Show simple item record

High Surface Area, Thermally Stable, Hydrophobic, Microporous, Rigid Gels Generated at Ambient from MeSi(OEt)3/(EtO)3SiCH2CH2Si(OEt)3 Mixtures by F−‐Catalyzed Hydrolysis

dc.contributor.authorFurgal, Joseph C.
dc.contributor.authorYamane, Honami
dc.contributor.authorOdykirk, Timothy R.
dc.contributor.authorYi, Eongyu
dc.contributor.authorChujo, Yoshiki
dc.contributor.authorLaine, Richard M.
dc.date.accessioned2018-02-05T16:33:10Z
dc.date.available2019-03-01T21:00:17Zen
dc.date.issued2018-01-02
dc.identifier.citationFurgal, Joseph C.; Yamane, Honami; Odykirk, Timothy R.; Yi, Eongyu; Chujo, Yoshiki; Laine, Richard M. (2018). "High Surface Area, Thermally Stable, Hydrophobic, Microporous, Rigid Gels Generated at Ambient from MeSi(OEt)3/(EtO)3SiCH2CH2Si(OEt)3 Mixtures by F−‐Catalyzed Hydrolysis." Chemistry – A European Journal 24(1): 274-280.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/141416
dc.description.abstractHigh surface area materials are of considerable interest for gas storage/capture, molecular sieving, catalyst supports, as well as for slow‐release drug‐delivery systems. We report here a very simple and fast route to very high surface area, mechanically robust, hydrophobic polymer gels prepared by fluoride‐catalyzed hydrolysis of mixtures of MeSi(OEt)3 and bis‐triethoxysilylethane (BTSE) at room temperature. These materials offer specific surface areas up to 1300 m2 g−1, peak pore sizes of 0.8 nm and thermal stabilities above 200 °C. The gelation times and surface areas can be controlled by adjusting the solvent volume (dichloromethane), percent fluoride (as nBu4NF or TBAF) and the BTSE contents. Polymers with other corners and linkers were also explored. These materials will further expand the materials databank for use in vacuum insulation panels and as thermally stable release and capture media.Simple fluoride‐catalyzed polymerization of methyltriethoxysilane and bistriethyoxysilylethane leads to the formation of amorphous materials with little post‐synthesis processing. These materials have surface areas up to 1300 m2 g−1, densities as low as 0.06 g mL−1 and non‐polar solvent uptake of about 500 % by mass.
dc.publisherAcademic press
dc.publisherWiley Periodicals, Inc.
dc.subject.othermaterials chemistry
dc.subject.otherpolymers
dc.subject.othergels
dc.subject.otherhigh surface area
dc.subject.otherhydrolysis
dc.titleHigh Surface Area, Thermally Stable, Hydrophobic, Microporous, Rigid Gels Generated at Ambient from MeSi(OEt)3/(EtO)3SiCH2CH2Si(OEt)3 Mixtures by F−‐Catalyzed Hydrolysis
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141416/1/chem201704941.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141416/2/chem201704941_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141416/3/chem201704941-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/chem.201704941
dc.identifier.sourceChemistry – A European Journal
dc.identifier.citedreferenceC. M. Burkett, L. A. Underwood, R. S. Volzer, J. A. Baughman, P. A. Edmiston, Chem. Mater. 2008, 20, 1312 – 1321.
dc.identifier.citedreferenceD. Wang, W. Yang, L. Li, X. Zhao, S. Feng, H. Liu, J. Mater. Chem. A 2013, 1, 13549 – 13558.
dc.identifier.citedreferenceF. Alves, I. Nischang, Chem. Eur. J. 2013, 19, 17310 – 17313.
dc.identifier.citedreferenceY. Wu, D. Wang, L. Li, W. Yang, S. Feng, H. Liu, J. Mater. Chem. A 2014, 2, 2160 – 2167.
dc.identifier.citedreferenceC. J. Brinker, G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic press, 1990.
dc.identifier.citedreferenceZ. Zhang, P. Zhang, Y. Wang, W. Zhang, Polym. Chem. 2016, 7, 3950 – 3976.
dc.identifier.citedreferenceY. Li, X.-H. Dong, Y. Zou, Z. Wang, K. Yue, M. Huang, H. Liu, X. Feng, Z. Lin, W. Zhang, et al., Polymer 2017, 125, 303 – 329.
dc.identifier.citedreferenceD. A. Loy, K. J. Shea, Chem. Rev. 1995, 95, 1431 – 1442.
dc.identifier.citedreferenceH. W. Oviatt,  Jr., K. J. Shea, J. H. Small, Chem. Mater. 1993, 5, 943 – 950.
dc.identifier.citedreferenceM. Z. Asuncion, R. M. Laine, J. Am. Chem. Soc. 2010, 132, 3723 – 3736.
dc.identifier.citedreferenceP. H. Doan, E. Yi, J. C. Furgal, M. Schwartz, S. Clark, T. Goodson   III, R. M. Laine, J. Ceram. Soc. Jpn. 2015, 123, 756 – 763.
dc.identifier.citedreferenceJ. C. Furgal, J. H. Jung, S. Clark, T. Goodson   III, R. M. Laine, Macromolecules 2013, 46, 7591 – 7604.
dc.identifier.citedreferenceJ. C. Furgal, T. Goodson   III, R. M. Laine, Dalton Trans. 2016, 45, 1025.
dc.identifier.citedreferenceH. W. Ro, V. Popova, L. Chen, A. M. Forster, Y. Ding, K. J. Alvine, D. J. Krug, R. M. Laine, C. L. Soles, Adv. Mater. 2011, 23, 414 – 420.
dc.identifier.citedreferenceE. M. Flanigen, J. M. Bennett, R. W. Grose, J. P. Cohen, R. L. Patton, R. M. Kirchner, J. V. Smith, Nature 1978, 271, 512 – 516.
dc.identifier.citedreferenceR. M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, London, 1992.
dc.identifier.citedreferenceM. L. Occelli, H. Kessler, Synthesis of Porous Materials, Marcel Dekker, New York, 1997.
dc.identifier.citedreferenceB. Naik, N. N. Ghosh, Recent Pat. Nanotechnol. 2009, 3, 213 – 224.
dc.identifier.citedreferenceT. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, Bull. Chem. Soc. Jpn. 1990, 63, 988 – 992.
dc.identifier.citedreferenceC. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710 – 712.
dc.identifier.citedreferenceJ. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834 – 10843.
dc.identifier.citedreferenceD. B. Cordes, P. D. Lickiss, R. Franck, Chem. Rev. 2010, 110, 2081 – 2173.
dc.identifier.citedreferenceM. Thommes, B. Smarsly, M. Groenewolt, P. I. Ravikovitch, A. V. Neimark, Langmuir 2006, 22, 756 – 764.
dc.identifier.citedreferenceK. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 1985, 57, 603 – 619.
dc.identifier.citedreferenceO. M. Yaghi, H. Li, C. Davis, D. Richardson, T. L. Groy, Acc. Chem. Res. 1998, 31, 474 – 484.
dc.identifier.citedreferenceS. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 1999, 121, 9611 – 9614.
dc.identifier.citedreferenceJ. Y. Ying, C. P. Mehnert, M. S. Wong, Angew. Chem. Int. Ed. 1999, 38, 56 – 77; Angew. Chem. 1999, 111, 58 – 82.
dc.identifier.citedreferenceA. Stein, B. J. Melde, R. C. Schroden, Adv. Mater. 2000, 12, 1403 – 1419.
dc.identifier.citedreferenceF. Schüth, Chem. Mater. 2001, 13, 3184 – 3195.
dc.identifier.citedreferenceM. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319 – 330.
dc.identifier.citedreferenceG. J. D. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev. 2002, 102, 4093 – 4138.
dc.identifier.citedreferenceH.-C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673 – 674.
dc.identifier.citedreferenceM. Mastalerz, Angew. Chem. Int. Ed. 2008, 47, 445 – 447; Angew. Chem. 2008, 120, 453 – 455.
dc.identifier.citedreferenceH.-B. Yang, K. Ghosh, A. M. Arif, P. J. Stang, J. Org. Chem. 2006, 71, 9464 – 9469.
dc.identifier.citedreferenceH. Menzel, M. D. Mowery, M. Cai, C. E. Evans, Macromolecules 1999, 32, 4343 – 4350.
dc.identifier.citedreferenceS.-Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548 – 556.
dc.identifier.citedreferenceC. Zhang, F. Babonneau, C. Bonhomme, R. M. Laine, C. L. Soles, H. A. Hristov, A. F. Yee, J. Am. Chem. Soc. 1998, 120, 8380 – 8391.
dc.identifier.citedreferenceY. Kim, K. Koh, M. F. Roll, R. M. Laine, A. J. Matzger, Macromolecules 2010, 43, 6995 – 7000.
dc.identifier.citedreferenceM. F. Roll, J. W. Kampf, Y. Kim, E. Yi, R. M. Laine, J. Am. Chem. Soc. 2010, 132, 10171 – 10183.
dc.identifier.citedreferenceD. Wang, L. Xue, L. Li, B. Deng, S. Feng, H. Liu, X. Zhao, Macromol. Rapid Commun. 2013, 34, 861 – 866.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.