Show simple item record

Articular cartilage surface roughness as an imaging‐based morphological indicator of osteoarthritis: A preliminary investigation of osteoarthritis initiative subjects

dc.contributor.authorNewton, Michael D.
dc.contributor.authorOsborne, Jeffrey
dc.contributor.authorGawronski, Karissa
dc.contributor.authorBaker, Kevin C.
dc.contributor.authorMaerz, Tristan
dc.date.accessioned2018-02-05T16:34:31Z
dc.date.available2019-01-07T18:34:38Zen
dc.date.issued2017-12
dc.identifier.citationNewton, Michael D.; Osborne, Jeffrey; Gawronski, Karissa; Baker, Kevin C.; Maerz, Tristan (2017). "Articular cartilage surface roughness as an imaging‐based morphological indicator of osteoarthritis: A preliminary investigation of osteoarthritis initiative subjects." Journal of Orthopaedic Research 35(12): 2755-2764.
dc.identifier.issn0736-0266
dc.identifier.issn1554-527X
dc.identifier.urihttps://hdl.handle.net/2027.42/141486
dc.description.abstractCurrent imaging‐based morphometric indicators of osteoarthritis (OA) using whole‐compartment mean cartilage thickness (MCT) and volume changes can be insensitive to mild degenerative changes of articular cartilage (AC) due to areas of adjacent thickening and thinning. The purpose of this preliminary study was to evaluate cartilage thickness‐based surface roughness as a morphometric indicator of OA. 3D magnetic resonance imaging (MRI) datasets were collected from osteoarthritis initiative (OAI) subjects with Kellgren–Lawrence (KL) OA grades of 0, 2, and 4 (n = 10/group). Femoral and tibial AC volumes were converted to two‐dimensional thickness maps, and MCT, arithmetic surface roughness (Sa), and anatomically normalized Sa (normSa) were calculated. Thickness maps enabled visualization of degenerative changes with increasing KL grade, including adjacent thinning and thickening on the femoral condyles. No significant differences were observed in MCT between KL grades. Sa was significantly higher in KL4 compared to KL0 and KL2 in the whole femur (KL0: 0.55 ± 0.10 mm, KL2: 0.53 ± 0.09 mm, KL4: 0.79 ± 0.18 mm), medial femoral condyle (KL0: 0.42 ± 0.07 mm, KL2: 0.48 ± 0.07 mm, KL4: 0.76 ± 0.22 mm), and medial tibial plateau (KL0: 0.42 ± 0.07 mm, KL2: 0.43 ± 0.09 mm, KL4: 0.68 ± 0.27 mm). normSa was significantly higher in KL4 compared to KL0 and KL2 in the whole femur (KL0: 0.22 ± 0.02, KL2: 0.22 ± 0.02, KL4: 0.30 ± 0.03), medial condyle (KL0: 0.17 ± 0.02, KL2: 0.20 ± 0.03, KL4: 0.29 ± 0.06), whole tibia (KL0: 0.34 ± 0.04, KL2: 0.33 ± 0.05, KL4: 0.48 ± 0.11) and medial plateau (KL0: 0.23 ± 0.03, KL2: 0.24 ± 0.04, KL4: 0.40 ± 0.10), and significantly higher in KL2 compared to KL0 in the medial femoral condyle. Surface roughness metrics were sensitive to degenerative morphologic changes, and may be useful in OA characterization and early diagnosis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2755–2764, 2017.A custom algorithm was used to create two‐dimensional articular cartilage thickness maps of patients from the Osteoarthritis Initiative. Thickness maps demonstrate significantly increased surface roughness as a function of increasing Kellgren–Lawrence (KL) osteoarthritis (OA) grade, particularly in the medial femoral condyle, though mean cartilage thickness was not found to differ significantly between KL grades. Surface roughness‐based metrics have potential utility as morphological indicators of OA.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.othercartilage (articular and meniscal)
dc.subject.othercartilage, synovium and osteoarthritis
dc.subject.otherdiagnostic imaging
dc.subject.otherosteoarthritis clinical
dc.titleArticular cartilage surface roughness as an imaging‐based morphological indicator of osteoarthritis: A preliminary investigation of osteoarthritis initiative subjects
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141486/1/jor23588_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141486/2/jor23588.pdf
dc.identifier.doi10.1002/jor.23588
dc.identifier.sourceJournal of Orthopaedic Research
dc.identifier.citedreferenceEckstein F, Charles HC, Buck RJ, et al. 2005. Accuracy and precision of quantitative assessment of cartilage morphology by magnetic resonance imaging at 3.0 T. Arthritis Rheumatol 52: 3132 – 3136.
dc.identifier.citedreferenceEckstein F, Wirth W, Lohmander L, et al. 2015. Five‐year followup of knee joint cartilage thickness changes after acute rupture of the anterior cruciate ligament. Arthritis Rheumatol 67: 152 – 161.
dc.identifier.citedreferenceEckstein F, Maschek S, Wirth W, et al. 2009. One year change of knee cartilage morphology in the first release of participants from the osteoarthritis initiative progression subcohort: assocoation with sex, body mass index, symptoms and radiographic osteoarthritis status. Ann Rheum Dis 68: 674 – 679.
dc.identifier.citedreferenceFrobell RB, Nevitt MC, Hudelmaier M, et al. 2010. Femorotibial subchondral bone area and regional cartilage thickness: a cross‐sectional description in healthy reference cases and various radiographic stages of osteoarthritis in 1,003 knees from the Osteoarthritis Initiative. Arthritis Care Res 62: 1612 – 1623.
dc.identifier.citedreferenceSu F, Hilton J, Nardo L, et al. 2013. Cartilage morphology and T 1ρ and T 2 quantification in ACL‐reconstructed knees: a 2‐year follow‐up. Osteoarthritis Cartilage 21: 1058 – 1067.
dc.identifier.citedreferenceBuck R, Wyman B, Le Graverand M‐PH, et al. 2010. Osteoarthritis may not be a one‐way‐road of cartilage loss—comparison of spatial patterns of cartilage change between osteoarthritic and healthy knees. Osteoarthritis Cartilage 18: 329 – 335.
dc.identifier.citedreferenceBowes M, Williams T, Taylor C, et al. 2008. Statistical shape modelling reveals focal pattern of cartilage loss in OAI progression cohort. Osteoarthritis Cartilage 16: S183 – S184.
dc.identifier.citedreferenceMaerz T, Newton MD, Matthew HW, et al. 2015. Surface roughness and thickness analysis of contrast‐enhanced articular cartilage using mesh parameterization. Osteoarthritis Cartilage 24: 290 – 298.
dc.identifier.citedreferenceFelson DT, Niu J, Guermazi A, et al. 2011. Defining radiographic incidence and progression of knee osteoarthritis: suggested modifications of the Kellgren and Lawrence scale. Ann Rheum Dis 70: 1884 – 1886.
dc.identifier.citedreferenceEckstein F, Kunz M, Hudelmaier M, et al. 2007. Impact of coil design on the contrast‐to‐noise ratio, precision, and consistency of quantitative cartilage morphometry at 3 Tesla: a pilot study for the osteoarthritis initiative. Magn Reson Med 57: 448 – 454.
dc.identifier.citedreferenceEckstein F, Hudelmaier M, Wirth W, et al. 2006. Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the Osteoarthritis Initiative. Ann Rheum Dis 65: 433 – 441.
dc.identifier.citedreferenceXie L, Lin AS, Levenston ME, et al. 2009. Quantitative assessment of articular cartilage morphology via EPIC‐µCT. Osteoarthritis Cartilage 17: 313 – 320.
dc.identifier.citedreferenceDam EB, Folkesson J, Pettersen P, et al. 2007. Automatic morphometric cartilage quantification in the medial tibial plateau from MRI for osteoarthritis grading. Osteoarthritis Cartilage 15: 808 – 818.
dc.identifier.citedreferenceDam EB, Loog M, Christiansen C, et al. 2009. Identification of progressors in osteoarthritis by combining biochemical and MRI‐based markers. Arthritis Res Therap 11: 1.
dc.identifier.citedreferenceShan L, Zach C, Charles C, et al. 2014. Automatic atlas‐based three‐label cartilage segmentation from MR knee images. Med Image Anal 18: 1233 – 1246.
dc.identifier.citedreferenceCarballido‐Gamio J, Majumdar S. 2011. Atlas‐based knee cartilage assessment. Magn Reson Med 66: 575 – 581.
dc.identifier.citedreferenceGlocker B, Komodakis N, Paragios N, et al. 2007. Primal/dual linear programming and statistical atlases for cartilage segmentation. Medical image computing and computer‐assisted intervention—MICCAI 2007. Brisbane, Australia: Springer pp. 536 – 543.
dc.identifier.citedreferenceFavre J, Scanlan SF, Erhart‐Hledik JC, et al. 2013. Patterns of femoral cartilage thickness are different in asymptomatic and osteoarthritic knees and can be used to detect disease‐related differences between samples. J Biomech Eng 135: 101002.
dc.identifier.citedreferenceCohen ZA, McCarthy DM, Kwak SD, et al. 1999. Knee cartilage topography, thickness, and contact areas from MRI: in‐vitro calibration and in‐vivo measurements. Osteoarthritis Cartilage 7: 95 – 109.
dc.identifier.citedreferenceShekhawat VK, Laurent MP, Muehleman C, et al. 2009. Surface topography of viable articular cartilage measured with scanning white light interferometry. Osteoarthritis Cartilage 17: 1197 – 1203.
dc.identifier.citedreferenceMeachim G. 1972. Articular cartilage lesions in osteo‐arthritis of the femoral head. J Pathol 107: 199 – 210.
dc.identifier.citedreferenceMuehleman C, Bareither D, Huch K, et al. 1997. Prevalence of degenerative morphological changes in the joints of the lower extremity. Osteoarthritis Cartilage 5: 23 – 37.
dc.identifier.citedreferenceWright V, Dowson D. 1976. Lubrication and cartilage. J Anat 121: 107 – 118.
dc.identifier.citedreferenceRoemer FW, Zhang Y, Niu J, et al. 2009. Tibiofemoral joint osteoarthritis: risk factors for MR‐depicted fast cartilage loss over a 30‐month period in the multicenter osteoarthritis study. Radiology 252: 772 – 780.
dc.identifier.citedreferenceSpector TD, MacGregor AJ. 2004. Risk factors for osteoarthritis: genetics. Osteoarthritis Cartilage 12: 39 – 44.
dc.identifier.citedreferenceSowers M. 2001. Epidemiology of risk factors for osteoarthritis: systemic factors. Curr Opin Rheumatol 13: 447 – 451.
dc.identifier.citedreferenceShapiro LM, McWalter EJ, Son M, et al. 2014. Mechanisms of osteoarthritis in the knee: MR imaging appearance. J Magn Reson Imaging 39: 1346 – 1356.
dc.identifier.citedreferenceAmin S, LaValley MP, Guermazi A, et al. 2005. The relationship between cartilage loss on magnetic resonance imaging and radiographic progression in men and women with knee osteoarthritis. Arthritis Rheumatol 52: 3152 – 3159.
dc.identifier.citedreferenceBruyere O, Genant H, Kothari M, et al. 2007. Longitudinal study of magnetic resonance imaging and standard X‐rays to assess disease progression in osteoarthritis. Osteoarthritis Cartilage 15: 98 – 103.
dc.identifier.citedreferenceHayes CW, Jamadar DA, Welch GW, et al. 2005. Osteoarthritis of the knee: comparison of MR imaging findings with radiographic severity measurements and pain in middle‐aged women. Radiology 237: 998 – 1007.
dc.identifier.citedreferenceGlaser C, Faber S, Eckstein F, et al. 2001. Optimization and validation of a rapid high‐resolution T1‐w 3D FLASH water excitation MRI sequence for the quantitative assessment of articular cartilage volume and thickness. Magn Reson Imaging 19: 177 – 185.
dc.identifier.citedreferenceWilliams T, Holmes A, Bowes M, et al. 2014. Measurement and visualisation of focal cartilage thickness change by MRI in a study of knee osteoarthritis using a novel image analysis tool. Br J Radiol 83: 940 – 948.
dc.identifier.citedreferenceReichenbach S, Yang M, Eckstein F, et al. 2010. Does cartilage volume or thickness distinguish knees with and without mild radiographic osteoarthritis? The framingham study. Ann Rheum Dis 69: 143 – 149.
dc.identifier.citedreferenceEckstein F, Kunz M, Schutzer M, et al. 2007. Two year longitudinal change and test‐retest‐precision of knee cartilage morphology in a pilot study for the osteoarthritis initiative. Osteoarthritis Cartilage 15: 1326 – 1332.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.