Show simple item record

Automated robot‐assisted surgical skill evaluation: Predictive analytics approach

dc.contributor.authorFard, Mahtab J.
dc.contributor.authorAmeri, Sattar
dc.contributor.authorDarin Ellis, R.
dc.contributor.authorChinnam, Ratna B.
dc.contributor.authorPandya, Abhilash K.
dc.contributor.authorKlein, Michael D.
dc.date.accessioned2018-02-05T16:33:54Z
dc.date.available2019-04-01T15:01:10Zen
dc.date.issued2018-02
dc.identifier.citationFard, Mahtab J.; Ameri, Sattar; Darin Ellis, R.; Chinnam, Ratna B.; Pandya, Abhilash K.; Klein, Michael D. (2018). "Automated robot‐assisted surgical skill evaluation: Predictive analytics approach." The International Journal of Medical Robotics and Computer Assisted Surgery 14(1): n/a-n/a.
dc.identifier.issn1478-5951
dc.identifier.issn1478-596X
dc.identifier.urihttps://hdl.handle.net/2027.42/141457
dc.description.abstractBackgroundSurgical skill assessment has predominantly been a subjective task. Recently, technological advances such as robot‐assisted surgery have created great opportunities for objective surgical evaluation. In this paper, we introduce a predictive framework for objective skill assessment based on movement trajectory data. Our aim is to build a classification framework to automatically evaluate the performance of surgeons with different levels of expertise.MethodsEight global movement features are extracted from movement trajectory data captured by a da Vinci robot for surgeons with two levels of expertise – novice and expert. Three classification methods – k‐nearest neighbours, logistic regression and support vector machines – are applied.ResultsThe result shows that the proposed framework can classify surgeons’ expertise as novice or expert with an accuracy of 82.3% for knot tying and 89.9% for a suturing task.ConclusionThis study demonstrates and evaluates the ability of machine learning methods to automatically classify expert and novice surgeons using global movement features.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherautomated skill evaluation
dc.subject.otherglobal movement features
dc.subject.othersurgeon dexterity
dc.subject.otherskill assessment
dc.subject.otherrobot‐assisted surgery
dc.subject.othermachine learning
dc.titleAutomated robot‐assisted surgical skill evaluation: Predictive analytics approach
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelSurgery and Anesthesiology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141457/1/rcs1850.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141457/2/rcs1850_am.pdf
dc.identifier.doi10.1002/rcs.1850
dc.identifier.sourceThe International Journal of Medical Robotics and Computer Assisted Surgery
dc.identifier.citedreferenceFard MJ, Ameri S, Chinnam RB, Ellis RD. Soft boundary approach for unsupervised gesture segmentation in robotic‐assisted surgery. IEEE Robot Autom Lett IEEE. 2017 Jan; 2 ( 1 ): 171 ‐ 178.
dc.identifier.citedreferenceTao L, Elhamifar E, Khudanpur S, Hager GD, Vidal R. Sparse hidden Markov models for surgical gesture classification and skill evaluation. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2012;7330 LNCS: 167 – 77.
dc.identifier.citedreferenceAhmidi N, Poddar P, Jones JD, et al. Automated objective surgical skill assessment in the operating room from unstructured tool motion in septoplasty. Int J Comput Assist Radiol Surg Springer Berlin Heidelberg. 2015; 10 ( 6 ): 981 ‐ 991.
dc.identifier.citedreferenceMahtab JF. Computational modeling approaches for task analysis in robotic‐assisted surgery. 2016.
dc.identifier.citedreferenceChmarra MK, Klein S, De Winter JCF, Jansen FW, Dankelman J. Objective classification of residents based on their psychomotor laparoscopic skills. Surg Endosc Other Interv Tech. 2010; 24 ( 5 ): 1031 ‐ 1039.
dc.identifier.citedreferenceDatta V, Chang A, Mackay S, Darzi A. The relationship between motion analysis and surgical technical assessments. Am J Surg. 2002 Jul; 184 ( 1 ): 70 ‐ 73.
dc.identifier.citedreferenceRosen J, Hannaford B, Richards CG, Sinanan MN. Markov modeling of minimally invasive surgery based on tool/tissue interaction and force/torque signatures for evaluating surgical skills. IEEE Trans Biomed Eng. 2001; 48 ( 5 ): 579 ‐ 591.
dc.identifier.citedreferenceYamauchi Y, Yamashita J, Morikawa O, et al. Surgical Skill Evaluation by Force Data for Endoscopic Sinus Surgery Training System. Berlin Heidelberg: Springer; 2002: 44 ‐ 51.
dc.identifier.citedreferenceCotin S, Cotin S, Stylopoulos N, et al. Metrics for laparoscopic skills trainers: The weakest link! MICCAI ‐ Med Image Comput Comput Interv. 2002; 2488: 35 ‐ 43.
dc.identifier.citedreferenceJudkins TN, Oleynikov D, Stergiou N. Objective evaluation of expert and novice performance during robotic surgical training tasks. Surg Endosc. 2009; 23 ( 3 ): 590 ‐ 597.
dc.identifier.citedreferenceMurphy KP. Machine Learning: A Probabilistic Perspective. The MIT Press; 2012 Aug 24.
dc.identifier.citedreferenceFard MJ, Wang P, Chawla S, Reddy CK. A Bayesian perspective on early stage event prediction in longitudinal data. IEEE Trans Knowl Data Eng. 2016 Dec; 28 ( 12 ): 3126 ‐ 3139.
dc.identifier.citedreferenceGao Y, Vedula SS, Reiley CE, et al. JHU‐ISI gesture and skill assessment working set (JIGSAWS): A surgical activity dataset for human motion modeling. Model Monit Comput Assist Interv. 2014; 1 ‐ 10.
dc.identifier.citedreferenceLin HC, Shafran I, Yuh D, Hager GD. Towards automatic skill evaluation: Detection and segmentation of robot‐assisted surgical motions. Comput Aided Surg. 2006; 11 ( 5 ): 220 ‐ 230.
dc.identifier.citedreferenceNams VO. Using animal movement paths to measure response to spatial scale. Oecologia. 2005; 143 ( 2 ): 179 ‐ 188.
dc.identifier.citedreferenceVoyles R, Bae J, Godzdanker R. The gestural joystick and the efficacy of the path tortuosity metric for human/robot interaction. Proc 8th Work Perform Metrics Intell Syst. 2008; 91 – 97.
dc.identifier.citedreferenceKearns WD, Nams VO, Fozard JL. Tortuosity in movement paths is related to cognitive impairment. Methods Inf Med. 2010; 49 ( 6 ): 592 ‐ 598.
dc.identifier.citedreferenceMandelbrot B. How long is the coast of Britain? Statistical self‐similarity and fractional dimension. Science (80‐ ). 1967; 156 ( 3775 ): 636 ‐ 638.
dc.identifier.citedreferenceNams VO. Improving accuracy and precision in estimating fractal dimension of animal movement paths. Acta Biotheor. 2006; 54 ( 1 ): 1 ‐ 11.
dc.identifier.citedreferenceFernández‐Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res. 2014; 15: 3133 ‐ 3181.
dc.identifier.citedreferenceCover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967; 13 ( 1 ): 21 ‐ 27.
dc.identifier.citedreferenceSaitta L. Support‐vector networks. Mach Learn. 1995; 20: 273 ‐ 297.
dc.identifier.citedreferenceVapnik V. Statistical Learning Theory. John Wiley & Sons; 1998.
dc.identifier.citedreferenceWitten IH, Frank E. Data Mining: Practical Machine Learning Tools and Techniques. Second ed. Morgan Kaufmann Publishers Inc.; 2005 Jun 1.
dc.identifier.citedreferenceAllen B, Nistor V, Dutson E, Carman G, Lewis C, Faloutsos P. Support vector machines improve the accuracy of evaluation for the performance of laparoscopic training tasks. Surg Endosc. 2010; 24: 170 ‐ 178.
dc.identifier.citedreferenceKleinbaum DG, Klein M. Logistic Regression. New York: Springer; 2010.
dc.identifier.citedreferenceGrantcharov TP, Bardram L, Funch‐Jensen P, Rosenberg J. Assessment of technical surgical skills. Eur J Surg. 2002; 168 ( 3 ): 139 ‐ 144.
dc.identifier.citedreferenceSchout BMA, Hendrikx AJM, Scheele F, Bemelmans BLH, Scherpbier AJJA. Validation and implementation of surgical simulators: A critical review of present, past, and future. Surg Endosc Other Interv Tech. 2010; 24 ( 3 ): 536 ‐ 546.
dc.identifier.citedreferenceMartin JA, Regehr G, Reznick R, et al. Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg. 1997; 84 ( 2 ): 273 ‐ 278.
dc.identifier.citedreferenceGuthart GS, Salisbury JK. The Intuitive telesurgery system: Overview and application. Proc 2000 ICRA Millenn Conf IEEE Int Conf Robot Autom Symp Proc. 2000; 1: 618 ‐ 621.
dc.identifier.citedreferenceFard MJ, Pandya AK, Chinnam RB, Klein MD, Ellis RD. Distance‐based time series classification approach for task recognition with application in surgical robot autonomy. Int J Med Robotics Comput Assist Surg. 2016. Available from: http://doi.wiley.com/10.1002/rcs.1766
dc.identifier.citedreferenceDreiseitl S, Binder M. Do physicians value decision support? A look at the effect of decision support systems on physician opinion. Artif Intell Med. 2005; 33 ( 1 ): 25 ‐ 30.
dc.identifier.citedreferenceKassahun Y, Yu B, Tibebu AT, et al. Surgical robotics beyond enhanced dexterity instrumentation: A survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int J Comput Assist Radiol Surg. 2016; 11 ( 4 ): 553 ‐ 568.
dc.identifier.citedreferenceFard MJ, Ameri S, Chinnam RB, Pandya AK, Klein MD, Ellis RD. Machine learning approach for skill evaluation in robotic‐assisted surgery. In: Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering and Computer Science 2016 [Internet]. San Francisco; 2016. Available from: http://arxiv.org/abs/1611.05136
dc.identifier.citedreferenceMoorthy K, Munz Y, Sarker SK. Darzi A. Clinical review: Objective assessment of technical skills in surgery. 2003; 1032 ‐ 1037.
dc.identifier.citedreferenceGumbs AA, Hogle NJ, Fowler DL. Evaluation of resident laparoscopic performance using global operative assessment of laparoscopic skills. J Am Coll Surg. 2007; 204 ( 2 ): 308 ‐ 313.
dc.identifier.citedreferenceSaggio G, Lazzaro A, Sbernini L, et al. Objective surgical skill assessment: An initial experience by means of a sensory glove paving the way to open surgery simulation? J Surg Educ. 2015 Sep; 72 ( 5 ): 910 ‐ 917.
dc.identifier.citedreferenceMarescaux J, Leroy J, Gagner M, et al. Transatlantic robot‐assisted telesurgery. Nature. 2001; 413 ( 6854 ): 379 ‐ 380.
dc.identifier.citedreferenceReiley CE, Lin HC, Yuh DD, Hager GD. Review of methods for objective surgical skill evaluation. Surg Endosc. 2011; 25 ( 2 ): 356 ‐ 366.
dc.identifier.citedreferenceFard MJ, Ameri S, Ellis RD. Toward personalized training and skill assessment in robotic minimally invasive surgery. In: Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering and Computer Science 2016 [Internet]. San Francisco; 2016. Available from: http://arxiv.org/abs/1610.07245
dc.identifier.citedreferenceAhmidi N, Tao L, Sefati S, et al. A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. IEEE Trans Biomed Eng. 2017; 1 ‐ 1.
dc.identifier.citedreferenceMackenzie CL, Ibbotson JA, Cao CGL, Lomax AJ. Hierarchical decomposition of laparoscopic surgery: A human factors approach to investigating the operating room environment. Minim Invasive Ther Allied Technol. 2001; 10 ( 3 ): 121 ‐ 127.
dc.identifier.citedreferenceRosen J, Solazzo M, Hannaford B, Sinanan M. Task decomposition of laparoscopic surgery for objective evaluation of surgical residents’ learning curve using hidden Markov model. Comput Aided Surg. 2002; 7 ( 1 ): 49 ‐ 61.
dc.identifier.citedreferenceLeong JJH, Nicolaou M, Atallah L, Mylonas GP, Darzi AW, Yang G‐Z. HMM assessment of quality of movement trajectory in laparoscopic surgery. Comput Aided Surg. 2007 Nov; 12 ( 6 ): 335 ‐ 346.
dc.identifier.citedreferenceMegali G, Sinigaglia S, Tonet O, Dario P. Modelling and evaluation of surgical performance using hidden Markov models. IEEE Trans Biomed Eng. 2006; 53 ( 10 ): 1911 ‐ 1919.
dc.identifier.citedreferenceLoukas C, Georgiou E. Multivariate autoregressive modeling of hand kinematics for laparoscopic skills assessment of surgical trainees. IEEE Trans Biomed Eng. 2011 Nov; 58 ( 11 ): 3289 ‐ 3297.
dc.identifier.citedreferenceVaradarajan B, Reiley C, Lin H, Khudanpur S, Hager GD. Data‐derived models for segmentation with application to surgical assessment and training. Med Image Comput Comput Assist Interv. 2009; 12 ( 1 ): 426 ‐ 434.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.