Show simple item record

The structure of the large regulatory α subunit of phosphorylase kinase examined by modeling and hydrogen‐deuterium exchange

dc.contributor.authorRimmer, Mary Ashley
dc.contributor.authorNadeau, Owen W.
dc.contributor.authorYang, Jianyi
dc.contributor.authorArtigues, Antonio
dc.contributor.authorZhang, Yang
dc.contributor.authorCarlson, Gerald M.
dc.date.accessioned2018-02-05T16:33:37Z
dc.date.available2019-04-01T15:01:10Zen
dc.date.issued2018-02
dc.identifier.citationRimmer, Mary Ashley; Nadeau, Owen W.; Yang, Jianyi; Artigues, Antonio; Zhang, Yang; Carlson, Gerald M. (2018). "The structure of the large regulatory α subunit of phosphorylase kinase examined by modeling and hydrogen‐deuterium exchange." Protein Science 27(2): 472-484.
dc.identifier.issn0961-8368
dc.identifier.issn1469-896X
dc.identifier.urihttps://hdl.handle.net/2027.42/141441
dc.description.abstractPhosphorylase kinase (PhK), a 1.3 MDa regulatory enzyme complex in the glycogenolysis cascade, has four copies each of four subunits, (αβγδ)4, and 325 kDa of unique sequence (the mass of an αβγδ protomer). The α, β and δ subunits are regulatory, and contain allosteric activation sites that stimulate the activity of the catalytic γ subunit in response to diverse signaling molecules. Due to its size and complexity, no high resolution structures have been solved for the intact complex or its regulatory α and β subunits. Of PhK’s four subunits, the least is known about the structure and function of its largest subunit, α. Here, we have modeled the full‐length α subunit, compared that structure against previously predicted domains within this subunit, and performed hydrogen‐deuterium exchange on the intact subunit within the PhK complex. Our modeling results show α to comprise two major domains: an N‐terminal glycoside hydrolase domain and a large C‐terminal importin α/β‐like domain. This structure is similar to our previously published model for the homologous β subunit, although clear structural differences are present. The overall highly helical structure with several intervening hinge regions is consistent with our hydrogen‐deuterium exchange results obtained for this subunit as part of the (αβγδ)4 PhK complex. Several low exchanging regions predicted to lack ordered secondary structure are consistent with inter‐subunit contact sites for α in the quaternary structure of PhK; of particular interest is a low‐exchanging region in the C‐terminus of α that is known to bind the regulatory domain of the catalytic γ subunit.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhydrogen‐deuterium exchange
dc.subject.othermolecular modeling
dc.subject.othermass spectrometry
dc.subject.otherglycoside hydrolase
dc.subject.otherphosphorylase kinase
dc.subject.otheroligomeric proteins
dc.subject.othercalmodulin
dc.titleThe structure of the large regulatory α subunit of phosphorylase kinase examined by modeling and hydrogen‐deuterium exchange
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141441/1/pro3339.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141441/2/pro3339-sup-0001-suppinfo.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141441/3/pro3339_am.pdf
dc.identifier.doi10.1002/pro.3339
dc.identifier.sourceProtein Science
dc.identifier.citedreferenceSvensson B, Sierks MR ( 1992 ) Roles of the aromatic side chains in the binding of substrates, inhibitors, and cyclomalto‐oligosaccharides to the glucoamylase from Aspergillus niger probed by perturbation difference spectroscopy, chemical modification, and mutagenesis. Carbohydr Res 227: 29 – 44.
dc.identifier.citedreferenceMaertens GN, Cook NJ, Wang W, Hare S, Gupta SS, Oztop I, Lee K, Pye VE, Cosnefroy O, Snijders AP, KewalRamani VN, Fassati A, Engelman A, Cherepanov P ( 2014 ) Structural basis for nuclear import of splicing factors by human Transportin 3. Proc Natl Acad Sci USA 111: 2728 – 2733.
dc.identifier.citedreferenceStrom AC, Weis K ( 2001 ) Importin‐beta‐like nuclear transport receptors. Genome Biol 2: 3008.
dc.identifier.citedreferenceNadeau OW, Anderson DW, Yang Q, Artigues A, Paschall JE, Wyckoff GJ, McClintock JL, Carlson GM ( 2007 ) Evidence for the location of the allosteric activation switch in the multisubunit phosphorylase kinase complex from mass spectrometric identification of chemically crosslinked peptides. J Mol Biol 365: 1429 – 1445.
dc.identifier.citedreferenceAyers NA, Wilkinson DA, Fitzgerald TJ, Carlson GM ( 1999 ) Self‐association of the alpha subunit of phosphorylase kinase as determined by two‐hybrid screening. J Biol Chem 274: 35583 – 35590.
dc.identifier.citedreferenceHarmann B, Zander NF, Kilimann MW ( 1991 ) Isoform diversity of phosphorylase kinase alpha and beta subunits generated by alternative RNA splicing. J Biol Chem 266: 15631 – 15637.
dc.identifier.citedreferenceJames P, Cohen P, Carafoli E ( 1991 ) Identification and primary structure of calmodulin binding domains in the phosphorylase kinase holoenzyme. J Biol Chem 266: 7087 – 7091.
dc.identifier.citedreferenceNewsholme P, Angelos KL, Walsh DA ( 1992 ) High and intermediate affinity calmodulin binding domains of the alpha and beta subunits of phosphorylase kinase and their potential role in phosphorylation‐dependent activation of the holoenzyme. J Biol Chem 267: 810 – 818.
dc.identifier.citedreferenceRimmer MA, Artigues A, Nadeau OW, Villar MT, Vasquez‐Montes V, Carlson GM ( 2015 ) Mass spectrometric analysis of surface‐exposed regions in the hexadecameric phosphorylase kinase complex. Biochemistry 54: 6887 – 6895.
dc.identifier.citedreferenceWilkinson DA, Marion TN, Tillman DM, Norcum MT, Hainfeld JF, Seyer JM, Carlson GM ( 1994 ) An epitope proximal to the carboxyl terminus of the alpha‐subunit is located near the lobe tips of the phosphorylase kinase hexadecamer. J Mol Biol 235: 974 – 982.
dc.identifier.citedreferenceMizuno M, Tonozuka T, Suzuki S, Uotsu‐Tomita R, Kamitori S, Nishikawa A, Sakano Y ( 2004 ) Structural insights into substrate specificity and function of glucodextranase. J Biol Chem 279: 10575 – 10583.
dc.identifier.citedreferenceXu J, Zhang Y ( 2010 ) How significant is a protein structure similarity with TM‐score = 0.5?. Bioinformatics 26: 889 – 895.
dc.identifier.citedreferenceLiu HL, Wang WC ( 2003 ) Predicted unfolding order of the 13 alpha‐helices in the catalytic domain of glucoamylase from Aspergillus awamori var. X100 by molecular dynamics simulations. Biotechnol Prog 19: 1583 – 1590.
dc.identifier.citedreferenceNadeau OW, Carlson GM ( 1994 ) Zero length conformation‐dependent cross‐linking of phosphorylase kinase subunits by transglutaminase. J Biol Chem 269: 29670 – 29676.
dc.identifier.citedreferenceNadeau OW, Sacks DB, Carlson GM ( 1997 ) Differential affinity cross‐linking of phosphorylase kinase conformers by the geometric isomers of phenylenedimaleimide. J Biol Chem 272: 26196 – 26201.
dc.identifier.citedreferenceForwood JK, Lonhienne TG, Marfori M, Robin G, Meng W, Guncar G, Liu SM, Stewart M, Carroll BJ, Kobe B ( 2008 ) Kap95p binding induces the switch loops of RanGDP to adopt the GTP‐bound conformation: implications for nuclear import complex assembly dynamics. J Mol Biol 383: 772 – 782.
dc.identifier.citedreferenceZander NF, Meyer HE, Hoffmann‐Posorske E, Crabb JW, Heilmeyer LM, Jr, Kilimann MW ( 1988 ) cDNA cloning and complete primary structure of skeletal muscle phosphorylase kinase (alpha subunit). Proc Natl Acad Sci USA 85: 2929 – 2933.
dc.identifier.citedreferenceKing MM, Carlson GM ( 1981 ) Synergistic activation by Ca2+ and Mg2+ as the primary cause for hysteresis in the phosphorylase kinase reactions. J Biol Chem 256: 11058 – 11064.
dc.identifier.citedreferenceVillar MT, Miller DE, Fenton AW, Artigues A ( 2010 ) SAIDE: A Semi‐Automated Interface for Hydrogen/Deuterium Exchange mass spectrometry. Proteomica 6: 63 – 69.
dc.identifier.citedreferenceSmith DL, Deng Y, Zhang Z ( 1997 ) Probing the non‐covalent structure of proteins by amide hydrogen exchange and mass spectrometry. J Mass Spectrom 32: 135 – 146.
dc.identifier.citedreferenceWang L, Smith DL ( 2003 ) Downsizing improves sensitivity 100‐fold for hydrogen exchange‐mass spectrometry. Anal Biochem 314: 46 – 53.
dc.identifier.citedreferenceChalmers MJ, Busby SA, Pascal BD, He Y, Hendrickson CL, Marshall AG, Griffin PR ( 2006 ) Probing protein ligand interactions by automated hydrogen/deuterium exchange mass spectrometry. Anal Chem 78: 1005 – 1014.
dc.identifier.citedreferenceIacob RE, Bou‐Assaf GM, Makowski L, Engen JR, Berkowitz SA, Houde D ( 2013 ) Investigating monoclonal antibody aggregation using a combination of H/DX‐MS and other biophysical measurements. J Pharm Sci 102: 4315 – 4329.
dc.identifier.citedreferenceYang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y ( 2015 ) The I‐TASSER Suite: protein structure and function prediction. Nat Meth 12: 7 – 8.
dc.identifier.citedreferenceXue Z, Xu D, Wang Y, Zhang Y ( 2013 ) ThreaDom: extracting protein domain boundary information from multiple threading alignments. Bioinformatics 29: i247 – i256.
dc.identifier.citedreferenceZhang Y, Skolnick J ( 2004 ) SPICKER: a clustering approach to identify near‐native protein folds. J Comput Chem 25: 865 – 871.
dc.identifier.citedreferenceBrushia RJ, Walsh DA ( 1999 ) Phosphorylase kinase: the complexity of its regulation is reflected in the complexity of its structure. Front Biosci 4: D618 – D641.
dc.identifier.citedreferenceCohen P, Burchell A, Foulkes JG, Cohen PT, Vanaman TC, Nairn C ( 1978 ) Identification of the Ca2+‐dependent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase. FEBS Lett 92: 287 – 293.
dc.identifier.citedreferenceCohen P, Watson DC, Dixon GH ( 1975 ) The hormonal control of activity of skeletal muscle phosphorylase kinase. Amino‐acid sequences at the two sites of action of adenosine‐3’:5’‐monophosphate‐dependent protein kinase. Eur J Biochem 51: 79 – 92.
dc.identifier.citedreferenceRamachandran C, Goris J, Waelkens E, Merlevede W, Walsh DA ( 1987 ) The interrelationship between cAMP‐dependent alpha and beta subunit phosphorylation in the regulation of phosphorylase kinase activity. Studies using subunit specific phosphatases. J Biol Chem 262: 3210 – 3218.
dc.identifier.citedreferenceRice NA, Nadeau OW, Yang Q, Carlson GM ( 2002 ) The calmodulin‐binding domain of the catalytic gamma subunit of phosphorylase kinase interacts with its inhibitory alpha subunit: evidence for a Ca2+ sensitive network of quaternary interactions. J Biol Chem 277: 14681 – 14687.
dc.identifier.citedreferenceBabu YS, Bugg CE, Cook WJ ( 1988 ) Structure of calmodulin refined at 2.2 A resolution. J Mol Biol 204: 191 – 204.
dc.identifier.citedreferenceOwen DJ, Noble ME, Garman EF, Papageorgiou AC, Johnson LN ( 1995 ) Two structures of the catalytic domain of phosphorylase kinase: an active protein kinase complexed with substrate analogue and product. Structure 3: 467 – 482.
dc.identifier.citedreferenceKilimann MW, Zander NF, Kuhn CC, Crabb JW, Meyer HE, Heilmeyer LM Jr ( 1988 ) The alpha and beta subunits of phosphorylase kinase are homologous: cDNA cloning and primary structure of the beta subunit. Proc Natl Acad Sci USA 85: 9381 – 9385.
dc.identifier.citedreferencePallen MJ ( 2003 ) Glucoamylase‐like domains in the alpha‐ and beta‐subunits of phosphorylase kinase. Protein Sci 12: 1804 – 1807.
dc.identifier.citedreferenceCarriere C, Jonic S, Mornon JP, Callebaut I ( 2008 ) 3D mapping of glycogenosis‐causing mutations in the large regulatory alpha subunit of phosphorylase kinase. Biochim Biophys Acta 1782: 664 – 670.
dc.identifier.citedreferenceBott R, Saldajeno M, Cuevas W, Ward D, Scheffers M, Aehle W, Karkehabadi S, Sandgren M, Hansson H ( 2008 ) Three‐dimensional structure of an intact glycoside hydrolase family 15 glucoamylase from Hypocrea jecorina. Biochemistry 47: 5746 – 5754.
dc.identifier.citedreferenceNadeau OW, Liu W, Boulatnikov IG, Sage JM, Peters JL, Carlson GM ( 2010 ) The glucoamylase inhibitor acarbose is a direct activator of phosphorylase kinase. Biochemistry 49: 6505 – 6507.
dc.identifier.citedreferenceCarriere C, Mornon JP, Venien‐Bryan C, Boisset N, Callebaut I ( 2008 ) Calcineurin B‐like domains in the large regulatory alpha/beta subunits of phosphorylase kinase. Proteins 71: 1597 – 1606.
dc.identifier.citedreferenceNadeau OW, Lane LA, Xu D, Sage J, Priddy TS, Artigues A, Villar MT, Yang Q, Robinson CV, Zhang Y, Carlson GM ( 2012 ) Structure and location of the regulatory beta subunits in the (alphabetagammadelta)4 phosphorylase kinase complex. J Biol Chem 287: 36651 – 36661.
dc.identifier.citedreferenceArtigues A, Nadeau OW, Rimmer MA, Villar MT, Du X, Fenton AW, Carlson GM ( 2016 ) Protein structural analysis via mass spectrometry‐based proteomics. Exp Med Biol 919: 397 – 431.
dc.identifier.citedreferenceHoofnagle AN, Resing KA, Ahn NG ( 2003 ) Protein analysis by hydrogen exchange mass spectrometry. Annu Rev Biophys Biomol Struct 32: 1 – 25.
dc.identifier.citedreferenceTruhlar SM, Croy CH, Torpey JW, Koeppe JR, Komives EA ( 2006 ) Solvent accessibility of protein surfaces by amide H/2H exchange MALDI‐TOF mass spectrometry. J Am Soc Mass Spectrom 17: 1490 – 1497.
dc.identifier.citedreferenceZhang Y ( 2008 ) I‐TASSER server for protein 3D structure prediction. BMC Bioinform 9: 40.
dc.identifier.citedreferenceWu S, Zhang Y ( 2007 ) LOMETS: a local meta‐threading‐server for protein structure prediction. Nucleic Acids Res 35: 3375 – 3382.
dc.identifier.citedreferenceLi Y, Zhang Y ( 2009 ) REMO: A new protocol to refine full atomic protein models from C‐alpha traces by optimizing hydrogen‐bonding networks. Proteins 76: 665 – 676.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.