahn, A., â ¦ Lindsay, K. ( 2017 ). Asynchronous warming and δ 18 O evolution of deep Atlantic water masses during the last deglaciation. Proceedings of the National Academy of Sciences, 114 ( 42 ), 11075 â 11080. https://doi.org/10.1073/pnas.1704512114
dc.identifier.citedreferenceZhou, H., Zhao, J., Feng, Y., Gagan, M. K., Zhou, G., & Yan, J. ( 2008 ). Distinct climate change synchronous with Heinrich event one, recorded by stable oxygen and carbon isotopic compositions in stalagmites from China. Quaternary Research, 69 ( 02 ), 306 â 315. https://doi.org/10.1016/j.yqres.2007.11.001
dc.identifier.citedreferenceZhu, J., Liu, Z., Brady, E., Ottoâ Bliesner, B., Zhang, J., Noone, D., â ¦ Tabor, C. ( 2017 ). Reduced ENSO variability at the LGM revealed by an isotopeâ enabled Earth system model. Geophysical Research Letters, 44, 6984 â 6992. https://doi.org/10.1002/2017GL073406
dc.identifier.citedreferenceAggarwal, P. K., Romatschke, U., Araguasâ Araguas, L., Belachew, D., Longstaffe, F. J., Berg, P., â ¦ Funk, A. ( 2016 ). Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nature Geoscience, 9, 624 â 629.
dc.identifier.citedreferenceAndersen, K. K., Azuma, N., Barnola, J. M., Bigler, M., Biscaye, P., Caillon, N., â ¦ White, J. ( 2004 ). Highâ resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431 ( 7005 ), 147 â 151. https://doi.org/10.1038/nature02805
dc.identifier.citedreferenceBagniewski, W., Meissner, K. J., & Menviel, L. ( 2017 ). Exploring the oxygen isotope fingerprint of Dansgaardâ Oeschger variability and Heinrich events. Quaternary Science Reviews, 159, 1 â 14. https://doi.org/10.1016/j.quascirev.2017.01.007
dc.identifier.citedreferenceBagniewski, W., Meissner, K. J., Menviel, L., & Brennan, C. E. ( 2015 ). Quantification of factors impacting seawater and calcite δ 18 O during Heinrich Stadials 1 and 4. Paleoceanography, 30, 895 â 911. https://doi.org/10.1002/2014PA002751
dc.identifier.citedreferenceBöhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B., â ¦ Deininger, M. ( 2015 ). Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature, 517 ( 7534 ), 73 â 76. https://doi.org/10.1038/nature14059
dc.identifier.citedreferenceBrady, E. C., & Ottoâ Bliesner, B. L. ( 2011 ). The role of meltwaterâ induced subsurface ocean warming in regulating the Atlantic meridional overturning in glacial climate simulations. Climate Dynamics, 37 ( 7â 8 ), 1517 â 1532. https://doi.org/10.1007/s00382-010-0925-9
dc.identifier.citedreferenceBrady, E. C., Ottoâ bliesner, B. L., Kay, J. E., & Rosenbloom, N. ( 2013 ). Sensitivity to glacial forcing in the CCSM4. Journal of Climate, 26 ( 6 ), 1901 â 1925. https://doi.org/10.1175/JCLI-D-11-00416.1
dc.identifier.citedreferenceBroecker, W. S. ( 1992 ). The great ocean conveyor. AIP Conference Proceedings, 247 ( 2 ), 129 â 161. https://doi.org/10.1063/1.41925
dc.identifier.citedreferenceCarolin, S. A., Cobb, K. M., Adkins, J. F., Clark, B., Conroy, J. L., Lejau, S., â ¦ Tuen, A. a. ( 2013 ). Varied response of western Pacific hydrology to climate forcings over the last glacial period. Science, 340 ( 6140 ), 1564 â 1566. https://doi.org/10.1126/science.1233797
dc.identifier.citedreferenceCharles, C. D., Rind, D., Jouzel, J., Koster, R. D., & Fairbanks, R. G. ( 1994 ). Glacialâ interglacial changes in moisture sources for Greenland: Influences on the ice core record of climate. Science, 263 ( 5146 ), 508 â 511.
dc.identifier.citedreferenceCheng, H., Edwards, R. L., Broecker, W. S., Denton, G. H., Kong, X., Wang, Y., â ¦ Wang, X. ( 2009 ). Ice age terminations. Science, 326 ( 5950 ), 248 â 252.
dc.identifier.citedreferenceClark, P. U., Marshall, S. J., Clarke, G. K. C., Hostetler, S. W., Licciardi, J. M., & Teller, J. T. ( 2001 ). Freshwater forcing of abrupt climate change during the last glaciation. Science, 293 ( 5528 ), 283 â 287.
dc.identifier.citedreferenceClark, P. U., McCabe, A. M., Mix, A. C., & Weaver, A. J. ( 2004 ). Rapid rise of sea level 19,000 years ago and its global implications. Science, 304 ( 5674 ), 1141 â 1144. https://doi.org/10.1126/science.1094449
dc.identifier.citedreferenceClement, A. C., & Peterson, L. C. ( 2008 ). Mechanisms of abrupt climate change of the last glacial period. Reviews of Geophysics, 46, RG4002. https://doi.org/10.1029/2006RG000204
dc.identifier.citedreferenceCondron, A., & Winsor, P. ( 2011 ). A subtropical fate awaited freshwater discharged from glacial Lake Agassiz. Geophysical Research Letters, 38, L03705. https://doi.org/10.1029/2010GL046011
dc.identifier.citedreferenceCruz, F. W., Burns, S. J., Karmann, I., Sharp, W. D., Vuille, M., & Ferrari, J. A. ( 2006 ). A stalagmite record of changes in atmospheric circulation and soil processes in the Brazilian subtropics during the Late Pleistocene. Quaternary Science Reviews, 25 ( 21â 22 ), 2749 â 2761. https://doi.org/10.1016/j.quascirev.2006.02.019
dc.identifier.citedreferenceCruz, F. W., Vuille, M., Burns, S. J., Wang, X., Cheng, H., Werner, M., â ¦ Nguyen, H. ( 2009 ). Orbitally driven eastâ west antiphasing of South American precipitation. Nature Geoscience, 2 ( 3 ), 210 â 214. https://doi.org/10.1038/ngeo444
dc.identifier.citedreferenceDansgaard, W. ( 1964 ). Stable isotopes in precipitation. Tellus, 16 ( 4 ), 436 â 468. https://doi.org/10.3402/tellusa.v16i4.8993
dc.identifier.citedreferenceDrumond, A., Nieto, R., Gimeno, L., & Ambrizzi, T. ( 2008 ). A Lagrangian identification of major sources of moisture over Central Brazil and La Plata Basin. Journal of Geophysical Research, 113, D14128. https://doi.org/10.1029/2007JD009547
dc.identifier.citedreferenceFairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spötl, C., Mattey, D., & McDermott, F. ( 2006 ). Modification and preservation of environmental signals in speleothems. Earthâ Science Reviews, 75 ( 1â 4 ), 105 â 153. https://doi.org/10.1016/j.earscirev.2005.08.003
dc.identifier.citedreferenceGrootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S., & Jouzel, J. ( 1993 ). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366 ( 6455 ), 552 â 554. https://doi.org/10.1038/366552a0
dc.identifier.citedreferenceHe, F. ( 2011 ). Simulating transient climate evolution of the last deglaciation with CCSM3 ( 185 pp.). Madison, WI: The University of Wisconsin â Madison.
dc.identifier.citedreferenceHeinrich, H. ( 1988 ). Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research, 29 ( 02 ), 142 â 152. https://doi.org/10.1016/0033-5894(88)90057-9
dc.identifier.citedreferenceHemming, S. R. ( 2004 ). Heinrich events: Massive late Pleistocene ditritus layers of the North Atlanitc and their global cliamate imprint. Reviews of Geophysics, 42, RG1005. https://doi.org/10.1029/2003RG000128
dc.identifier.citedreferenceHendricks, M. B., DePaolo, D. J., & Cohen, R. C. ( 2000 ). Space and time variation of d18O and dD in precipitation: Can paleotemperature be estimated from ice cores? Global Biogeochemical Cycles, 14, 851 â 861. https://doi.org/10.1029/1999GB001198
dc.identifier.citedreferenceHenry, L. G., Henry, L. G., McManus, J. F., Curry, W. B., Roberts, N. L., Piotrowski, A. M., & Keigwin, L. D. ( 2016 ). North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science, 353 ( 6298 ), 470 â 474. https://doi.org/10.1126/science.aaf5529
dc.identifier.citedreferenceHillaireâ Marcel, C., & Causse, C. ( 1989 ). The late Pleistocene Laurentide glacier: Th U dating of its major fluctuations and d18O range of the ice. Quaternary Research, 32 ( 02 ), 125 â 138. https://doi.org/10.1016/0033-5894(89)90070-7
dc.identifier.citedreferenceHu, A., Ottoâ Bliesner, B. L., Meehl, G. A., Han, W., Morrill, C., Brady, E. C., & Briegleb, B. ( 2008 ). Response of thermohaline circulation to freshwater forcing under presentâ day and LGM conditions. Journal of Climate, 21 ( 10 ), 2239 â 2258. https://doi.org/10.1175/2007JCLI1985.1
dc.identifier.citedreferenceHurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., â ¦ Marshall, S. ( 2013 ). The community Earth system model: A framework for collaborative research. Bulletin of the American Meteorological Society, 94 ( 9 ), 1339 â 1360. https://doi.org/10.1175/BAMS-D-12-00121.1
dc.identifier.citedreferenceJohnsen, S. J., Dahlâ Jensen, D., Gundestrup, N., Steffensen, J. P., Clausen, H. B., Miller, H., â ¦ White, J. ( 2001 ). Oxygen isotope and palaeotemperature records from six Greenland iceâ core stations: Camp Century, Dyeâ 3, GRIP, GISP2, Renland and NorthGRIP. Journal of Quaternary Science, 16 ( 4 ), 299 â 307. https://doi.org/10.1002/jqs.622
dc.identifier.citedreferenceJouzel, J., Alley, R. B., Cuffey, K. M., Dansgaard, W., Grootes, P., Hoffmann, G., â ¦ White, J. ( 1997 ). Validity of the temperature reconstruction from water isotopes in ice cores. Journal of Geophysical Research, 102, 26,471 â 26,487. https://doi.org/10.1029/97JC01283
dc.identifier.citedreferenceKeigwin, L. D., Sachs, J. P., Rosenthal, Y., & Boyle, E. A. ( 2005 ). The 8200 year B.P. event in the slope water system, western subpolar North Atlantic. Paleoceanography, 20, PA2003. https://doi.org/10.1029/2004PA001074
dc.identifier.citedreferenceKim, S.â T., & O’Neil, J. R. ( 1997 ). Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61 ( 16 ), 3461 â 3475. https://doi.org/10.1016/S0016-7037(97)00169-5
dc.identifier.citedreferenceLee, J.â E., Fung, I., DePaolo, D. J., & Henning, C. C. ( 2007 ). Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model. Journal of Geophysical Research, 112, D16306. https://doi.org/10.1029/2006JD007657
dc.identifier.citedreferenceLeGrande, A. N., & Schmidt, G. A. ( 2006 ). Global gridded data set of the oxygen isotopic composition in seawater. Geophysical Research Letters, 33, L12604. https://doi.org/10.1029/2006GL026011
dc.identifier.citedreferenceLeGrande, A. N., & Schmidt, G. A. ( 2008 ). Ensemble, water isotopeâ enabled, coupled general circulation modeling insights into the 8.2 ka event. Paleoceanography, 23, PA3207. https://doi.org/10.1029/2008PA001610
dc.identifier.citedreferenceLeGrande, A. N., Schmidt, G. A., Shindell, D. T., Field, C. V., Miller, R. L., Koch, D. M., â ¦ Hoffmann, G. ( 2006 ). Consistent simulations of multiple proxy responses to an abrupt climate change event. Proceedings of the National Academy of Sciences of the United States of America, 103 ( 4 ), 837 â 842. https://doi.org/10.1073/pnas.0510095103
dc.identifier.citedreferenceLewis, S. C., Legrande, A. N., Kelley, M., & Schmidt, G. A. ( 2010 ). Water vapour source impacts on oxygen isotope variability in tropical precipitation during Heinrich events. Climate of the Past, 6 ( 3 ), 325 â 343. https://doi.org/10.5194/cp-6-325-2010
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.