SWMF Global Magnetosphere Simulations of January 2005: Geomagnetic Indices and Cross‐Polar Cap Potential
dc.contributor.author | Haiducek, John D. | |
dc.contributor.author | Welling, Daniel T. | |
dc.contributor.author | Ganushkina, Natalia Y. | |
dc.contributor.author | Morley, Steven K. | |
dc.contributor.author | Ozturk, Dogacan Su | |
dc.date.accessioned | 2018-02-05T16:32:51Z | |
dc.date.available | 2019-01-07T18:34:38Z | en |
dc.date.issued | 2017-12 | |
dc.identifier.citation | Haiducek, John D.; Welling, Daniel T.; Ganushkina, Natalia Y.; Morley, Steven K.; Ozturk, Dogacan Su (2017). "SWMF Global Magnetosphere Simulations of January 2005: Geomagnetic Indices and Cross‐Polar Cap Potential." Space Weather 15(12): 1567-1587. | |
dc.identifier.issn | 1542-7390 | |
dc.identifier.issn | 1542-7390 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/141399 | |
dc.description.abstract | We simulated the entire month of January 2005 using the Space Weather Modeling Framework (SWMF) with observed solar wind data as input. We conducted this simulation with and without an inner magnetosphere model and tested two different grid resolutions. We evaluated the model’s accuracy in predicting Kp, SYM‐H, AL, and cross‐polar cap potential (CPCP). We find that the model does an excellent job of predicting the SYM‐H index, with a root‐mean‐square error (RMSE) of 17–18 nT. Kp is predicted well during storm time conditions but overpredicted during quiet times by a margin of 1 to 1.7 Kp units. AL is predicted reasonably well on average, with an RMSE of 230–270 nT. However, the model reaches the largest negative AL values significantly less often than the observations. The model tended to overpredict CPCP, with RMSE values on the order of 46–48 kV. We found the results to be insensitive to grid resolution, with the exception of the rate of occurrence for strongly negative AL values. The use of the inner magnetosphere component, however, affected results significantly, with all quantities except CPCP improved notably when the inner magnetosphere model was on.Key PointsIncreasing grid resolution from that used by SWPC improves AL prediction during disturbances but has little effect on Kp, SYM‐H, or CPCPThe model does an excellent job at predicting SYM‐H but less well in predicting ALSWMF tends to overpredict Kp and CPCP during quiet times but predicts those quantities better during active times | |
dc.publisher | Butterworth‐Heinemann | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | geomagnetic indices | |
dc.subject.other | validation | |
dc.subject.other | magnetosphere | |
dc.subject.other | metrics | |
dc.subject.other | MHD | |
dc.title | SWMF Global Magnetosphere Simulations of January 2005: Geomagnetic Indices and Cross‐Polar Cap Potential | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Electrical Engineering | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/141399/1/swe20534_am.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/141399/2/swe20534.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/141399/3/swe20534-sup-0001-supplementary.pdf | |
dc.identifier.doi | 10.1002/2017SW001695 | |
dc.identifier.source | Space Weather | |
dc.identifier.citedreference | Tóth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Clauer, C., Zeeuw, D. L. D.,…... ( 2005 ). Space weather modeling framework: A new tool for the space science community. Journal of Geophysical Research, 110, A12226. https://doi.org/10.1029/2005JA011126 | |
dc.identifier.citedreference | Wanliss, J. A., & Showalter, K. M. ( 2006 ). High‐resolution global storm index: D s t versus S Y M ‐ H. Journal of Geophysical Research, 111, A02202. https://doi.org/10.1029/2005JA011034 | |
dc.identifier.citedreference | Weimer, D. R. ( 2004 ). Correction to “Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique”. Journal of Geophysical Research, 109, A12104. https://doi.org/10.1029/2004JA010691 | |
dc.identifier.citedreference | Weimer, D. R. ( 2005 ). Improved ionospheric electrodynamic models and application to calculating joule heating rates. Journal of Geophysical Research, 110, A05306. https://doi.org/10.1029/2004JA010884 | |
dc.identifier.citedreference | Weimer, D. R., & King, J. H. ( 2008 ). Improved calculations of interplanetary magnetic field phase front angles and propagation time delays. Journal of Geophysical Research, 113, A01105. https://doi.org/10.1029/2007JA012452 | |
dc.identifier.citedreference | Weimer, D. R., Ober, D. M., Maynard, N. C., Collier, M. R., McComas, D. J., Ness, N. F.,… Watermann, J. ( 2003 ). Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique. Journal of Geophysical Research, 108, 1026. https://doi.org/10.1029/2002JA009405 | |
dc.identifier.citedreference | Welling, D. T., & Liemohn, M. W. ( 2014 ). Outflow in global magnetohydrodynamics as a function of a passive inner boundary source. Journal of Geophysical Research: Space Physics, 119, 2691 – 2705. https://doi.org/10.1002/2013JA019374 | |
dc.identifier.citedreference | Welling, D. T., & Liemohn, M. W. ( 2016 ). The ionospheric source of magnetospheric plasma is not a black box input for global models. Journal of Geophysical Research: Space Physics, 121, 5559 – 5565. https://doi.org/10.1002/2016JA022646 | |
dc.identifier.citedreference | Welling, D. T., & Ridley, A. J. ( 2010 ). Validation of SWMF magnetic field and plasma. Space Weather, 8, S03002. https://doi.org/10.1029/2009SW000494 | |
dc.identifier.citedreference | Welling, D. T., & Zaharia, S. G. ( 2012 ). Ionospheric outflow and cross polar cap potential: What is the role of magnetospheric inflation? Geophysical Research Letters, 39, L23101. https://doi.org/10.1029/2012GL054228 | |
dc.identifier.citedreference | Welling, D. T., Anderson, B. J., Crowley, G., Pulkkinen, A. A., & Rastätter, L. ( 2017 ). Exploring predictive performance: A reanalysis of the geospace model transition challenge. Space Weather, 15, 192 – 203. https://doi.org/10.1002/2016SW001505 | |
dc.identifier.citedreference | Welling, D. T., Jordanova, V. K., Glocer, A., Toth, G., Liemohn, M. W., & Weimer, D. R. ( 2015 ). The two‐way relationship between ionospheric outflow and the ring current. Journal of Geophysical Research: Space Physics, 120, 4338 – 4353. https://doi.org/10.1002/2015JA021231 | |
dc.identifier.citedreference | Wiltberger, M., Rigler, E., Merkin, V., & Lyon, J. ( 2017 ). Structure of high latitude currents in magnetosphere‐ionosphere models. Space Science Reviews, 206, 575 – 598. https://doi.org/10.1007/s11214-016-0271-2 | |
dc.identifier.citedreference | Winglee, R. ( 2000 ). Mapping of ionospheric outflows into the magnetosphere for varying IMF conditions. Journal of Atmospheric and Solar‐Terrestrial Physics, 62, 527 – 540. | |
dc.identifier.citedreference | Winglee, R. M., Chua, D., Brittnacher, M., Parks, G. K., & Lu, G. ( 2002 ). Global impact of ionospheric outflows on the dynamics of the magnetosphere and cross‐polar cap potential. Journal of Geophysical Research, 107 ( A9 ), 1237. https://doi.org/10.1029/2001JA000214 | |
dc.identifier.citedreference | Wolf, R. A., Harel, M., Spiro, R. W., Voigt, G., Reiff, P. H., & Chen, C. K. ( 1982 ). Computer simulation of inner magnetospheric dynamics for the magnetic storm of July 29, 1977. Journal of Geophysical Research, 87, 5949 – 5962. | |
dc.identifier.citedreference | Wu, C. C., Walker, R. J., & Dawson, J. M. ( 1981 ). A three dimensional MHD model of the Earth’s magnetosphere. Geophysical Research Letters, 8 ( 5 ), 523 – 526. https://doi.org/10.1029/GL008i005p00523 | |
dc.identifier.citedreference | Young, D. T., Balsiger, H., & Geiss, J. ( 1982 ). Correlations of magnetospheric ion composition with geomagnetic and solar activity. Journal of Geophysical Research, 87 ( A11 ), 9077 – 9096. https://doi.org/10.1029/JA087iA11p09077 | |
dc.identifier.citedreference | Yu, Y., & Ridley, A. ( 2008 ). Validation of the space weather modeling framework using ground‐based magnetometers. Space Weather, 6, S05002. https://doi.org/10.1029/2007SW000345 | |
dc.identifier.citedreference | Yu, Y., Ridley, A. J., Welling, D. T., & Tóth, G. ( 2010 ). Including gap region field‐aligned currents and magnetospheric currents in the MHD calculation of ground‐based magnetic field perturbations. Journal of Geophysical Research, 115, A08207. https://doi.org/10.1029/2009JA014869 | |
dc.identifier.citedreference | Yu, Y., Jordanova, V., Welling, D., Larsen, B., Claudepierre, S. G., & Kletzing, C. ( 2014 ). The role of ring current particle injections: Global simulations and Van Allen Probes observations during 17 March 2013 storm. Geophysical Research Letters, 41, 1126 – 1132. https://doi.org/10.1002/2014GL059322 | |
dc.identifier.citedreference | Zhang, B., Lotko, W., Wiltberger, M., Brambles, O., & Damiano, P. ( 2011 ). A statistical study of magnetosphere‐ionosphere coupling in the Lyon‐Fedder‐Mobarry global MHD model. Journal of Atmospheric and Solar‐Terrestrial Physics, 73 ( 5‐6 ), 686 – 702. https://doi.org/10.1016/j.jastp.2010.09.027 | |
dc.identifier.citedreference | Zhang, J., Liemohn, M. W., De Zeeuw, D. L., Borovsky, J. E., Ridley, A. J., Toth, G.,… Wolf, R. A. ( 2007 ). Understanding storm‐time ring current development through data‐model comparisons of a moderate storm. Journal of Geophysical Research, 112, A04208. https://doi.org/10.1029/2006JA011846 | |
dc.identifier.citedreference | Zheng, Y., Lui, A. T. Y., Fok, M.‐C., Anderson, B. J., Brandt, P. C., Immel, T. J., & Mitchell, D. G. ( 2006 ). Relationship between Region 2 field‐aligned current and the ring current: Model results. Journal of Geophysical Research, 111, A11S06. https://doi.org/10.1029/2006JA011603 | |
dc.identifier.citedreference | Zheng, Y., Lui, A. T., Fok, M.‐C., Anderson, B. J., Brandt, P. C., & Mitchell, D. G. ( 2008 ). Controlling factors of Region 2 field‐aligned current and its relationship to the ring current: Model results. Advances in Space Research, 41, 1234 – 1242. https://doi.org/10.1016/j.asr.2007.05.084 | |
dc.identifier.citedreference | Akasofu, S.‐I., & Yoshida, S. ( 1966 ). Growth and decay of the ring current and the polar electrojets. Journal of Geophysical Research, 71 ( 1 ), 231 – 240. https://doi.org/10.1029/JZ071i001p00231 | |
dc.identifier.citedreference | Anderson, B. J., Korth, H., Welling, D. T., Merkin, V. G., Wiltberger, M. J., Raeder, J.,…... ( 2017 ). Comparison of predictive estimates of high‐latitude electrodynamics with observations of global‐scale Birkeland currents. Space Weather, 15, 352 – 373. https://doi.org/10.1002/2016SW001529 | |
dc.identifier.citedreference | Bartels, J., Heck, N. H., & Johnston, H. F. ( 1939 ). The three‐hour‐range index measuring geomagnetic activity. Terrestrial Magnetism and Atmospheric Electricity, 44 ( 4 ), 411 – 454. https://doi.org/10.1029/TE044i004p00411 | |
dc.identifier.citedreference | Borovsky, J. E. ( 2012 ). The effect of sudden wind shear on the Earth’s magnetosphere: Statistics of wind shear events and CCMC simulations of magnetotail disconnections. Journal of Geophysical Research, 117, A06224. https://doi.org/10.1029/2012JA017623 | |
dc.identifier.citedreference | Bristow, W. A., Greenwald, R. A., Shepherd, S. G., & Hughes, J. M. ( 2004 ). On the observed variability of the cross‐polar cap potential. Journal of Geophysical Research, 109, A02203. https://doi.org/10.1029/2003JA010206 | |
dc.identifier.citedreference | Cash, M. D., Witters Hicks, S., Biesecker, D. A., Reinard, A. A., de Koning, C. A., & Weimer, D. R. ( 2016 ). Validation of an operational product to determine L1 to Earth propagation time delays. Space Weather, 14, 93 – 112. https://doi.org/10.1002/2015SW001321 | |
dc.identifier.citedreference | Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. ( 2017 ). Plasma sheet injections into the inner magnetosphere: Two‐way coupled openGGCM‐RCM model results. Journal of Geophysical Research: Space Physics, 122, 5077 – 5091. https://doi.org/10.1002/2017JA024104 | |
dc.identifier.citedreference | Crooker, N. U., Lyon, J. G., & Fedder, J. A. ( 1998 ). MHD model merging with IMF By: Lobe cells, sunward polar cap convection, and overdraped lobes. Journal of Geophysical Research, 103 ( A5 ), 9143 – 9151. https://doi.org/10.1029/97JA03393 | |
dc.identifier.citedreference | Davis, T. N., & Sugiura, M. ( 1966 ). Auroral electrojet activity index A E and its universal time variations. Journal of Geophysical Research, 71 ( 3 ), 785 – 801. https://doi.org/10.1029/JZ071i003p00785 | |
dc.identifier.citedreference | De Zeeuw, D. L., Gombosi, T. I., Groth, C. P. T., Powell, K. G., & Stout, Q. F. ( 2000 ). An adaptive MHD method for global space weather simulations. IEEE Transactions on Plasma Science, 28, 1956 – 1965. | |
dc.identifier.citedreference | Dubyagin, S., Ganushkina, N., Kubyshkina, M., & Liemohn, M. ( 2014 ). Contribution from different current systems to SYM and ASY midlatitude indices. Journal of Geophysical Research: Space Physics, 119, 7243 – 7263. https://doi.org/10.1002/2014JA020122 | |
dc.identifier.citedreference | Facskó, G., Honkonen, I., Živković, T., Palin, L., Kallio, E., Ågren, K.,… Milan, S. ( 2016 ). One year in the Earth’s magnetosphere: A global MHD simulation and spacecraft measurements. Space Weather, 14, 351 – 367. https://doi.org/10.1002/2015SW001355 | |
dc.identifier.citedreference | Gannon, J., & Love, J. ( 2011 ). USGS 1‐min D s t index. Journal of Atmospheric and Solar‐Terrestrial Physics, 73 ( 2‐3 ), 323 – 334. https://doi.org/10.1016/j.jastp.2010.02.013 | |
dc.identifier.citedreference | Ganushkina, N. Y., Liemohn, M. W., Kubyshkina, M. V., Ilie, R., & Singer, H. J. ( 2010 ). Distortions of the magnetic field by storm‐time current systems in Earth’s magnetosphere. Annales Geophysicae, 28 ( 1 ), 123 – 140. https://doi.org/10.5194/angeo-28-123-2010 | |
dc.identifier.citedreference | Ganushkina, N. Y., Pulkkinen, T. I., Kubyshkina, M. V., Singer, H. J., & Russell, C. T. ( 2004 ). Long‐term evolution of magnetospheric current systems during storms. Annales Geophysicae European Geosciences Union, 22 ( 4 ), 1317 – 1334. | |
dc.identifier.citedreference | Gjerloev, J. W. ( 2012 ). The SuperMAG data processing technique. Journal of Geophysical Research, 117, A09213. https://doi.org/10.1029/2012JA017683 | |
dc.identifier.citedreference | Glocer, A., Fok, M., Meng, X., Tóth, G., Buzulukova, N., Chen, S., & Lin, K. ( 2012 ). CRCM + BATS‐R‐US two way coupling. Journal of Geophysical Research, 118, 1635–1650. https://doi.org/10.1002/jgra.50221 | |
dc.identifier.citedreference | Glocer, A., Gombosi, T. I., Tóth, G., Hansen, K. C., Ridley, A. J., & Nagy, A. ( 2007 ). Polar wind outflow model: Saturn results. Journal of Geophysical Research, 112, A01304. https://doi.org/10.1029/2006JA011755 | |
dc.identifier.citedreference | Glocer, A., Rastätter, L., Kuznetsova, M., Pulkkinen, A., Singer, H. J., Balch, C.,… Wing, S. ( 2016 ). Community‐wide validation of geospace model local K ‐index predictions to support model transition to operations. Space Weather, 14, 469 – 480. https://doi.org/10.1002/2016SW001387 | |
dc.identifier.citedreference | Groth, C., De Zeeuw, D. L., Gombosi, T., & Powell, K. ( 2000 ). Global 3D MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere. Journal of Geophysical Research, 105, 25,053 – 25,078. | |
dc.identifier.citedreference | Guild, T. B., Spence, H. E., Kepko, E. L., Merkin, V., Lyon, J. G., Wiltberger, M., & Goodrich, C. C. ( 2008 ). Geotail and LFM comparisons of plasma sheet climatology: 1. Average values. Journal of Geophysical Research, 113, A04216. https://doi.org/10.1029/2007JA012611 | |
dc.identifier.citedreference | Heinemann, M., & Wolf, R. A. ( 2001 ). Relationships of models of the inner magnetosphere to the rice convection model. Journal of Geophysical Research, 106 ( A8 ), 15,545 – 15,554. | |
dc.identifier.citedreference | Hirsch, C. ( 2007 ). Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics. Oxford: Butterworth‐Heinemann. | |
dc.identifier.citedreference | Huang, C.‐L., Spence, H. E., Singer, H. J., & Hughes, W. J. ( 2010 ). Modeling radiation belt radial diffusion in ULF wave fields: 1. Quantifying ULF wave power at geosynchronous orbit in observations and in global MHD model. Journal of Geophysical Research, 115, A06215. https://doi.org/10.1029/2009JA014917 | |
dc.identifier.citedreference | Iyemori, T. ( 1990 ). Storm‐time magnetospheric currents inferred from mid‐latitude geomagnetic field variations. Journal of Geomagnetism and Geoelectricity, 42 ( 11 ), 1249 – 1265. https://doi.org/10.5636/jgg.42.1249 | |
dc.identifier.citedreference | Janhunen, P., Palmroth, M., Laitinen, T., Honkonen, I., Juusola, L., Facskó, G., & Pulkkinen, T. I. ( 2012 ). The GUMICS‐4 global {MHD} magnetosphere‐ionosphere coupling simulation. Journal of Atmospheric and Solar‐Terrestrial Physics, 80, 48 – 59. https://doi.org/10.1016/j.jastp.2012.03.006 | |
dc.identifier.citedreference | Jones, E., Oliphant, T., & Peterson, P. ( 2001 ). SciPy: Open source scientific tools for Python, Accessed March 06, 2017. | |
dc.identifier.citedreference | Juusola, L., Facskó, G., Honkonen, I., Janhunen, P., Vanhamäki, H., Kauristie, K.,… Viljanen, A. ( 2014 ). Statistical comparison of seasonal variations in the GUMICS‐4 global MHD model ionosphere and measurements. Space Weather, 12, 582 – 600. https://doi.org/10.1002/2014SW001082 | |
dc.identifier.citedreference | Kalegaev, V. V., Ganushkina, N. Y., Pulkkinen, T. I., Kubyshkina, M. V., Singer, H. J., & Russell, C. T. ( 2005 ). Relation between the ring current and the tail current during magnetic storms. Annales Geophysicae, 23 ( 2 ), 523 – 533. | |
dc.identifier.citedreference | Katus, R. M., & Liemohn, M. W. ( 2013 ). Similarities and differences in low‐ to middle‐latitude geomagnetic indices. Journal of Geophysical Research: Space Physics, 118, 5149 – 5156. https://doi.org/10.1002/jgra.50501 | |
dc.identifier.citedreference | Koren, B. ( 1993 ). A robust upwind discretisation method for advection, diffusion and source terms. In C. Vreugdenhil & B. Koren (Eds.), Numerical methods for advection‐diffusion problems (pp. 117 ). Braunschweig: Vieweg. | |
dc.identifier.citedreference | Kress, B. T., Hudson, M. K., Looper, M. D., Albert, J., Lyon, J. G., & Goodrich, C. C. ( 2007 ). Global MHD test particle simulations of >10 MeV radiation belt electrons during storm sudden commencement. Journal of Geophysical Research, 112, A09215. https://doi.org/10.1029/2006JA012218 | |
dc.identifier.citedreference | Kronberg, E. A., Iannis, M. A.‐a., Delcourt, D. C., Grigorenko, E. E., Kistler, L. M., Kuzichev, I. V.,… Zelenyi, L. M. ( 2014 ). Circulation of heavy ions and their dynamical effects in the magnetosphere: Recent observations and models charge energy mass experiment extreme ultraviolet radiation. Space Science Reviews, 184, 173 – 235. https://doi.org/10.1007/s11214-014-0104-0 | |
dc.identifier.citedreference | Liemohn, M. W., De Zeeuw, D. L., Ganushkina, N. Y., Kozyra, J. U., & Welling, D. T. ( 2013 ). Magnetospheric cross‐field currents during the January 6–7, 2011 high‐speed stream‐driven interval. Journal of Atmospheric and Solar‐Terrestrial Physics, 99, 78 – 84. https://doi.org/10.1016/j.jastp.2012.09.007 | |
dc.identifier.citedreference | Liemohn, M. W., Kozyra, J. U., Thomsen, M. F., Roeder, J. L., Lu, G., Borovsky, J. E., & Cayton, T. E. ( 2001 ). Dominant role of the asymmetric ring current in producing the stormtime D s t *. Journal of Geophysical Research, 106 ( A6 ), 10,883 – 10,904. https://doi.org/10.1029/2000JA000326 | |
dc.identifier.citedreference | Lockwood, M., & Morley, S. K. ( 2004 ). A numerical model of the ionospheric signatures of time‐varying magnetic reconnection: I. Ionospheric convection. Annales Geophysicae, 22 ( 1 ), 73 – 91. | |
dc.identifier.citedreference | Lopez, R., Lyon, J., Wiltberger, M., & Goodrich, C. ( 2001 ). Comparison of global MHD simulation results with actual storm and substorm events. Advances in Space Research, 28 ( 12 ), 1701 – 1706. https://doi.org/10.1016/ S0273-1177(01)00535-X | |
dc.identifier.citedreference | Lyon, J., Fedder, J., & Mobarry, C. ( 2004 ). The Lyon‐Fedder‐Mobarry (LFM) global MHD magnetospheric simulation code. Journal of Atmospheric and Solar‐Terrestrial Physics, 66, 1333 – 1350. | |
dc.identifier.citedreference | Maltsev, Y. ( 2004 ). Points of controversy in the study of magnetic storms. Space Science Reviews, 110 ( 3/4 ), 227 – 277. https://doi.org/10.1023/B:SPAC.0000023410.77752.30 | |
dc.identifier.citedreference | Mayaud, P. N. ( 1980 ). Derivation, meaning, and use of geomagnetic indices. Washington, DC: American Geophysical Union. https://doi.org/10.1002/9781118663837 | |
dc.identifier.citedreference | McComas, D. J., Bame, S. J., Barker, P., Feldman, W. C., Phillips, J. L., Riley, P., & Griffee, J. W. ( 1998 ). Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the advanced composition explorer (pp. 563–612). Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-011-4762-0_20 | |
dc.identifier.citedreference | Milan, S. E. ( 2004 ). Dayside and nightside contributions to the cross polar cap potential: Placing an upper limit on a viscous‐like interaction. Annales Geophysicae, 22 ( 10 ), 3771 – 3777. https://doi.org/10.5194/angeo-22-3771-2004 | |
dc.identifier.citedreference | Moen, J., & Brekke, A. ( 1993 ). The solar flux influence of quiet‐time conductances in the auroral ionosphere. Geophysical Research Letters, 20, 971 – 974. | |
dc.identifier.citedreference | Morley, S. K. ( 2007 ). 7th Australian space science conference proceedings (pp. 118 – 129 ). Australia: National Space Society of Australia Ltd. | |
dc.identifier.citedreference | Morley, S., Koller, J., Welling, D., Larsen, B., & Niehof, J. ( 2014 ). SpacePy: Python‐Based Tools for the Space Science Community, Astrophysics Source Code Library. | |
dc.identifier.citedreference | Morley, S. K., Rouillard, A. P., & Freeman, M. P. ( 2009 ). Recurrent substorm activity during the passage of a corotating interaction region. Journal of Atmospheric and Solar‐Terrestrial Physics, 71 ( 10 ), 1073 – 1081. https://doi.org/10.1016/j.jastp.2008.11.009 | |
dc.identifier.citedreference | Morley, S. K., Welling, D. T., Koller, J., Larsen, B. A., Henderson, M. G., & Niehof, J. ( 2011 ). SpacePy—A Python‐based library of tools for the space sciences. Paper presented at Proceedings of the 9th Python in Science Conference (pp. 39–45). Austin, TX. | |
dc.identifier.citedreference | Ngwira, C. M., Pulkkinen, A., Leila Mays, M., Kuznetsova, M. M., Galvin, A. B., Simunac, K.,… Glocer, A. ( 2013 ). Simulation of the 23 July 2012 extreme space weather event: What if this extremely rare CME was earth directed? Space Weather, 11, 671 – 679. https://doi.org/10.1002/2013SW000990 | |
dc.identifier.citedreference | Ngwira, C. M., Pulkkinen, A., Kuznetsova, M. M., & Glocer, A. ( 2014 ). Modeling extreme “Carrington‐type” space weather events using three‐dimensional global MHD simulations. Journal of Geophysical Research: Space Physics, 119, 4456 – 4474. https://doi.org/10.1002/2013JA019661 | |
dc.identifier.citedreference | Ogino, T., Walker, R. J., & Ashour‐Abdalla, M. ( 1992 ). A global magnetohydrodynamic simulation of the magnetosheath and magnetosphere when the interplanetary magnetic field is northward. IEEE Transactions on Plasma Science, 20 ( 6 ), 817 – 828. https://doi.org/10.1109/27.199534 | |
dc.identifier.citedreference | Ohtani, S., Nosé, M., Rostoker, G., Singer, H., & Lui, A. ( 2001 ). Storm‐substorm relationship: Contribution of the tail current. Journal of Geophysics, 106, 21,199 – 21,209. | |
dc.identifier.citedreference | Palmroth, M., Pulkkinen, T. I., Janhunen, P., & Wu, C.‐C. ( 2003 ). Stormtime energy transfer in global MHD simulation. Journal of Geophysical Research, 108, 1048. https://doi.org/10.1029/2002JA009446 | |
dc.identifier.citedreference | Parzen, E. ( 1962 ). On estimation of a probability density function and mode. Annals of Mathematical Statistics, 33 ( 3 ), 1065 – 1076. https://doi.org/10.1214/aoms/1177704472 | |
dc.identifier.citedreference | Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. ( 2012 ). Initial results from a dynamic coupled magnetosphere‐ionosphere‐ring current model. Journal of Geophysical Research, 117, A02211. https://doi.org/10.1029/2011JA016979 | |
dc.identifier.citedreference | Powell, K., Roe, P., Linde, T., Gombosi, T., & De Zeeuw, D. L. ( 1999 ). A solution‐adaptive upwind scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 154, 284 – 309. | |
dc.identifier.citedreference | Pulkkinen, A., Rastätter, L., Kuznetsova, M., Hesse, M., Ridley, A., Raeder, J.,… Chulaki, A. ( 2010 ). Systematic evaluation of ground and geostationary magnetic field predictions generated by global magnetohydrodynamic models. Journal of Geophysical Research, 115, A03206. https://doi.org/10.1029/2009JA014537 | |
dc.identifier.citedreference | Pulkkinen, A., Rastätter, L., Kuznetsova, M., Singer, H., Balch, C., Weimer, D.,… Weigel, R. ( 2013 ). Community‐wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather, 11, 369 – 385. https://doi.org/10.1002/swe.20056 | |
dc.identifier.citedreference | Raeder, J., Berchem, J., & Ashour‐Abdalla, M. ( 1998 ). The geospace environment modeling grand challenge: Results from a global geospace circulation model. Journal of Geophysical Research, 103 ( A7 ), 14,787—14,797. https://doi.org/10.1029/98JA00014 | |
dc.identifier.citedreference | Raeder, J., McPherron, R., Frank, L., Kokubun, S., Lu, G., Mukai, T.,… Slavin, J. ( 2001 ). Global simulation of the Geospace environment modeling substorm challenge event. Journal of Geophysical Research, 106, 381 – 395. | |
dc.identifier.citedreference | Rastätter, L., Kuznetsova, M. M., Glocer, A., Welling, D., Meng, X., Raeder, J.,… Gannon, J. ( 2013 ). Geospace environment modeling 2008–2009 challenge: D s t index. Space Weather, 11, 187 – 205. https://doi.org/10.1002/swe.20036 | |
dc.identifier.citedreference | Rastätter, L., Kuznetsova, M. M., Vapirev, A., Ridley, A., Wiltberger, M., Pulkkinen, A.,… Singer, H. J. ( 2011 ). Geospace environment modeling 2008–2009 challenge: Geosynchronous magnetic field. Space Weather, 9, S04005. https://doi.org/10.1029/2010SW000617 | |
dc.identifier.citedreference | Richmond, A. D. ( 1992 ). Assimilative mapping of ionospheric electrodynamics. Advances in Space Research, 12, 59. | |
dc.identifier.citedreference | Richmond, A. D., & Kamide, Y. ( 1988 ). Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: Technique. Journal of Geophysical Research, 93 ( A6 ), 5741. https://doi.org/10.1029/JA093iA06p05741 | |
dc.identifier.citedreference | Ridley, A., Gombosi, T., & Dezeeuw, D. ( 2004a ). Ionospheric control of the magnetosphere: Conductance. Annales Geophysicae, 22, 567 – 584. https://doi.org/10.5194/angeo-22-567-2004 | |
dc.identifier.citedreference | Ridley, A., Gombosi, T., & Dezeeuw, D. ( 2004b ). Ionospheric control of the magnetosphere: Conductance. Annales Geophysicae, 22, 567 – 584. | |
dc.identifier.citedreference | Ridley, A. J., & Liemohn, M. W. ( 2002 ). A model‐derived storm time asymmetric ring current driven electric field description. Journal of Geophysical Research, 107 ( A8 ), 2002. https://doi.org/10.1029/2001JA000051 | |
dc.identifier.citedreference | Ridley, A. J., Gombosi, T. I., De Zeeuw, D. L., Clauer, C. R., & Richmond, A. D. ( 2003 ). Ionospheric control of the magnetosphere: Thermospheric neutral winds. Journal of Geophysical Research, 108, 1328. https://doi.org/10.1029/2002JA009464 | |
dc.identifier.citedreference | Rostoker, G. ( 1972 ). Geomagnetic indices. Reviews of Geophysics, 10 ( 4 ), 935 – 950. https://doi.org/10.1029/ RG010i004p00935 | |
dc.identifier.citedreference | Sazykin, S. Y. ( 2000 ). Theoretical studies of penetration of magnetospheric electric fields to the ionosphere (Ph.D. thesis), Utah State University, Logan, Utah. | |
dc.identifier.citedreference | Scott, D. W. ( 2015 ). Multivariate density estimation: Theory, practice, and visualization (2nd edn.). New York: John Wiley & Son. | |
dc.identifier.citedreference | Sokolov, I., Timofeev, E. V., Sakai, J., & Takayama, K. ( 2002 ). Artificial wind—A new framework to construct simple and efficient upwind shock‐capturing schemes. Journal of Computational Physics, 181, 354 – 393. https://doi.org/10.1006/jcph.2002.7130 | |
dc.identifier.citedreference | Tapping, K. F. ( 2013 ). The 10.7cm solar radio flux ( F 10.7 ). Space Weather, 11, 394 – 406. https://doi.org/10.1002/swe.20064 | |
dc.identifier.citedreference | Taylor, J. ( 1997 ). An introduction to error analysis: The study of uncertainties in physical measurements. Sausalito, CA: University Science Books. | |
dc.identifier.citedreference | Thomsen, M. F. ( 2004 ). Why K p is such a good measure of magnetospheric convection. Space Weather, 2, S11004. https://doi.org/10.1029/2004SW000089 | |
dc.identifier.citedreference | Toffoletto, F., Sazykin, S., Spiro, R., & Wolf, R. ( 2003 ). Inner magnetospheric modeling with the Rice Convection Model. Space Science Reviews, 107, 175 – 196. | |
dc.identifier.citedreference | Tóth, G., van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., Gombosi, T. I., Fang, F.,… Opher, M. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231 ( 3 ), 870 – 903. https://doi.org/10.1016/j.jcp.2011.02.006 | |
dc.identifier.citedreference | Vasyliunas, V. M. ( 1970 ). Mathematical models of magnetospheric convection and its coupling to the ionosphere (pp. 66–71). Netherlands: Springer. https://doi.org/10.1007/978-94-010-3284-1_6 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.