Show simple item record

Swept Forward Magnetic Field Variability in High‐Latitude Regions of Saturn’s Magnetosphere

dc.contributor.authorDavies, E. H.
dc.contributor.authorMasters, A.
dc.contributor.authorDougherty, M. K.
dc.contributor.authorHansen, K. C.
dc.contributor.authorCoates, A. J.
dc.contributor.authorHunt, G. J.
dc.date.accessioned2018-02-05T16:33:28Z
dc.date.available2019-01-07T18:34:38Zen
dc.date.issued2017-12
dc.identifier.citationDavies, E. H.; Masters, A.; Dougherty, M. K.; Hansen, K. C.; Coates, A. J.; Hunt, G. J. (2017). "Swept Forward Magnetic Field Variability in High‐Latitude Regions of Saturn’s Magnetosphere." Journal of Geophysical Research: Space Physics 122(12): 12,328-12,337.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/141432
dc.description.abstractSwept forward field is the term given to configurations of magnetic field wherein the field lines deviate from the meridional planes of a planet in the direction of its rotation. Evidence is presented for swept‐forward field configurations on Cassini orbits around Saturn from the first half of 2008. These orbits were selected on the basis of high inclination, spatial proximity, and temporal proximity, allowing for the observation of swept‐forward field and resolution of dynamic effects using data from the Cassini magnetometer. Nine orbits are surveyed; all show evidence of swept‐forward field, with typical sweep angle found to be 23°. Evidence is found for transient events that lead to temporary dramatic increases in sweep‐forward angle. The Michigan Solar Wind Model is employed to investigate temporal correlation between the arrivals of solar wind shocks at Saturn with these transient events, with two shown to include instances corresponding with solar wind shock arrivals. Measurements of equatorial electron number density from anode 5 of the Cassini Plasma Spectrometer instrument are investigated for evidence of magnetospheric compression, corresponding with predicted shock arrivals. Potential mechanisms for the transfer of momentum from the solar wind to the magnetosphere are discussed.Key PointsField configurations at high‐latitude pre dusk magnetosphere are investigated at SaturnSwept forward field is found to be prevalent with an average angle of 23°Field is found to exhibit transient increases in sweep angle
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge University Press
dc.subject.otherdusk
dc.subject.otherconfiguration
dc.subject.otherSaturn
dc.subject.othermagnetosphere
dc.titleSwept Forward Magnetic Field Variability in High‐Latitude Regions of Saturn’s Magnetosphere
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141432/1/jgra53996_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141432/2/jgra53996.pdf
dc.identifier.doi10.1002/2017JA024419
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceNykyri, K., & Otto, A. ( 2001 ). Plasma transport at the magnetospheric boundary due to reconnection in Kelvin‐Helmholtz vortices. Geophysical Research Letters, 28 ( 18 ), 3565 – 3568. https://doi.org/10.1029/2001GL013239
dc.identifier.citedreferenceDougherty, M. K., Southwood, D. J., Balogh, A., & Smith, E. J. ( 1993 ). Field‐aligned currents in the Jovian magnetosphere during the Ulysses flyby. Planetary and Space Science, 41 ( 4 ), 291 – 300. https://doi.org/10.1016/0032‐0633(93)90024‐v
dc.identifier.citedreferenceDougherty, M. K., Kellock, S., Southwood, D. J., Balogh, A., Smith, E. J., Tsurutani, B. T., … Cowley, S. W. H. ( 2004 ). The Cassini magnetic field investigation. Space Science Reviews, 114 ( 1‐4 ), 331 – 383. https://doi.org/10.1007/s11214‐004‐1432‐2
dc.identifier.citedreferenceGurnett, D. A., Kurth, W. S., Kirchner, D. L., Hospodarsky, G. B., Averkamp, T. F., Zarka, P., … Pedersen, A. ( 2004 ). The Cassini radio and plasma wave investigation. Space Science Reviews, 114 ( 1‐4 ), 395 – 463. https://doi.org/10.1007/s11214‐004‐1434‐0
dc.identifier.citedreferenceHansen, C. J., Esposito, L., Stewart, A. I. F., Colwell, J., Hendrix, A., Pryor, W., … West, R. ( 2006 ). Enceladus’ water vapor plume. Science, 311 ( 5766 ), 1422 – 1425. https://doi.org/10.1126/science.1121254
dc.identifier.citedreferenceHill, T. W., Dessler, A. J., & Maher, L. J. ( 1981 ). Corotating magnetospheric convection. Journal of Geophysical Research, 86 ( A11 ), 9020 – 9028. https://doi.org/10.1029/JA086iA11p09020
dc.identifier.citedreferenceHunt, G. J., Cowley, S. W. H., Provan, G., Bunce, E. J., Alexeev, I. I., Belenkaya, E. S., … Coates, A. J. ( 2014 ). Field‐aligned currents in Saturn’s southern nightside magnetosphere: Subcorotation and planetary period oscillation components. Journal of Geophysical Research: Space Physics, 119, 9847 – 9899. https://doi.org/10.1002/2014JA020506
dc.identifier.citedreferenceHunt, G. J., Cowley, S. W. H., Provan, G., Bunce, E. J., Alexeev, I. I., Belenkaya, E. S., … Coates, A. J. ( 2015 ). Field‐aligned currents in Saturn’s northern nightside magnetosphere: Evidence for interhemispheric current flow associated with planetary period oscillations. Journal of Geophysical Research: Space Physics, 120, 7552 – 7584. https://doi.org/10.1002/2015JA021454
dc.identifier.citedreferenceJohnson, R. E., Smith, H. T., Tucker, O. J., Liu, M., Burger, M. H., Sittler, E. C., & Tokar, R. L. ( 2006 ). The Enceladus and OH Tori at Saturn. The Astrophysical Journal Letters, 644 ( 2 ), L137 – L139. https://doi.org/10.1086/505750
dc.identifier.citedreferenceKanani, S. J., Arridge, C. S., Jones, G. H., Fazakerley, A. N., McAndrews, H. J., Sergis, N., … Krupp, N. ( 2010 ). A new form of Saturn’s magnetopause using a dynamic pressure balance model, based on in situ, multi‐instrument Cassini measurements. Journal of Geophysical Research, 115, A06207. https://doi.org/10.1029/2009JA014262
dc.identifier.citedreferenceKivelson, M. G., Khurana, K. K., Means, J. D., Russell, C. T., & Snare, R. C. ( 1992 ). The Galileo magnetic‐field investigation. Space Science Reviews, 60 ( 1–4 ), 357 – 383. https://doi.org/10.1007/bf00216862
dc.identifier.citedreferenceKivelson, M. G., Khurana, K. K., & Walker, R. J. ( 2002 ). Sheared magnetic field structure in Jupiter’s dusk magnetosphere: Implications for return currents. Journal of Geophysical Research, 107 ( A7 ), 107. https://doi.org/10.1029/2001JA000251
dc.identifier.citedreferenceLewis, G. R., Arridge, C. S., Linder, D. R., Gilbert, L. K., Kataria, D. O., Coates, A. J., … Livi, S. A. ( 2010 ). The calibration of the Cassini‐Huygens CAPS electron spectrometer. Planetary and Space Science, 58 ( 3 ), 427 – 436. https://doi.org/10.1016/j.pss.2009.11.008
dc.identifier.citedreferenceMoriguchi, T., Nakamizo, A., Tanaka, T., Obara, T., & Shimazu, H. ( 2008 ). Current systems in the Jovian magnetosphere. Journal of Geophysical Research, 113, A05204. https://doi.org/10.1029/2007JA012751
dc.identifier.citedreferenceProvan, G., Tao, C., Cowley, S. W. H., Dougherty, M. K., & Coates, A. J. ( 2015 ). Planetary period oscillations in Saturn’s magnetosphere: Examining the relationship between abrupt changes in behavior and solar wind‐induced magnetospheric compressions and expansions. Journal of Geophysical Research: Space Physics, 120, 9524 – 9544. https://doi.org/10.1002/2015JA021642
dc.identifier.citedreferenceProvan, G., Cowley, S. W. H., Lamy, L., Bunce, E. J., Hunt, G. J., Zarka, P., & Dougherty, M. K. ( 2016 ). Planetary period oscillations in Saturn’s magnetosphere: Coalescence and reversal of northern and southern periods in late northern spring. Journal of Geophysical Research: Space Physics, 121, 9829 – 9862. https://doi.org/10.1002/2016JA023056
dc.identifier.citedreferenceSmith, E. J., Davis, L., Jones, D. E., Coleman, P. J., Colburn, D. S., Dyal, P., & Sonett, C. P. ( 1980 ). Saturn’s magnetosphere and its interaction with the solar wind. Journal of Geophysical Research, 85 ( A11 ), 5655 – 5674. https://doi.org/10.1029/JA085iA11p05655
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 2007 ). Saturnian magnetospheric dynamics: Elucidation of a camshaft model. Journal of Geophysical Research, 112, A12222. https://doi.org/10.1029/2007JA012254
dc.identifier.citedreferenceThomsen, M. F. ( 2013 ). Saturn’s magnetospheric dynamics. Geophysical Research Letters, 40, 5337 – 5344. https://doi.org/10.1002/2013GL057967
dc.identifier.citedreferenceVasyliunas, V. M. ( 1983 ). Plasma distribution and flow. In A. J.   Dessler (Ed.), Physics of the Jovian magnetosphere (pp. 395 – 453 ). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511564574.013
dc.identifier.citedreferenceWang, Y., Russell, C. T., & Raeder, J. ( 2001 ). The Io mass‐loading disk: Model calculations. Journal of Geophysical Research, 106 ( A11 ), 26243 – 26260. https://doi.org/10.1029/2001JA900062
dc.identifier.citedreferenceWent, D. R., Hospodarsky, G. B., Masters, A., Hansen, K. C., & Dougherty, M. K. ( 2011 ). A new semiempirical model of Saturn’s bow shock based on propagated solar wind parameters. Journal of Geophysical Research, 116, A07202. https://doi.org/10.1029/2010JA016349
dc.identifier.citedreferenceYoung, D. T., Berthelier, J. J., Blanc, M., Burch, J. L., Coates, A. J., Goldstein, R., … Zinsmeyer, C. ( 2004 ). Cassini plasma spectrometer investigation. Space Science Reviews, 114 ( 1‐4 ), 1 – 112. https://doi.org/10.1007/s11214‐004‐1406‐4
dc.identifier.citedreferenceZieger, B., & Hansen, K. C. ( 2008 ). Statistical validation of a solar wind propagation model from 1 to 10 AU. Journal of Geophysical Research, 113, A08107. https://doi.org/10.1029/2008JA013046
dc.identifier.citedreferenceDougherty, M. K., Khurana, K. K., Neubauer, F. M., Russell, C. T., Saur, J., Leisner, J. S., & Burton, M. E. ( 2006 ). Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science, 311 ( 5766 ), 1406 – 1409. https://doi.org/10.1126/science.1120985
dc.identifier.citedreferenceDungey, J. W. ( 1961 ). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6 ( 2 ), 47 – 48. https://doi.org/10.1103/PhysRevLett.6.47
dc.identifier.citedreferenceGiampieri, G., & Dougherty, M. K. ( 2004 ). Rotation rate of Saturn’s interior from magnetic field observations. Geophysical Research Letters, 31, L16701. https://doi.org/10.1029/2004GL020194
dc.identifier.citedreferenceAlexeev, I. I., Kalegaev, V. V., Belenkaya, E. S., Bobrovnikov, S. Y., Bunce, E. J., Cowley, S. W. H., & Nichols, J. D. ( 2006 ). A global magnetic model of Saturn’s magnetosphere and a comparison with Cassini SOI data. Geophysical Research Letters, 33, L08101. https://doi.org/10.1029/2006GL025896
dc.identifier.citedreferenceArridge, C. S., Achilleos, N., Dougherty, M. K., Khurana, K. K., & Russell, C. T. ( 2006 ). Modeling the size and shape of Saturn’s magnetopause with variable dynamic pressure. Journal of Geophysical Research, 111, A11227. https://doi.org/10.1029/2005JA011574
dc.identifier.citedreferenceBadman, S. V., Cowley, S. W. H., Lamy, L., Cecconi, B., & Zarka, P. ( 2008 ). Relationship between solar wind corotating interaction regions and the phasing and intensity of Saturn kilometric radiation bursts. Annales de Geophysique, 26 ( 12 ), 3641 – 3651. https://doi.org/10.5194/angeo‐26‐3641‐2008
dc.identifier.citedreferenceBalogh, A., Dougherty, M. K., Forsyth, R. J., Southwood, D. J., Smith, E. J., Tsurutani, B. T., … Burton, M. E. ( 1992 ). Magnetic field observations during the Ulysses flyby of Jupiter. Science, 257 ( 5076 ), 1515 – 1518. https://doi.org/10.1126/science.257.5076.1515
dc.identifier.citedreferenceBelenkaya, E. S., Cowley, S. W. H., Badman, S. V., Blokhina, M. S., & Kalegaev, V. V. ( 2008 ). Dependence of the open‐closed field line boundary in Saturn’s ionosphere on both the IMF and solar wind dynamic pressure: Comparison with the UV auroral oval observed by the HST. Annales de Geophysique, 26 ( 1 ), 159 – 166. https://doi.org/10.5194/angeo‐26‐159‐2008
dc.identifier.citedreferenceBunce, E. J., Cowley, S. W. H., & Wild, J. A. ( 2003 ). Azimuthal magnetic fields in Saturn’s magnetosphere: Effects associated with plasma sub‐corotation and the magnetopause‐tail current system. Annales de Geophysique, 21 ( 8 ), 1709 – 1722. https://doi.org/10.5194/angeo‐21‐1709‐2003
dc.identifier.citedreferenceConnerney, J. E. P., Ness, N. F., & Acuna, M. H. ( 1982 ). Zonal harmonic model of Saturn’s magnetic field from Voyager 1 and 2 observations. Nature, 298 ( 5869 ), 44 – 46. https://doi.org/10.1038/298044a0
dc.identifier.citedreferenceCowley, S. W. H., Bunce, E. J., & O’Rourke, J. M. ( 2004 ). A simple quantitative model of plasma flows and currents in Saturn’s polar ionosphere. Journal of Geophysical Research, 109, A05212. https://doi.org/10.1029/2003JA010375
dc.identifier.citedreferenceCowley, S. W. H., Wright, D. M., Bunce, E. J., Carter, A. C., Dougherty, M. K., Giampieri, G., … Robinson, T. R. ( 2006 ). Cassini observations of planetary‐period magnetic field oscillations in Saturn’s magnetosphere: Doppler shifts and phase motion. Geophysical Research Letters, 33, L07104. https://doi.org/10.1029/2005GL025522
dc.identifier.citedreferenceCrary, F. J., Clarke, J. T., Dougherty, M. K., Hanlon, P. G., Hansen, K. C., Steinberg, J. T., … Young, D. T. ( 2005 ). Solar wind dynamic pressure and electric field as the main factors controlling Saturn’s aurorae. Nature, 433 ( 7027 ), 720 – 722. https://doi.org/10.1038/nature03333
dc.identifier.citedreferenceDelamere, P. A., Otto, A., Ma, X., Bagenal, F., & Wilson, R. J. ( 2015 ). Magnetic flux circulation in the rotationally driven giant magnetospheres. Journal of Geophysical Research: Space Physics, 120, 4229 – 4245. https://doi.org/10.1002/2015JA021036
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.