Show simple item record

Respiratory syncytial virus infection modifies and accelerates pulmonary disease via DC activation and migration

dc.contributor.authorJang, Sihyug
dc.contributor.authorSmit, Joost
dc.contributor.authorKallal, Lara E.
dc.contributor.authorLukacs, Nicholas W.
dc.date.accessioned2018-02-05T16:32:37Z
dc.date.available2018-02-05T16:32:37Z
dc.date.issued2013-07
dc.identifier.citationJang, Sihyug; Smit, Joost; Kallal, Lara E.; Lukacs, Nicholas W. (2013). "Respiratory syncytial virus infection modifies and accelerates pulmonary disease via DC activation and migration." Journal of Leukocyte Biology 94(1): 5-15.
dc.identifier.issn0741-5400
dc.identifier.issn1938-3673
dc.identifier.urihttps://hdl.handle.net/2027.42/141386
dc.publisherWiley Periodicals, Inc.
dc.subject.otherimmune responses
dc.subject.otherT cells
dc.subject.othercytokines
dc.titleRespiratory syncytial virus infection modifies and accelerates pulmonary disease via DC activation and migration
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumUniversity of Michigan Medical School, Department of Pathology, Ann Arbor, Michigan, USA
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141386/1/jlb0005.pdf
dc.identifier.doi10.1189/jlb.0412195
dc.identifier.sourceJournal of Leukocyte Biology
dc.identifier.citedreferencePanuska, J. R., Merolla, R., Rebert, N. A., Hoffmann, S. P., Tsivitse, P., Cirino, N. M., Silverman, R. H., Rankin, J. A. ( 1995 ) Respiratory syncytial virus induces interleukin‐10 by human alveolar macrophages. Suppression of early cytokine production and implications for incomplete immunity. J. Clin. Invest. 96, 2445 – 2453.
dc.identifier.citedreferenceDurbin, J. E., Johnson, T. R., Durbin, R. K., Mertz, S. E., Morotti, R. A., Peebles, R. S., Graham, B. S. ( 2002 ) The role of IFN in respiratory syncytial virus pathogenesis. J. Immunol. 168, 2944 – 2952.
dc.identifier.citedreferenceHashimoto, K., Durbin, J. E., Zhou, W., Collins, R. D., Ho, S. B., Kolls, J. K., Dubin, P. J., Sheller, J. R., Goleniewska, K., O’Neal, J. F., Olson, S. J., Mitchell, D., Graham, B. S., Peebles R. S., Jr., ( 2005 ) Respiratory syncytial virus infection in the absence of STAT 1 results in airway dysfunction, airway mucus, and augmented IL‐17 levels. J. Allergy Clin. Immunol. 116, 550 – 557.
dc.identifier.citedreferenceJohnson, T. R., Mertz, S. E., Gitiban, N., Hammond, S., Legallo, R., Durbin, R. K., Durbin, J. E. ( 2005 ) Role for innate IFNs in determining respiratory syncytial virus immunopathology. J. Immunol. 174, 7234 – 7241.
dc.identifier.citedreferenceRamaswamy, M., Shi, L., Monick, M. M., Hunninghake, G. W., Look, D. C. ( 2004 ) Specific inhibition of type I interferon signal transduction by respiratory syncytial virus. Am. J. Respir. Cell Mol. Biol. 30, 893 – 900.
dc.identifier.citedreferenceRudd, B. D., Schaller, M. A., Smit, J. J., Kunkel, S. L., Neupane, R., Kelley, L., Berlin, A. A., Lukacs, N. W. ( 2007 ) MyD88‐mediated instructive signals in dendritic cells regulate pulmonary immune responses during respiratory virus infection. J. Immunol. 178, 5820 – 5827.
dc.identifier.citedreferenceRudd, B. D., Smit, J. J., Flavell, R. A., Alexopoulou, L., Schaller, M. A., Gruber, A., Berlin, A. A., Lukacs, N. W. ( 2006 ) Deletion of TLR3 alters the pulmonary immune environment and mucus production during respiratory syncytial virus infection. J. Immunol. 176, 1937 – 1942.
dc.identifier.citedreferenceSchlender, J., Hornung, V., Finke, S., Gunthner‐Biller, M., Marozin, S., Brzozka, K., Moghim, S., Endres, S., Hartmann, G., Conzelmann, K. K. ( 2005 ) Inhibition of Toll‐like receptor 7‐ and 9‐mediated α/β interferon production in human plasmacytoid dendritic cells by respiratory syncytial virus and measles virus. J. Virol. 79, 5507 – 5515.
dc.identifier.citedreferenceShingai, M., Azuma, M., Ebihara, T., Sasai, M., Funami, K., Ayata, M., Ogura, H., Tsutsumi, H., Matsumoto, M., Seya, T. ( 2008 ) Soluble G protein of respiratory syncytial virus inhibits Toll‐like receptor 3/4‐mediated IFN‐ β induction. Int. Immunol. 20, 1169 – 1180.
dc.identifier.citedreferenceBhoj, V. G., Sun, Q., Bhoj, E. J., Somers, C., Chen, X., Torres, J. P., Mejias, A., Gomez, A. M., Jafri, H., Ramilo, O., Chen, Z. J. ( 2008 ) MAVS and MyD88 are essential for innate immunity but not cytotoxic T lymphocyte response against respiratory syncytial virus. Proc. Natl. Acad. Sci. USA 105, 14046 – 14051.
dc.identifier.citedreferenceMurawski, M. R., Bowen, G. N., Cerny, A. M., Anderson, L. J., Haynes, L. M., Tripp, R. A., Kurt‐Jones, E. A., Finberg, R. W. ( 2009 ) Respiratory syncytial virus activates innate immunity through Toll‐like receptor 2. J. Virol. 83, 1492 – 1500.
dc.identifier.citedreferenceLukacs, N. W., Smit, J. J., Schaller, M. A., Lindell, D. M. ( 2008 ) Regulation of immunity to respiratory syncytial virus by dendritic cells, Toll‐like receptors, and notch. Viral Immunol. 21, 115 – 122.
dc.identifier.citedreferenceKurt‐Jones, E. A., Popova, L., Kwinn, L., Haynes, L. M., Jones, L. P., Tripp, R. A., Walsh, E. E., Freeman, M. W., Golenbock, D. T., Anderson, L. J., Finberg, R. W. ( 2000 ) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1, 398 – 401.
dc.identifier.citedreferenceJones, H. P., Hodge, L. M., Fujihashi, K., Kiyono, H., McGhee, J. R., Simecka, J. W. ( 2001 ) The pulmonary environment promotes Th2 cell responses after nasal‐pulmonary immunization with antigen alone, but Th1 responses are induced during instances of intense immune stimulation. J. Immunol. 167, 4518 – 4526.
dc.identifier.citedreferenceGuerrero‐Plata, A., Kolli, D., Hong, C., Casola, A., Garofalo, R. P. ( 2009 ) Subversion of pulmonary dendritic cell function by paramyxovirus infections. J. Immunol. 182, 3072 – 3083.
dc.identifier.citedreferenceHintzen, G., Ohl, L., del Rio, M. L., Rodriguez‐Barbosa, J. I., Pabst, O., Kocks, J. R., Krege, J., Hardtke, S., Forster, R. ( 2006 ) Induction of tolerance to innocuous inhaled antigen relies on a CCR7‐dependent dendritic cell‐mediated antigen transport to the bronchial lymph node. J. Immunol. 177, 7346 – 7354.
dc.identifier.citedreferenceBeaty, S. R., Rose C. E., Jr., Sung, S. S. ( 2007 ) Diverse and potent chemokine production by lung CD11bhigh dendritic cells in homeostasis and in allergic lung inflammation. J. Immunol. 178, 1882 – 1895.
dc.identifier.citedreferencedel Rio, M. L., Rodriguez‐Barbosa, J. I., Kremmer, E., Forster, R. ( 2007 ) CD103‐ and CD103+ bronchial lymph node dendritic cells are specialized in presenting and cross‐presenting innocuous antigen to CD4+ and CD8+ T cells. J. Immunol. 178, 6861 – 6866.
dc.identifier.citedreferenceJakubzick, C., Tacke, F., Ginhoux, F., Wagers, A. J., van Rooijen, N., Mack, M., Merad, M., Randolph, G. J. ( 2008 ) Blood monocyte subsets differentially give rise to CD103+ and CD103‐ pulmonary dendritic cell populations. J. Immunol. 180, 3019 – 3027.
dc.identifier.citedreferenceDunne, P. J., Moran, B., Cummins, R. C., Mills, K. H. ( 2009 ) CD11c+ CD8 α + dendritic cells promote protective immunity to respiratory infection with Bordetella pertussis. J. Immunol. 183, 400 – 410.
dc.identifier.citedreferenceNakano, H., Free, M. E., Whitehead, G. S., Maruoka, S., Wilson, R. H., Nakano, K., Cook, D. N. ( 2012 ) Pulmonary CD103(+) dendritic cells prime Th2 responses to inhaled allergens. Mucosal Immunol. 5, 53 – 65.
dc.identifier.citedreferenceBusse, W. W., Gern, J. E., Dick, E. C. ( 1997 ) The role of respiratory viruses in asthma. Ciba Found. Symp. 206, 208 – 213.
dc.identifier.citedreferenceStempel, D. A., Boucher, R. C. ( 1981 ) Respiratory infection and airway reactivity. Med. Clin. North Am. 65, 1045 – 1053.
dc.identifier.citedreferenceHogg, J. C. ( 1999 ) Childhood viral infection and the pathogenesis of asthma and chronic obstructive lung disease. Am. J. Respir. Crit. Care Med. 160, S26 – S28.
dc.identifier.citedreferenceHoltzman, M. J., Morton, J. D., Shornick, L. P., Tyner, J. W., O’Sullivan, M. P., Antao, A., Lo, M., Castro, M., Walter, M. J. ( 2002 ) Immunity, inflammation, and remodeling in the airway epithelial barrier: epithelial‐viral‐allergic paradigm. Physiol. Rev. 82, 19 – 46.
dc.identifier.citedreferenceNicholson, K. G., Kent, J., Ireland, D. C. ( 1993 ) Respiratory viruses and exacerbations of asthma in adults. BMJ 307, 982 – 986.
dc.identifier.citedreferenceZhao, J., Takamura, M., Yamaoka, A., Odajima, Y., Iikura, Y. ( 2002 ) Altered eosinophil levels as a result of viral infection in asthma exacerbation in childhood. Pediatr. Allergy Immunol. 13, 47 – 50.
dc.identifier.citedreferenceSimpson, J. L., Moric, I., Wark, P. A., Johnston, S. L., Gibson, P. G. ( 2003 ) Use of induced sputum for the diagnosis of influenza and infections in asthma: a comparison of diagnostic techniques. J. Clin. Virol. 26, 339 – 346.
dc.identifier.citedreferenceHoffman, S. J., Laham, F. R., Polack, F. P. ( 2004 ) Mechanisms of illness during respiratory syncytial virus infection: the lungs, the virus and the immune response. Microbes Infect. 6, 767 – 772.
dc.identifier.citedreferenceEverard, M. L. ( 2006 ) The role of the respiratory syncytial virus in airway syndromes in childhood. Curr. Allergy Asthma Rep. 6, 97 – 102.
dc.identifier.citedreferenceFalsey, A. R. ( 2007 ) Respiratory syncytial virus infection in adults. Semin. Respir. Crit. Care Med. 28, 171 – 181.
dc.identifier.citedreferenceThompson, W. W., Shay, D. K., Weintraub, E., Brammer, L., Cox, N., Anderson, L. J., Fukuda, K. ( 2003 ) Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289, 179 – 186.
dc.identifier.citedreferenceTripp, R. A., Moore, D., Anderson, L. J. ( 2000 ) TH(1)‐ and TH(2)‐type cytokine expression by activated T lymphocytes from the lung and spleen during the inflammatory response to respiratory syncytial virus. Cytokine 12, 801 – 807.
dc.identifier.citedreferenceBartz, H., Buning‐Pfaue, F., Turkel, O., Schauer, U. ( 2002 ) Respiratory syncytial virus induces prostaglandin E2, IL‐10 and. IL‐11 generation in antigen presenting cells. Clin. Exp. Immunol. 129, 438 – 445.
dc.identifier.citedreferenceBartz, H., Turkel, O., Hoffjan, S., Rothoeft, T., Gonschorek, A., Schauer, U. ( 2003 ) Respiratory syncytial virus decreases the capacity of myeloid dendritic cells to induce interferon‐ γ in naive T cells. Immunology 109, 49 – 57.
dc.identifier.citedreferenceKondo, Y., Matsuse, H., Machida, I., Kawano, T., Saeki, S., Tomari, S., Obase, Y., Fukushima, C., Kohno, S. ( 2004 ) Regulation of mite allergen‐pulsed murine dendritic cells by respiratory syncytial virus. Am. J. Respir. Crit. Care Med. 169, 494 – 498.
dc.identifier.citedreferenceDe Graaff, P. M., de Jong, E. C., van Capel, T. M., van Dijk, M. E., Roholl, P. J., Boes, J., Luytjes, W., Kimpen, J. L., van Bleek, G. M. ( 2005 ) Respiratory syncytial virus infection of monocyte‐derived dendritic cells decreases their capacity to activate CD4 T cells. J. Immunol. 175, 5904 – 5911.
dc.identifier.citedreferenceJulia, V., Hessel, E. M., Malherbe, L., Glaichenhaus, N., O’Garra, A., Coffman, R. L. ( 2002 ) A restricted subset of dendritic cells captures airborne antigens and remains able to activate specific T cells long after antigen exposure. Immunity 16, 271 – 283.
dc.identifier.citedreferenceLambrecht, B. N., Salomon, B., Klatzmann, D., Pauwels, R. A. ( 1998 ) Dendritic cells are required for the development of chronic eosinophilic airway inflammation in response to inhaled antigen in sensitized mice. J. Immunol. 160, 4090 – 4097.
dc.identifier.citedreferenceLambrecht, B. N., De Veerman, M., Coyle, A. J., Gutierrez‐Ramos, J. C., Thielemans, K., Pauwels, R. A. ( 2000 ) Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J. Clin. Invest. 106, 551 – 559.
dc.identifier.citedreferenceLukens, M. V., Kruijsen, D., Coenjaerts, F. E., Kimpen, J. L., van Bleek, G. M. ( 2009 ) Respiratory syncytial virus‐induced activation and migration of respiratory dendritic cells and subsequent antigen presentation in the lung‐draining lymph node. J. Virol. 83, 7235 – 7243.
dc.identifier.citedreferenceMiller, A. L., Bowlin, T. L., Lukacs, N. W. ( 2004 ) Respiratory syncytial virus‐induced chemokine production: linking viral replication to chemokine production in vitro and in vivo. J. Infect. Dis. 189, 1419 – 1430.
dc.identifier.citedreferenceMiller, A. L., Strieter, R. M., Gruber, A. D., Ho, S. B., Lukacs, N. W. ( 2003 ) CXCR2 regulates respiratory syncytial virus‐induced airway hyperreactivity and mucus overproduction. J. Immunol. 170, 3348 – 3356.
dc.identifier.citedreferenceTekkanat, K. K., Maassab, H. F., Cho, D. S., Lai, J. J., John, A., Berlin, A., Kaplan, M. H., Lukacs, N. W. ( 2001 ) IL‐13‐induced airway hyperreactivity during respiratory syncytial virus infection is STAT6 dependent. J. Immunol. 166, 3542 – 3548.
dc.identifier.citedreferenceKim, E. Y., Battaile, J. T., Patel, A. C., You, Y., Agapov, E., Grayson, M. H., Benoit, L. A., Byers, D. E., Alevy, Y., Tucker, J., Swanson, S., Tidwell, R., Tyner, J. W., Morton, J. D., Castro, M., Polineni, D., Patterson, G. A., Schwendener, R. A., Allard, J. D., Peltz, G., Holtzman, M. J. ( 2008 ) Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat. Med. 14, 633 – 640.
dc.identifier.citedreferenceLemanske R. F., Jr., ( 2002 ) The childhood origins of asthma (COAST) study. Pediatr. Allergy Immunol. 13 ( Suppl. 15 ), 38 – 43.
dc.identifier.citedreferenceMartinez, F. D. ( 2009 ) The origins of asthma and chronic obstructive pulmonary disease in early life. Proc. Am. Thorac. Soc. 6, 272 – 277.
dc.identifier.citedreferenceWalton, R. P., Johnston, S. L. ( 2008 ) Role of respiratory viral infections in the development of atopic conditions. Curr. Opin. Allergy Clin. Immunol. 8, 150 – 153.
dc.identifier.citedreferenceAl‐Garawi, A., Fattouh, R., Botelho, F., Walker, T. D., Goncharova, S., Moore, C. L., Mori, M., Erjefalt, J. S., Chu, D. K., Humbles, A. A., Kolbeck, R., Stampfli, M. R., O’Byrne, P. M., Coyle, A. J., Jordana, M. ( 2011 ) Influenza A facilitates sensitization to house dust mite in infant mice leading to an asthma phenotype in adulthood. Mucosal Immunol. 4, 682 – 694.
dc.identifier.citedreferenceKallal, L. E., Schaller, M. A., Lindell, D. M., Lira, S. A., Lukacs, N. W. ( 2010 ) CCL20/CCR6 blockade enhances immunity to RSV by impairing recruitment of DC. Eur. J. Immunol. 40, 1042 – 1052.
dc.identifier.citedreferenceWen, H., Hogaboam, C. M., Lukacs, N. W., Cook, D. N., Lira, S. A., Kunkel, S. L. ( 2007 ) The chemokine receptor CCR6 is an important component of the innate immune response. Eur. J. Immunol. 37, 2487 – 2498.
dc.identifier.citedreferenceSchutyser, E., Struyf, S., Van Damme, J. ( 2003 ) The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev. 14, 409 – 426.
dc.identifier.citedreferenceVanbervliet, B., Homey, B., Durand, I., Massacrier, C., Ait‐Yahia, S., de Bouteiller, O., Vicari, A., Caux, C. ( 2002 ) Sequential involvement of CCR2 and CCR6 ligands for immature dendritic cell recruitment: possible role at inflamed epithelial surfaces. Eur. J. Immunol. 32, 231 – 242.
dc.identifier.citedreferenceLundy, S. K., Lira, S. A., Smit, J. J., Cook, D. N., Berlin, A. A., Lukacs, N. W. ( 2005 ) Attenuation of allergen‐induced responses in CCR6–/– mice is dependent upon altered pulmonary T lymphocyte activation. J. Immunol. 174, 2054 – 2060.
dc.identifier.citedreferenceLukacs, N. W., Prosser, D. M., Wiekowski, M., Lira, S. A., Cook, D. N. ( 2001 ) Requirement for the chemokine receptor CCR6 in allergic pulmonary inflammation. J. Exp. Med. 194, 551 – 555.
dc.identifier.citedreferenceCook, D. N., Prosser, D. M., Forster, R., Zhang, J., Kuklin, N. A., Abbondanzo, S. J., Niu, X. D., Chen, S. C., Manfra, D. J., Wiekowski, M. T., Sullivan, L. M., Smith, S. R., Greenberg, H. B., Narula, S. K., Lipp, M., Lira, S. A. ( 2000 ) CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 12, 495 – 503.
dc.identifier.citedreferenceSmit, J. J., Lindell, D. M., Boon, L., Kool, M., Lambrecht, B. N., Lukacs, N. W. ( 2008 ) The balance between plasmacytoid DC versus conventional DC determines pulmonary immunity to virus infections. PLoS One 3, e1720.
dc.identifier.citedreferenceGonzalez, P. A., Prado, C. E., Leiva, E. D., Carreno, L. J., Bueno, S. M., Riedel, C. A., Kalergis, A. M. ( 2008 ) Respiratory syncytial virus impairs T cell activation by preventing synapse assembly with dendritic cells. Proc. Natl. Acad. Sci. USA 105, 14999 – 15004.
dc.identifier.citedreferenceWang, H., Peters, N., Schwarze, J. ( 2006 ) Plasmacytoid dendritic cells limit viral replication, pulmonary inflammation, and airway hyperresponsiveness in respiratory syncytial virus infection. J. Immunol. 177, 6263 – 6270.
dc.identifier.citedreferenceSmit, J. J., Rudd, B. D., Lukacs, N. W. ( 2006 ) Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus. J. Exp. Med. 203, 1153 – 1159.
dc.identifier.citedreferenceStampfli, M. R., Wiley, R. E., Neigh, G. S., Gajewska, B. U., Lei, X. F., Snider, D. P., Xing, Z., Jordana, M. ( 1998 ) GM‐CSF transgene expression in the airway allows aerosolized ovalbumin to induce allergic sensitization in mice. J. Clin. Invest. 102, 1704 – 1714.
dc.identifier.citedreferenceMcDermott, D. S., Weiss, K. A., Knudson, C. J., Varga, S. M. ( 2011 ) Central role of dendritic cells in shaping the adaptive immune response during respiratory syncytial virus infection. Future Virol. 6, 963 – 973.
dc.identifier.citedreferenceOpenshaw, P. J. ( 1995 ) Immunity and immunopathology to respiratory syncytial virus. The mouse model. Am. J. Respir. Crit. Care Med. 152, S59 – S62.
dc.identifier.citedreferenceKim, H. W., Leikin, S. L., Arrobio, J., Brandt, C. D., Chanock, R. M., Parrott, R. H. ( 1976 ) Cell‐mediated immunity to respiratory syncytial virus induced by inactivated vaccine or by infection. Pediatr. Res. 10, 75 – 78.
dc.identifier.citedreferenceGraham, B. S., Bunton, L. A., Wright, P. F., Karzon, D. T. ( 1991 ) Role of T lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory syncytial virus in mice. J. Clin. Invest. 88, 1026 – 1033.
dc.identifier.citedreferenceWaris, M. E., Tsou, C., Erdman, D. D., Zaki, S. R., Anderson, L. J. ( 1996 ) Respiratory synctial virus infection in BALB/c mice previously immunized with formalin‐inactivated virus induces enhanced pulmonary inflammatory response with a predominant Th2‐like cytokine pattern. J. Virol. 70, 2852 – 2860.
dc.identifier.citedreferenceSanchez‐Sanchez, N., Riol‐Blanco, L., Rodriguez‐Fernandez, J. L. ( 2006 ) The multiple personalities of the chemokine receptor CCR7 in dendritic cells. J. Immunol. 176, 5153 – 5159.
dc.identifier.citedreferencePeebles R. S., Jr., ( 2004 ) Viral infections, atopy, and asthma: is there a causal relationship? J. Allergy Clin. Immunol. 113, S15 – S18.
dc.identifier.citedreferenceFriedlander, S. L., Jackson, D. J., Gangnon, R. E., Evans, M. D., Li, Z., Roberg, K. A., Anderson, E. L., Carlson‐Dakes, K. T., Adler, K. J., Gilbertson‐White, S., Pappas, T. E., Dasilva, D. F., Tisler, C. J., Pleiss, L. E., Mikus, L. D., Rosenthal, L. A., Shult, P. A., Kirk, C. J., Reisdorf, E., Hoffjan, S., Gern, J. E., Lemanske R. F., Jr., ( 2005 ) Viral infections, cytokine dysregulation and the origins of childhood asthma and allergic diseases. Pediatr. Infect. Dis. J. 24, S170 – S176.
dc.identifier.citedreferenceSigurs, N. ( 2002 ) Clinical perspectives on the association between respiratory syncytial virus and reactive airway disease. Respir. Res. 3 ( Suppl. 1 ), S8 – S14.
dc.identifier.citedreferenceSigurs, N. ( 2002 ) A cohort of children hospitalised with acute RSV bronchiolitis: impact on later respiratory disease. Paediatr. Respir. Rev. 3, 177 – 183.
dc.identifier.citedreferencePiedimonte, G. ( 2002 ) Origins of reactive airways disease in early life: do viral infections play a role? Acta Paediatr. Suppl. 91, 6 – 11.
dc.identifier.citedreferenceMessage, S. D., Johnston, S. L. ( 2002 ) Viruses in asthma. Br. Med. Bull. 61, 29 – 43.
dc.identifier.citedreferenceGentile, D. A., Skoner, D. P. ( 2002 ) Effect of respiratory syncytial virus infection during early infancy on the ontogeny of cytokine immune responses. Allergy Asthma Proc. 23, 399 – 405.
dc.identifier.citedreferenceGraham, B. S., Johnson, T. R., Peebles, R. S. ( 2000 ) Immune‐mediated disease pathogenesis in respiratory syncytial virus infection. Immunopharmacology 48, 237 – 247.
dc.identifier.citedreferenceSiegle, J. S., Hansbro, N., Herbert, C., Rosenberg, H. F., Domachowske, J. B., Asquith, K. L., Foster, P. S., Kumar, R. K. ( 2010 ) Early‐life viral infection and allergen exposure interact to induce an asthmatic phenotype in mice. Respir. Res. 11, 14.
dc.identifier.citedreferenceYou, D., Becnel, D., Wang, K., Ripple, M., Daly, M., Cormier, S. A. ( 2006 ) Exposure of neonates to respiratory syncytial virus is critical in determining subsequent airway response in adults. Respir. Res. 7, 107.
dc.identifier.citedreferenceBarends, M., Van Oosten, M., De Rond, C. G., Dormans, J. A., Osterhaus, A. D., Neijens, H. J., Kimman, T. G. ( 2004 ) Timing of infection and prior immunization with respiratory syncytial virus (RSV) in RSV‐enhanced allergic inflammation. J. Infect. Dis. 189, 1866 – 1872.
dc.identifier.citedreferencePeebles R. S., Jr., Hashimoto, K., Collins, R. D., Jarzecka, K., Furlong, J., Mitchell, D. B., Sheller, J. R., Graham, B. S. ( 2001 ) Immune interaction between respiratory syncytial virus infection and allergen sensitization critically depends on timing of challenges. J. Infect. Dis. 184, 1374 – 1379.
dc.identifier.citedreferencePeebles R. S., Jr., Sheller, J. R., Johnson, J. E., Mitchell, D. B., Graham, B. S. ( 1999 ) Respiratory syncytial virus infection prolongs methacholine‐induced airway hyperresponsiveness in ovalbumin‐sensitized mice. J. Med. Virol. 57, 186 – 192.
dc.identifier.citedreferenceDakhama, A., Bramley, A. M., Chan, N. G., McKay, K. O., Schellenberg, R. R., Hegele, R. G. ( 1999 ) Effect of respiratory syncytial virus on subsequent allergic sensitization to ovalbumin in guinea‐pigs. Eur. Respir. J. 13, 976 – 982.
dc.identifier.citedreferenceSchwarze, J., Hamelmann, E., Bradley, K. L., Takeda, K., Gelfand, E. W. ( 1997 ) Respiratory syncytial virus infection results in airway hyperresponsiveness and enhanced airway sensitization to allergen. J. Clin. Invest. 100, 226 – 233.
dc.identifier.citedreferenceKrishnamoorthy, N., Khare, A., Oriss, T. B., Raundhal, M., Morse, C., Yarlagadda, M., Wenzel, S. E., Moore, M. L., Peebles R. S., Jr., Ray, A., Ray, P. ( 2012 ) Early infection with respiratory syncytial virus impairs regulatory T cell function and increases susceptibility to allergic asthma. Nat. Med. 18, 1525 – 1530.
dc.identifier.citedreferenceMunir, S., Le Nouen, C., Luongo, C., Buchholz, U. J., Collins, P. L., Bukreyev, A. ( 2008 ) Nonstructural proteins 1 and 2 of respiratory syncytial virus suppress maturation of human dendritic cells. J. Virol. 82, 8780 – 8796.
dc.identifier.citedreferenceBitko, V., Shulyayeva, O., Mazumder, B., Musiyenko, A., Ramaswamy, M., Look, D. C., Barik, S. ( 2007 ) Nonstructural proteins of respiratory syncytial virus suppress premature apoptosis by an NF‐ κ B‐dependent, interferon‐independent mechanism and facilitate virus growth. J. Virol. 81, 1786 – 1795.
dc.identifier.citedreferenceSpann, K. M., Tran, K. C., Collins, P. L. ( 2005 ) Effects of nonstructural proteins NS1 and NS2 of human respiratory syncytial virus on interferon regulatory factor 3, NF‐ κ B, and proinflammatory cytokines. J. Virol. 79, 5353 – 5362.
dc.identifier.citedreferenceSpann, K. M., Tran, K. C., Chi, B., Rabin, R. L., Collins, P. L. ( 2004 ) Suppression of the induction of α, β, and λ interferons by the NS1 and NS2 proteins of human respiratory syncytial virus in human epithelial cells and macrophages [corrected]. J. Virol. 78, 4363 – 4369.
dc.identifier.citedreferenceShahangian, A., Chow, E. K., Tian, X., Kang, J. R., Ghaffari, A., Liu, S. Y., Belperio, J. A., Cheng, G., Deng, J. C. ( 2009 ) Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice. J. Clin. Invest. 119, 1910 – 1920.
dc.identifier.citedreferenceMunir, S., Hillyer, P., Le Nouen, C., Buchholz, U. J., Rabin, R. L., Collins, P. L., Bukreyev, A. ( 2011 ) Respiratory syncytial virus interferon antagonist NS1 protein suppresses and skews the human T lymphocyte response. PLoS Pathog. 7, e1001336.
dc.identifier.citedreferenceBont, L., Heijnen, C. J., Kavelaars, A., van Aalderen, W. M., Brus, F., Draaisma, J. T., Geelen, S. M., Kimpen, J. L. ( 2000 ) Monocyte IL‐10 production during respiratory syncytial virus bronchiolitis is associated with recurrent wheezing in a one‐year follow‐up study. Am. J. Respir. Crit. Care Med. 161, 1518 – 1523.
dc.identifier.citedreferenceDeretic, V. ( 2009 ) Strange bedfellows expose ancient secrets of autophagy in immunity. Immunity 30, 479 – 481.
dc.identifier.citedreferenceBitko, V., Musiyenko, A., Bayfield, M. A., Maraia, R. J., Barik, S. ( 2008 ) Cellular La protein shields nonsegmented negative‐strand RNA viral leader RNA from RIG‐I and enhances virus growth by diverse mechanisms. J. Virol. 82, 7977 – 7987.
dc.identifier.citedreferenceLiu, P., Jamaluddin, M., Li, K., Garofalo, R. P., Casola, A., Brasier, A. R. ( 2007 ) Retinoic acid‐inducible gene I mediates early antiviral response and Toll‐like receptor 3 expression in respiratory syncytial virus‐infected airway epithelial cells. J. Virol. 81, 1401 – 1411.
dc.identifier.citedreferenceLing, Z., Tran, K. C., Teng, M. N. ( 2009 ) Human respiratory syncytial virus nonstructural protein NS2 antagonizes the activation of β interferon transcription by interacting with RIG‐I. J. Virol. 83, 3734 – 3742.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.