Show simple item record

SWMF Global Magnetosphere Simulations of January 2005: Geomagnetic Indices and Cross‐Polar Cap Potential

dc.contributor.authorHaiducek, John D.
dc.contributor.authorWelling, Daniel T.
dc.contributor.authorGanushkina, Natalia Y.
dc.contributor.authorMorley, Steven K.
dc.contributor.authorOzturk, Dogacan Su
dc.date.accessioned2018-02-05T16:32:51Z
dc.date.available2019-01-07T18:34:38Zen
dc.date.issued2017-12
dc.identifier.citationHaiducek, John D.; Welling, Daniel T.; Ganushkina, Natalia Y.; Morley, Steven K.; Ozturk, Dogacan Su (2017). "SWMF Global Magnetosphere Simulations of January 2005: Geomagnetic Indices and Cross‐Polar Cap Potential." Space Weather 15(12): 1567-1587.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/141399
dc.description.abstractWe simulated the entire month of January 2005 using the Space Weather Modeling Framework (SWMF) with observed solar wind data as input. We conducted this simulation with and without an inner magnetosphere model and tested two different grid resolutions. We evaluated the model’s accuracy in predicting Kp, SYM‐H, AL, and cross‐polar cap potential (CPCP). We find that the model does an excellent job of predicting the SYM‐H index, with a root‐mean‐square error (RMSE) of 17–18 nT. Kp is predicted well during storm time conditions but overpredicted during quiet times by a margin of 1 to 1.7 Kp units. AL is predicted reasonably well on average, with an RMSE of 230–270 nT. However, the model reaches the largest negative AL values significantly less often than the observations. The model tended to overpredict CPCP, with RMSE values on the order of 46–48 kV. We found the results to be insensitive to grid resolution, with the exception of the rate of occurrence for strongly negative AL values. The use of the inner magnetosphere component, however, affected results significantly, with all quantities except CPCP improved notably when the inner magnetosphere model was on.Key PointsIncreasing grid resolution from that used by SWPC improves AL prediction during disturbances but has little effect on Kp, SYM‐H, or CPCPThe model does an excellent job at predicting SYM‐H but less well in predicting ALSWMF tends to overpredict Kp and CPCP during quiet times but predicts those quantities better during active times
dc.publisherButterworth‐Heinemann
dc.publisherWiley Periodicals, Inc.
dc.subject.othergeomagnetic indices
dc.subject.othervalidation
dc.subject.othermagnetosphere
dc.subject.othermetrics
dc.subject.otherMHD
dc.titleSWMF Global Magnetosphere Simulations of January 2005: Geomagnetic Indices and Cross‐Polar Cap Potential
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141399/1/swe20534_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141399/2/swe20534.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141399/3/swe20534-sup-0001-supplementary.pdf
dc.identifier.doi10.1002/2017SW001695
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceTóth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Clauer, C., Zeeuw, D. L. D.,…... ( 2005 ). Space weather modeling framework: A new tool for the space science community. Journal of Geophysical Research, 110, A12226. https://doi.org/10.1029/2005JA011126
dc.identifier.citedreferenceWanliss, J. A., & Showalter, K. M. ( 2006 ). High‐resolution global storm index: D s t versus S Y M ‐ H. Journal of Geophysical Research, 111, A02202. https://doi.org/10.1029/2005JA011034
dc.identifier.citedreferenceWeimer, D. R. ( 2004 ). Correction to “Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique”. Journal of Geophysical Research, 109, A12104. https://doi.org/10.1029/2004JA010691
dc.identifier.citedreferenceWeimer, D. R. ( 2005 ). Improved ionospheric electrodynamic models and application to calculating joule heating rates. Journal of Geophysical Research, 110, A05306. https://doi.org/10.1029/2004JA010884
dc.identifier.citedreferenceWeimer, D. R., & King, J. H. ( 2008 ). Improved calculations of interplanetary magnetic field phase front angles and propagation time delays. Journal of Geophysical Research, 113, A01105. https://doi.org/10.1029/2007JA012452
dc.identifier.citedreferenceWeimer, D. R., Ober, D. M., Maynard, N. C., Collier, M. R., McComas, D. J., Ness, N. F.,… Watermann, J. ( 2003 ). Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique. Journal of Geophysical Research, 108, 1026. https://doi.org/10.1029/2002JA009405
dc.identifier.citedreferenceWelling, D. T., & Liemohn, M. W. ( 2014 ). Outflow in global magnetohydrodynamics as a function of a passive inner boundary source. Journal of Geophysical Research: Space Physics, 119, 2691 – 2705. https://doi.org/10.1002/2013JA019374
dc.identifier.citedreferenceWelling, D. T., & Liemohn, M. W. ( 2016 ). The ionospheric source of magnetospheric plasma is not a black box input for global models. Journal of Geophysical Research: Space Physics, 121, 5559 – 5565. https://doi.org/10.1002/2016JA022646
dc.identifier.citedreferenceWelling, D. T., & Ridley, A. J. ( 2010 ). Validation of SWMF magnetic field and plasma. Space Weather, 8, S03002. https://doi.org/10.1029/2009SW000494
dc.identifier.citedreferenceWelling, D. T., & Zaharia, S. G. ( 2012 ). Ionospheric outflow and cross polar cap potential: What is the role of magnetospheric inflation? Geophysical Research Letters, 39, L23101. https://doi.org/10.1029/2012GL054228
dc.identifier.citedreferenceWelling, D. T., Anderson, B. J., Crowley, G., Pulkkinen, A. A., & Rastätter, L. ( 2017 ). Exploring predictive performance: A reanalysis of the geospace model transition challenge. Space Weather, 15, 192 – 203. https://doi.org/10.1002/2016SW001505
dc.identifier.citedreferenceWelling, D. T., Jordanova, V. K., Glocer, A., Toth, G., Liemohn, M. W., & Weimer, D. R. ( 2015 ). The two‐way relationship between ionospheric outflow and the ring current. Journal of Geophysical Research: Space Physics, 120, 4338 – 4353. https://doi.org/10.1002/2015JA021231
dc.identifier.citedreferenceWiltberger, M., Rigler, E., Merkin, V., & Lyon, J. ( 2017 ). Structure of high latitude currents in magnetosphere‐ionosphere models. Space Science Reviews, 206, 575 – 598. https://doi.org/10.1007/s11214-016-0271-2
dc.identifier.citedreferenceWinglee, R. ( 2000 ). Mapping of ionospheric outflows into the magnetosphere for varying IMF conditions. Journal of Atmospheric and Solar‐Terrestrial Physics, 62, 527 – 540.
dc.identifier.citedreferenceWinglee, R. M., Chua, D., Brittnacher, M., Parks, G. K., & Lu, G. ( 2002 ). Global impact of ionospheric outflows on the dynamics of the magnetosphere and cross‐polar cap potential. Journal of Geophysical Research, 107 ( A9 ), 1237. https://doi.org/10.1029/2001JA000214
dc.identifier.citedreferenceWolf, R. A., Harel, M., Spiro, R. W., Voigt, G., Reiff, P. H., & Chen, C. K. ( 1982 ). Computer simulation of inner magnetospheric dynamics for the magnetic storm of July 29, 1977. Journal of Geophysical Research, 87, 5949 – 5962.
dc.identifier.citedreferenceWu, C. C., Walker, R. J., & Dawson, J. M. ( 1981 ). A three dimensional MHD model of the Earth’s magnetosphere. Geophysical Research Letters, 8 ( 5 ), 523 – 526. https://doi.org/10.1029/GL008i005p00523
dc.identifier.citedreferenceYoung, D. T., Balsiger, H., & Geiss, J. ( 1982 ). Correlations of magnetospheric ion composition with geomagnetic and solar activity. Journal of Geophysical Research, 87 ( A11 ), 9077 – 9096. https://doi.org/10.1029/JA087iA11p09077
dc.identifier.citedreferenceYu, Y., & Ridley, A. ( 2008 ). Validation of the space weather modeling framework using ground‐based magnetometers. Space Weather, 6, S05002. https://doi.org/10.1029/2007SW000345
dc.identifier.citedreferenceYu, Y., Ridley, A. J., Welling, D. T., & Tóth, G. ( 2010 ). Including gap region field‐aligned currents and magnetospheric currents in the MHD calculation of ground‐based magnetic field perturbations. Journal of Geophysical Research, 115, A08207. https://doi.org/10.1029/2009JA014869
dc.identifier.citedreferenceYu, Y., Jordanova, V., Welling, D., Larsen, B., Claudepierre, S. G., & Kletzing, C. ( 2014 ). The role of ring current particle injections: Global simulations and Van Allen Probes observations during 17 March 2013 storm. Geophysical Research Letters, 41, 1126 – 1132. https://doi.org/10.1002/2014GL059322
dc.identifier.citedreferenceZhang, B., Lotko, W., Wiltberger, M., Brambles, O., & Damiano, P. ( 2011 ). A statistical study of magnetosphere‐ionosphere coupling in the Lyon‐Fedder‐Mobarry global MHD model. Journal of Atmospheric and Solar‐Terrestrial Physics, 73 ( 5‐6 ), 686 – 702. https://doi.org/10.1016/j.jastp.2010.09.027
dc.identifier.citedreferenceZhang, J., Liemohn, M. W., De Zeeuw, D. L., Borovsky, J. E., Ridley, A. J., Toth, G.,… Wolf, R. A. ( 2007 ). Understanding storm‐time ring current development through data‐model comparisons of a moderate storm. Journal of Geophysical Research, 112, A04208. https://doi.org/10.1029/2006JA011846
dc.identifier.citedreferenceZheng, Y., Lui, A. T. Y., Fok, M.‐C., Anderson, B. J., Brandt, P. C., Immel, T. J., & Mitchell, D. G. ( 2006 ). Relationship between Region 2 field‐aligned current and the ring current: Model results. Journal of Geophysical Research, 111, A11S06. https://doi.org/10.1029/2006JA011603
dc.identifier.citedreferenceZheng, Y., Lui, A. T., Fok, M.‐C., Anderson, B. J., Brandt, P. C., & Mitchell, D. G. ( 2008 ). Controlling factors of Region 2 field‐aligned current and its relationship to the ring current: Model results. Advances in Space Research, 41, 1234 – 1242. https://doi.org/10.1016/j.asr.2007.05.084
dc.identifier.citedreferenceAkasofu, S.‐I., & Yoshida, S. ( 1966 ). Growth and decay of the ring current and the polar electrojets. Journal of Geophysical Research, 71 ( 1 ), 231 – 240. https://doi.org/10.1029/JZ071i001p00231
dc.identifier.citedreferenceAnderson, B. J., Korth, H., Welling, D. T., Merkin, V. G., Wiltberger, M. J., Raeder, J.,…... ( 2017 ). Comparison of predictive estimates of high‐latitude electrodynamics with observations of global‐scale Birkeland currents. Space Weather, 15, 352 – 373. https://doi.org/10.1002/2016SW001529
dc.identifier.citedreferenceBartels, J., Heck, N. H., & Johnston, H. F. ( 1939 ). The three‐hour‐range index measuring geomagnetic activity. Terrestrial Magnetism and Atmospheric Electricity, 44 ( 4 ), 411 – 454. https://doi.org/10.1029/TE044i004p00411
dc.identifier.citedreferenceBorovsky, J. E. ( 2012 ). The effect of sudden wind shear on the Earth’s magnetosphere: Statistics of wind shear events and CCMC simulations of magnetotail disconnections. Journal of Geophysical Research, 117, A06224. https://doi.org/10.1029/2012JA017623
dc.identifier.citedreferenceBristow, W. A., Greenwald, R. A., Shepherd, S. G., & Hughes, J. M. ( 2004 ). On the observed variability of the cross‐polar cap potential. Journal of Geophysical Research, 109, A02203. https://doi.org/10.1029/2003JA010206
dc.identifier.citedreferenceCash, M. D., Witters Hicks, S., Biesecker, D. A., Reinard, A. A., de Koning, C. A., & Weimer, D. R. ( 2016 ). Validation of an operational product to determine L1 to Earth propagation time delays. Space Weather, 14, 93 – 112. https://doi.org/10.1002/2015SW001321
dc.identifier.citedreferenceCramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. ( 2017 ). Plasma sheet injections into the inner magnetosphere: Two‐way coupled openGGCM‐RCM model results. Journal of Geophysical Research: Space Physics, 122, 5077 – 5091. https://doi.org/10.1002/2017JA024104
dc.identifier.citedreferenceCrooker, N. U., Lyon, J. G., & Fedder, J. A. ( 1998 ). MHD model merging with IMF By: Lobe cells, sunward polar cap convection, and overdraped lobes. Journal of Geophysical Research, 103 ( A5 ), 9143 – 9151. https://doi.org/10.1029/97JA03393
dc.identifier.citedreferenceDavis, T. N., & Sugiura, M. ( 1966 ). Auroral electrojet activity index A E and its universal time variations. Journal of Geophysical Research, 71 ( 3 ), 785 – 801. https://doi.org/10.1029/JZ071i003p00785
dc.identifier.citedreferenceDe Zeeuw, D. L., Gombosi, T. I., Groth, C. P. T., Powell, K. G., & Stout, Q. F. ( 2000 ). An adaptive MHD method for global space weather simulations. IEEE Transactions on Plasma Science, 28, 1956 – 1965.
dc.identifier.citedreferenceDubyagin, S., Ganushkina, N., Kubyshkina, M., & Liemohn, M. ( 2014 ). Contribution from different current systems to SYM and ASY midlatitude indices. Journal of Geophysical Research: Space Physics, 119, 7243 – 7263. https://doi.org/10.1002/2014JA020122
dc.identifier.citedreferenceFacskó, G., Honkonen, I., Živković, T., Palin, L., Kallio, E., Ågren, K.,… Milan, S. ( 2016 ). One year in the Earth’s magnetosphere: A global MHD simulation and spacecraft measurements. Space Weather, 14, 351 – 367. https://doi.org/10.1002/2015SW001355
dc.identifier.citedreferenceGannon, J., & Love, J. ( 2011 ). USGS 1‐min D s t index. Journal of Atmospheric and Solar‐Terrestrial Physics, 73 ( 2‐3 ), 323 – 334. https://doi.org/10.1016/j.jastp.2010.02.013
dc.identifier.citedreferenceGanushkina, N. Y., Liemohn, M. W., Kubyshkina, M. V., Ilie, R., & Singer, H. J. ( 2010 ). Distortions of the magnetic field by storm‐time current systems in Earth’s magnetosphere. Annales Geophysicae, 28 ( 1 ), 123 – 140. https://doi.org/10.5194/angeo-28-123-2010
dc.identifier.citedreferenceGanushkina, N. Y., Pulkkinen, T. I., Kubyshkina, M. V., Singer, H. J., & Russell, C. T. ( 2004 ). Long‐term evolution of magnetospheric current systems during storms. Annales Geophysicae European Geosciences Union, 22 ( 4 ), 1317 – 1334.
dc.identifier.citedreferenceGjerloev, J. W. ( 2012 ). The SuperMAG data processing technique. Journal of Geophysical Research, 117, A09213. https://doi.org/10.1029/2012JA017683
dc.identifier.citedreferenceGlocer, A., Fok, M., Meng, X., Tóth, G., Buzulukova, N., Chen, S., & Lin, K. ( 2012 ). CRCM + BATS‐R‐US two way coupling. Journal of Geophysical Research, 118, 1635–1650. https://doi.org/10.1002/jgra.50221
dc.identifier.citedreferenceGlocer, A., Gombosi, T. I., Tóth, G., Hansen, K. C., Ridley, A. J., & Nagy, A. ( 2007 ). Polar wind outflow model: Saturn results. Journal of Geophysical Research, 112, A01304. https://doi.org/10.1029/2006JA011755
dc.identifier.citedreferenceGlocer, A., Rastätter, L., Kuznetsova, M., Pulkkinen, A., Singer, H. J., Balch, C.,… Wing, S. ( 2016 ). Community‐wide validation of geospace model local K ‐index predictions to support model transition to operations. Space Weather, 14, 469 – 480. https://doi.org/10.1002/2016SW001387
dc.identifier.citedreferenceGroth, C., De Zeeuw, D. L., Gombosi, T., & Powell, K. ( 2000 ). Global 3D MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere. Journal of Geophysical Research, 105, 25,053 – 25,078.
dc.identifier.citedreferenceGuild, T. B., Spence, H. E., Kepko, E. L., Merkin, V., Lyon, J. G., Wiltberger, M., & Goodrich, C. C. ( 2008 ). Geotail and LFM comparisons of plasma sheet climatology: 1. Average values. Journal of Geophysical Research, 113, A04216. https://doi.org/10.1029/2007JA012611
dc.identifier.citedreferenceHeinemann, M., & Wolf, R. A. ( 2001 ). Relationships of models of the inner magnetosphere to the rice convection model. Journal of Geophysical Research, 106 ( A8 ), 15,545 – 15,554.
dc.identifier.citedreferenceHirsch, C. ( 2007 ). Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics. Oxford: Butterworth‐Heinemann.
dc.identifier.citedreferenceHuang, C.‐L., Spence, H. E., Singer, H. J., & Hughes, W. J. ( 2010 ). Modeling radiation belt radial diffusion in ULF wave fields: 1. Quantifying ULF wave power at geosynchronous orbit in observations and in global MHD model. Journal of Geophysical Research, 115, A06215. https://doi.org/10.1029/2009JA014917
dc.identifier.citedreferenceIyemori, T. ( 1990 ). Storm‐time magnetospheric currents inferred from mid‐latitude geomagnetic field variations. Journal of Geomagnetism and Geoelectricity, 42 ( 11 ), 1249 – 1265. https://doi.org/10.5636/jgg.42.1249
dc.identifier.citedreferenceJanhunen, P., Palmroth, M., Laitinen, T., Honkonen, I., Juusola, L., Facskó, G., & Pulkkinen, T. I. ( 2012 ). The GUMICS‐4 global {MHD} magnetosphere‐ionosphere coupling simulation. Journal of Atmospheric and Solar‐Terrestrial Physics, 80, 48 – 59. https://doi.org/10.1016/j.jastp.2012.03.006
dc.identifier.citedreferenceJones, E., Oliphant, T., & Peterson, P. ( 2001 ). SciPy: Open source scientific tools for Python, Accessed March 06, 2017.
dc.identifier.citedreferenceJuusola, L., Facskó, G., Honkonen, I., Janhunen, P., Vanhamäki, H., Kauristie, K.,… Viljanen, A. ( 2014 ). Statistical comparison of seasonal variations in the GUMICS‐4 global MHD model ionosphere and measurements. Space Weather, 12, 582 – 600. https://doi.org/10.1002/2014SW001082
dc.identifier.citedreferenceKalegaev, V. V., Ganushkina, N. Y., Pulkkinen, T. I., Kubyshkina, M. V., Singer, H. J., & Russell, C. T. ( 2005 ). Relation between the ring current and the tail current during magnetic storms. Annales Geophysicae, 23 ( 2 ), 523 – 533.
dc.identifier.citedreferenceKatus, R. M., & Liemohn, M. W. ( 2013 ). Similarities and differences in low‐ to middle‐latitude geomagnetic indices. Journal of Geophysical Research: Space Physics, 118, 5149 – 5156. https://doi.org/10.1002/jgra.50501
dc.identifier.citedreferenceKoren, B. ( 1993 ). A robust upwind discretisation method for advection, diffusion and source terms. In C. Vreugdenhil & B. Koren (Eds.), Numerical methods for advection‐diffusion problems (pp. 117 ). Braunschweig: Vieweg.
dc.identifier.citedreferenceKress, B. T., Hudson, M. K., Looper, M. D., Albert, J., Lyon, J. G., & Goodrich, C. C. ( 2007 ). Global MHD test particle simulations of >10 MeV radiation belt electrons during storm sudden commencement. Journal of Geophysical Research, 112, A09215. https://doi.org/10.1029/2006JA012218
dc.identifier.citedreferenceKronberg, E. A., Iannis, M. A.‐a., Delcourt, D. C., Grigorenko, E. E., Kistler, L. M., Kuzichev, I. V.,… Zelenyi, L. M. ( 2014 ). Circulation of heavy ions and their dynamical effects in the magnetosphere: Recent observations and models charge energy mass experiment extreme ultraviolet radiation. Space Science Reviews, 184, 173 – 235. https://doi.org/10.1007/s11214-014-0104-0
dc.identifier.citedreferenceLiemohn, M. W., De Zeeuw, D. L., Ganushkina, N. Y., Kozyra, J. U., & Welling, D. T. ( 2013 ). Magnetospheric cross‐field currents during the January 6–7, 2011 high‐speed stream‐driven interval. Journal of Atmospheric and Solar‐Terrestrial Physics, 99, 78 – 84. https://doi.org/10.1016/j.jastp.2012.09.007
dc.identifier.citedreferenceLiemohn, M. W., Kozyra, J. U., Thomsen, M. F., Roeder, J. L., Lu, G., Borovsky, J. E., & Cayton, T. E. ( 2001 ). Dominant role of the asymmetric ring current in producing the stormtime D s t *. Journal of Geophysical Research, 106 ( A6 ), 10,883 – 10,904. https://doi.org/10.1029/2000JA000326
dc.identifier.citedreferenceLockwood, M., & Morley, S. K. ( 2004 ). A numerical model of the ionospheric signatures of time‐varying magnetic reconnection: I. Ionospheric convection. Annales Geophysicae, 22 ( 1 ), 73 – 91.
dc.identifier.citedreferenceLopez, R., Lyon, J., Wiltberger, M., & Goodrich, C. ( 2001 ). Comparison of global MHD simulation results with actual storm and substorm events. Advances in Space Research, 28 ( 12 ), 1701 – 1706. https://doi.org/10.1016/ S0273-1177(01)00535-X
dc.identifier.citedreferenceLyon, J., Fedder, J., & Mobarry, C. ( 2004 ). The Lyon‐Fedder‐Mobarry (LFM) global MHD magnetospheric simulation code. Journal of Atmospheric and Solar‐Terrestrial Physics, 66, 1333 – 1350.
dc.identifier.citedreferenceMaltsev, Y. ( 2004 ). Points of controversy in the study of magnetic storms. Space Science Reviews, 110 ( 3/4 ), 227 – 277. https://doi.org/10.1023/B:SPAC.0000023410.77752.30
dc.identifier.citedreferenceMayaud, P. N. ( 1980 ). Derivation, meaning, and use of geomagnetic indices. Washington, DC: American Geophysical Union. https://doi.org/10.1002/9781118663837
dc.identifier.citedreferenceMcComas, D. J., Bame, S. J., Barker, P., Feldman, W. C., Phillips, J. L., Riley, P., & Griffee, J. W. ( 1998 ). Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the advanced composition explorer (pp. 563–612). Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-011-4762-0_20
dc.identifier.citedreferenceMilan, S. E. ( 2004 ). Dayside and nightside contributions to the cross polar cap potential: Placing an upper limit on a viscous‐like interaction. Annales Geophysicae, 22 ( 10 ), 3771 – 3777. https://doi.org/10.5194/angeo-22-3771-2004
dc.identifier.citedreferenceMoen, J., & Brekke, A. ( 1993 ). The solar flux influence of quiet‐time conductances in the auroral ionosphere. Geophysical Research Letters, 20, 971 – 974.
dc.identifier.citedreferenceMorley, S. K. ( 2007 ). 7th Australian space science conference proceedings (pp. 118 – 129 ). Australia: National Space Society of Australia Ltd.
dc.identifier.citedreferenceMorley, S., Koller, J., Welling, D., Larsen, B., & Niehof, J. ( 2014 ). SpacePy: Python‐Based Tools for the Space Science Community, Astrophysics Source Code Library.
dc.identifier.citedreferenceMorley, S. K., Rouillard, A. P., & Freeman, M. P. ( 2009 ). Recurrent substorm activity during the passage of a corotating interaction region. Journal of Atmospheric and Solar‐Terrestrial Physics, 71 ( 10 ), 1073 – 1081. https://doi.org/10.1016/j.jastp.2008.11.009
dc.identifier.citedreferenceMorley, S. K., Welling, D. T., Koller, J., Larsen, B. A., Henderson, M. G., & Niehof, J. ( 2011 ). SpacePy—A Python‐based library of tools for the space sciences. Paper presented at Proceedings of the 9th Python in Science Conference (pp. 39–45). Austin, TX.
dc.identifier.citedreferenceNgwira, C. M., Pulkkinen, A., Leila Mays, M., Kuznetsova, M. M., Galvin, A. B., Simunac, K.,… Glocer, A. ( 2013 ). Simulation of the 23 July 2012 extreme space weather event: What if this extremely rare CME was earth directed? Space Weather, 11, 671 – 679. https://doi.org/10.1002/2013SW000990
dc.identifier.citedreferenceNgwira, C. M., Pulkkinen, A., Kuznetsova, M. M., & Glocer, A. ( 2014 ). Modeling extreme “Carrington‐type” space weather events using three‐dimensional global MHD simulations. Journal of Geophysical Research: Space Physics, 119, 4456 – 4474. https://doi.org/10.1002/2013JA019661
dc.identifier.citedreferenceOgino, T., Walker, R. J., & Ashour‐Abdalla, M. ( 1992 ). A global magnetohydrodynamic simulation of the magnetosheath and magnetosphere when the interplanetary magnetic field is northward. IEEE Transactions on Plasma Science, 20 ( 6 ), 817 – 828. https://doi.org/10.1109/27.199534
dc.identifier.citedreferenceOhtani, S., Nosé, M., Rostoker, G., Singer, H., & Lui, A. ( 2001 ). Storm‐substorm relationship: Contribution of the tail current. Journal of Geophysics, 106, 21,199 – 21,209.
dc.identifier.citedreferencePalmroth, M., Pulkkinen, T. I., Janhunen, P., & Wu, C.‐C. ( 2003 ). Stormtime energy transfer in global MHD simulation. Journal of Geophysical Research, 108, 1048. https://doi.org/10.1029/2002JA009446
dc.identifier.citedreferenceParzen, E. ( 1962 ). On estimation of a probability density function and mode. Annals of Mathematical Statistics, 33 ( 3 ), 1065 – 1076. https://doi.org/10.1214/aoms/1177704472
dc.identifier.citedreferencePembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. ( 2012 ). Initial results from a dynamic coupled magnetosphere‐ionosphere‐ring current model. Journal of Geophysical Research, 117, A02211. https://doi.org/10.1029/2011JA016979
dc.identifier.citedreferencePowell, K., Roe, P., Linde, T., Gombosi, T., & De Zeeuw, D. L. ( 1999 ). A solution‐adaptive upwind scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 154, 284 – 309.
dc.identifier.citedreferencePulkkinen, A., Rastätter, L., Kuznetsova, M., Hesse, M., Ridley, A., Raeder, J.,… Chulaki, A. ( 2010 ). Systematic evaluation of ground and geostationary magnetic field predictions generated by global magnetohydrodynamic models. Journal of Geophysical Research, 115, A03206. https://doi.org/10.1029/2009JA014537
dc.identifier.citedreferencePulkkinen, A., Rastätter, L., Kuznetsova, M., Singer, H., Balch, C., Weimer, D.,… Weigel, R. ( 2013 ). Community‐wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather, 11, 369 – 385. https://doi.org/10.1002/swe.20056
dc.identifier.citedreferenceRaeder, J., Berchem, J., & Ashour‐Abdalla, M. ( 1998 ). The geospace environment modeling grand challenge: Results from a global geospace circulation model. Journal of Geophysical Research, 103 ( A7 ), 14,787—14,797. https://doi.org/10.1029/98JA00014
dc.identifier.citedreferenceRaeder, J., McPherron, R., Frank, L., Kokubun, S., Lu, G., Mukai, T.,… Slavin, J. ( 2001 ). Global simulation of the Geospace environment modeling substorm challenge event. Journal of Geophysical Research, 106, 381 – 395.
dc.identifier.citedreferenceRastätter, L., Kuznetsova, M. M., Glocer, A., Welling, D., Meng, X., Raeder, J.,… Gannon, J. ( 2013 ). Geospace environment modeling 2008–2009 challenge: D s t index. Space Weather, 11, 187 – 205. https://doi.org/10.1002/swe.20036
dc.identifier.citedreferenceRastätter, L., Kuznetsova, M. M., Vapirev, A., Ridley, A., Wiltberger, M., Pulkkinen, A.,… Singer, H. J. ( 2011 ). Geospace environment modeling 2008–2009 challenge: Geosynchronous magnetic field. Space Weather, 9, S04005. https://doi.org/10.1029/2010SW000617
dc.identifier.citedreferenceRichmond, A. D. ( 1992 ). Assimilative mapping of ionospheric electrodynamics. Advances in Space Research, 12, 59.
dc.identifier.citedreferenceRichmond, A. D., & Kamide, Y. ( 1988 ). Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: Technique. Journal of Geophysical Research, 93 ( A6 ), 5741. https://doi.org/10.1029/JA093iA06p05741
dc.identifier.citedreferenceRidley, A., Gombosi, T., & Dezeeuw, D. ( 2004a ). Ionospheric control of the magnetosphere: Conductance. Annales Geophysicae, 22, 567 – 584. https://doi.org/10.5194/angeo-22-567-2004
dc.identifier.citedreferenceRidley, A., Gombosi, T., & Dezeeuw, D. ( 2004b ). Ionospheric control of the magnetosphere: Conductance. Annales Geophysicae, 22, 567 – 584.
dc.identifier.citedreferenceRidley, A. J., & Liemohn, M. W. ( 2002 ). A model‐derived storm time asymmetric ring current driven electric field description. Journal of Geophysical Research, 107 ( A8 ), 2002. https://doi.org/10.1029/2001JA000051
dc.identifier.citedreferenceRidley, A. J., Gombosi, T. I., De Zeeuw, D. L., Clauer, C. R., & Richmond, A. D. ( 2003 ). Ionospheric control of the magnetosphere: Thermospheric neutral winds. Journal of Geophysical Research, 108, 1328. https://doi.org/10.1029/2002JA009464
dc.identifier.citedreferenceRostoker, G. ( 1972 ). Geomagnetic indices. Reviews of Geophysics, 10 ( 4 ), 935 – 950. https://doi.org/10.1029/ RG010i004p00935
dc.identifier.citedreferenceSazykin, S. Y. ( 2000 ). Theoretical studies of penetration of magnetospheric electric fields to the ionosphere (Ph.D. thesis), Utah State University, Logan, Utah.
dc.identifier.citedreferenceScott, D. W. ( 2015 ). Multivariate density estimation: Theory, practice, and visualization (2nd edn.). New York: John Wiley & Son.
dc.identifier.citedreferenceSokolov, I., Timofeev, E. V., Sakai, J., & Takayama, K. ( 2002 ). Artificial wind—A new framework to construct simple and efficient upwind shock‐capturing schemes. Journal of Computational Physics, 181, 354 – 393. https://doi.org/10.1006/jcph.2002.7130
dc.identifier.citedreferenceTapping, K. F. ( 2013 ). The 10.7cm solar radio flux ( F 10.7 ). Space Weather, 11, 394 – 406. https://doi.org/10.1002/swe.20064
dc.identifier.citedreferenceTaylor, J. ( 1997 ). An introduction to error analysis: The study of uncertainties in physical measurements. Sausalito, CA: University Science Books.
dc.identifier.citedreferenceThomsen, M. F. ( 2004 ). Why K p is such a good measure of magnetospheric convection. Space Weather, 2, S11004. https://doi.org/10.1029/2004SW000089
dc.identifier.citedreferenceToffoletto, F., Sazykin, S., Spiro, R., & Wolf, R. ( 2003 ). Inner magnetospheric modeling with the Rice Convection Model. Space Science Reviews, 107, 175 – 196.
dc.identifier.citedreferenceTóth, G., van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., Gombosi, T. I., Fang, F.,… Opher, M. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231 ( 3 ), 870 – 903. https://doi.org/10.1016/j.jcp.2011.02.006
dc.identifier.citedreferenceVasyliunas, V. M. ( 1970 ). Mathematical models of magnetospheric convection and its coupling to the ionosphere (pp. 66–71). Netherlands: Springer. https://doi.org/10.1007/978-94-010-3284-1_6
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.