Show simple item record

Cholesterol‐dependent cytolysins induce rapid release of mature IL‐1β from murine macrophages in a NLRP3 inflammasome and cathepsin B‐dependent manner

dc.contributor.authorChu, Jessica
dc.contributor.authorThomas, L. Michael
dc.contributor.authorWatkins, Simon C.
dc.contributor.authorFranchi, Luigi
dc.contributor.authorNúñez, Gabriel
dc.contributor.authorSalter, Russell D.
dc.date.accessioned2018-02-05T16:34:34Z
dc.date.available2018-02-05T16:34:34Z
dc.date.issued2009-11
dc.identifier.citationChu, Jessica; Thomas, L. Michael; Watkins, Simon C.; Franchi, Luigi; Núñez, Gabriel ; Salter, Russell D. (2009). "Cholesterol‐dependent cytolysins induce rapid release of mature IL‐1β from murine macrophages in a NLRP3 inflammasome and cathepsin B‐dependent manner." Journal of Leukocyte Biology 86(5): 1227-1238.
dc.identifier.issn0741-5400
dc.identifier.issn1938-3673
dc.identifier.urihttps://hdl.handle.net/2027.42/141488
dc.publisherWiley Periodicals, Inc.
dc.subject.othercytokines
dc.subject.otherbacterial
dc.subject.otherinflammation
dc.titleCholesterol‐dependent cytolysins induce rapid release of mature IL‐1β from murine macrophages in a NLRP3 inflammasome and cathepsin B‐dependent manner
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
dc.contributor.affiliationotherImmunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
dc.contributor.affiliationotherCell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
dc.contributor.affiliationotherImmunology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141488/1/jlb1227.pdf
dc.identifier.doi10.1189/jlb.0309164
dc.identifier.sourceJournal of Leukocyte Biology
dc.identifier.citedreferenceQu, Y., Franchi, L., Nunez, G., Dubyak, G. R. ( 2007 ) Nonclassical IL‐1 β secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J. Immunol. 179, 1913 – 1925.
dc.identifier.citedreferenceMartinon, F., Petrilli, V., Mayor, A., Tardivel, A., Tschopp, J. ( 2006 ) Goutassociated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237 – 241.
dc.identifier.citedreferenceHornung, V., Bauernfeind, F., Halle, A., Samstad, E. O., Kono, H., Rock, K L., Fitzgerald, K A., Latz, E. ( 2008 ) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847 – 856.
dc.identifier.citedreferenceDostert, C., Petrilli, V., Van Bruggen, R., Steele, C., Mossman, B. T., Tschopp, J. ( 2008 ) Innate immune activation through Nalp3 inflamma‐ some sensing of asbestos and silica. Science 320, 674 – 677.
dc.identifier.citedreferenceHalle, A., Hornung, V., Petzold, G. C., Stewart, C. R., Monks, B. G., Reinheckel, T., Fitzgerald, K A., Latz, E., Moore, K J., Golenbock, D. T. ( 2005 ) The NALP3 inflammasome is involved in the innate immune response to amyloid‐β. Nat. Immunol. 9, 857 – 865.
dc.identifier.citedreferenceWillingham, S. B., Ting, J. P. ( 2008 ) NLRs and the dangers of pollution and aging. Nat. Immunol. 9, 831 – 833.
dc.identifier.citedreferenceSchotte, P., Van Criekinge, W., Van de Craen, M., Van Loo, G., Desmedt, M., Grooten, J., Cornelissen, M., De Ridder, L., Vandekerckhove, J., Fiers, W., Vandenabeele, P., Beyaert, R ( 1998 ) Cathepsin B‐mediated activation of the proinflammatory caspase‐11. Biochem. Biophys. Res. Commun. 251, 379 – 387.
dc.identifier.citedreferenceWang, S., Miura, M., Jung, Y. K., Zhu, H., Li, E., Yuan, J. ( 1998 ) Murine caspase‐11, an ICE‐interacting protease, is essential for the activation of ICE. Cell 92, 501 – 509.
dc.identifier.citedreferenceDavies, J. Q., Gordon, S. ( 2005 ) Isolation and culture of murine macrophages. Methods Mol. Biol. 290, 91 – 103.
dc.identifier.citedreferenceIto, Y., Kawamura, I., Kohda, C., Tsuchiya, K., Nomura, T., Mitsuyama, M. ( 2005 ) Seeligeriolysin O, a protein toxin of Listeria seeligeri, stimulates macrophage cytokine production via Toll‐like receptors in a profile different from that induced by other bacterial ligands. Int. Immunol. 17, 1597 – 1606.
dc.identifier.citedreferenceMalley, R., Henneke, P., Morse, S. C., Cieslewicz, M. J., Lipsitch, M., Thompson, C. M., Kurt‐Jones, E., Paton, J. C., Wessels, M. R., Golenbock, D. T. ( 2003 ) Recognition of pneumolysin by Toll‐like receptor 4 confers resistance to pneumococcal infection. Proc. Natl. Acad. Sci. USA 100, 1966 – 1971.
dc.identifier.citedreferencePark, J. M., Ng, V. H., Maeda, S., Rest, R. F., Karin, M. ( 2004 ) Anthrolysin O and other Gram‐positive cytolysins are Toll‐like receptor 4 agonists. J. Exp. Med. 200, 1647 – 1655.
dc.identifier.citedreferenceSrivastava, A., Henneke, P., Visintin, A., Morse, S. C., Martin, V., Watkins, C., Paton, J. C., Wessels, M. R., Golenbock, D. T., Malley, R. ( 2005 ) The apoptotic response to pneumolysin is Toll‐like receptor 4 dependent and protects against pneumococcal disease. Infect. Immun. 73, 6479 – 6487.
dc.identifier.citedreferenceShoma, S., Tsuchiya, K., Kawamura, I., Nomura, T., Hara, H., Uchiyama, R., Daim, S., Mitsuyama, M. ( 2008 ) Critical involvement of pneumolysin in production of interleukin‐1 α and caspase‐1‐dependent cytokines in infection with Streptococcus pneumoniae in vitro: a novel function of pneumolysin in caspase‐1 activation. Infect. Immun. 76, 1547 – 1557.
dc.identifier.citedreferenceSolini, A., Chiozzi, P., Morelli, A., Fellin, R., Di Virgilio, F. ( 1999 ) Human primary fibroblasts in vitro express a purinergic P2X7 receptor coupled to ion fluxes, microvesicle formation and IL‐6 release. J. Cell Sci. 112, 297 – 305.
dc.identifier.citedreferenceMehta, V. B., Hart, J., Wewers, M. D. ( 2001 ) ATP‐stimulated release of interleukin (IL)‐1β and IL‐18 requires priming by lipopolysaccharide and is independent of caspase‐1 cleavage. J. Biol. Chem. 276, 3820 – 3826.
dc.identifier.citedreferenceKahlenberg, J. M., Lundberg, K C., Kertesy, S. B., Qu, Y., Dubyak, G. R. ( 2005 ) Potentiation of caspase‐1 activation by the P2X7 receptor is de‐pendent on TLR signals and requires NF‐ κ B‐driven protein synthesis. J. Immunol. 175, 7611 – 7622.
dc.identifier.citedreferenceYoshikawa, H., Kawamura, I., Fujita, M., Tsukada, H., Arakawa, M., Mitsuyama, M. ( 1993 ) Membrane damage and interleukin‐1 production in murine macrophages exposed to listeriolysin O. Infect. Immun. 61, 1334 – 1339.
dc.identifier.citedreferenceGonzalez, M. R., Bischofberger, M., Pernot, L., van der Goot, F. G., Freche, B. ( 2008 ) Bacterial pore‐forming toxins: the (w)hole story? Cell. Mol. Life Sci. 65, 493 – 507.
dc.identifier.citedreferenceGurcel, L., Abrami, L., Girardin, S., Tschopp, J., van der Goot, F. G. ( 2006 ) Caspase‐1 activation of lipid metabolic pathways in response to bacterial pore‐forming toxins promotes cell survival. Cell 126, 1135 – 1145.
dc.identifier.citedreferenceKloft, N., Busch, T., Neukirch, C., Weis, S., Boukhallouk, F., Bobkiewicz, W., Cibis, I., Bhakdi, S., Husmann, M. ( 2009 ) Pore‐forming toxins acti‐vate MAPK p38 by causing loss of cellular potassium. Biochem. Biophys. Res. Commun. 385, 503 – 506.
dc.identifier.citedreferenceWalev, I., Reske, K., Palmer, M., Valeva, A., Bhakdi, S. ( 1995 ) Potassium‐inhibited processing of IL‐1 β in human monocytes. EMBO J. 14, 1607 – 1614.
dc.identifier.citedreferenceBhakdi, S., Muhly, M., Korom, S., Hugo, F. ( 1989 ) Release of interleu‐ kin‐1 β associated with potent cytocidal action of staphylococcal α ‐toxin on human monocytes. Infect. Immun. 57, 3512 – 3519.
dc.identifier.citedreferenceBhakdi, S., Bayley, H., Valeva, A., Walev, I., Walker, B., Kehoe, M., Palmer, M. ( 1996 ) Staphylococcal a ‐toxin, streptolysin‐O, and Escherichia coli hemolysin: prototypes of pore‐forming bacterial cytolysins. Arch. Microbiol. 165, 73 – 79.
dc.identifier.citedreferenceLich, J. D., Arthur, J. C., Ting, J. P. Y. ( 2006 ) Cryopyrin: in from the cold. Immunity 24, 241 – 243.
dc.identifier.citedreferenceBillington, S. J., Jost, B. H., Songer, J. G. ( 2000 ) Thiol‐activated cytolysins: structure, function and role in pathogenesis. FEMS Microbiol. Lett. 182, 197 – 205.
dc.identifier.citedreferencePalmer, M. ( 2001 ) The family of thiol‐activated, cholesterol‐binding cytolysins. Toxicon 39, 1681 – 1689.
dc.identifier.citedreferenceBhakdi, S., Tranum‐Jensen, J., Sziegoleit, A. ( 1985 ) Mechanism of membrane damage by streptolysin‐O. Infect. Immun. 47, 52 – 60.
dc.identifier.citedreferenceMorgan, P. J., Hyman, S. C., Rowe, A. J., Mitchell, T. J., Andrew, P. W., Saibil, H. R. ( 1995 ) Subunit organization and symmetry of pore‐forming, oligomeric pneumolysin. FEBS Lett. 371, 77 – 80.
dc.identifier.citedreferenceOlofsson, A., Hebert, H., Thelestam, M. ( 1993 ) The projection structure of perfringolysin O (Clostridium perfringens θ ‐toxin). FEBS Lett. 319, 125 – 127.
dc.identifier.citedreferenceWatanabe, I., Nomura, T., Tominaga, T., Yamamoto, K., Kohda, C., Kawamura, I., Mitsuyama, M. ( 2006 ) Dependence of the lethal effect of pore‐forming haemolysins of Gram‐positive bacteria on cytolytic activity. J. Med. Microbiol. 55, 505 – 510.
dc.identifier.citedreferenceBenton, K. A., Everson, M. P., Briles, D. E. ( 1995 ) A pneumolysin‐negative mutant of Streptococcus pneumoniae causes chronic bacteremia rather than acute sepsis in mice. Infect. Immun. 63, 448 – 455.
dc.identifier.citedreferenceBerry, A. M., Yother, J., Briles, D. E., Hansman, D., Paton, J. C. ( 1989 ) Reduced virulence of a defined pneumolysin‐negative mutant of Streptococcus pneumoniae. Infect. Immun. 57, 2037 – 2042.
dc.identifier.citedreferenceCowan, G. J., Atkins, H. S., Johnson, L. K., Titball, R. W., Mitchell, T. J. ( 2007 ) Immunization with anthrolysin O or a genetic toxoid protects against challenge with the toxin but not against Bacillus anthracis. Vaccine 25, 7197 – 7205.
dc.identifier.citedreferenceBeauregard, K. E., Lee, K. D., Collier, R. J., Swanson, J. A. ( 1997 ) pH‐ Dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes. J. Exp. Med. 186, 1159 – 1163.
dc.identifier.citedreferenceGeoffroy, C., Gaillard, J. L., Alouf, J. E., Berche, P. ( 1987 ) Purification, characterization, and toxicity of the sulfhydryl‐activated hemolysin listeriolysin O from Listeria monocytogenes. Infect. Immun. 55, 1641 – 1646.
dc.identifier.citedreferenceWei, Z., Schnupf, P., Poussin, M. A., Zenewicz, L. A., Shen, H., Goldfine, H. ( 2005 ) Characterization of Listeria monocytogenes expressing anthrolysin O and phosphatidylinositol‐specific phospholipase C from Bacillus anthracis. Infect. Immun. 73, 6639 – 6646.
dc.identifier.citedreferenceMosser, E. M., Rest, R. ( 2006 ) The Bacillus anthracis cholesterol‐dependent cytolysin, anthrolysin O, kills human neutrophils, monocytes and macrophages. BMC Microbiol. 6, 56.
dc.identifier.citedreferenceHusmann, M., Dersch, K., Bobkiewicz, W., Beckmann, E., Veerachato, G., Bhakdi, S. ( 2006 ) Differential role of p38 mitogen activated protein kinase for cellular recovery from attack by pore‐forming S. aureus [ α ]‐toxin or streptolysin O. Biochem. Biophys. Res. Commun. 344, 1128 – 1134.
dc.identifier.citedreferenceWalev, I., Hombach, M., Bobkiewicz, W., Fenske, D., Bhakdi, S., Husmann, M. ( 2001 ) Resealing of large transmembrane pores produced by streptolysin O in nucleated cells is accompanied by NF‐ κ B activation and downstream events. FASEB J. 16, 237 – 239.
dc.identifier.citedreferenceIdone, V., Tam, C., Goss, J. W., Toomre, D., Pypaert, M., Andrews, N. W. ( 2008 ) Repair of injured plasma membrane by rapid Ca2+‐dependent endocytosis. J. Cell Biol. 180, 905 – 914.
dc.identifier.citedreferenceHenderson, B., Wilson, M., Wren, B. ( 1997 ) Are bacterial exotoxins cytokine network regulators? Trends Microbiol. 5, 454 – 458.
dc.identifier.citedreferenceNishibori, T., Xiong, H., Kawamura, I., Arakawa, M., Mitsuyama, M. ( 1996 ) Induction of cytokine gene expression by listeriolysin O and roles of macrophages and NK cells. Infect. Immun. 64, 3188 – 3195.
dc.identifier.citedreferenceHackett, S. P., Stevens, D. L. ( 1992 ) Streptococcal toxic shock syndrome: synthesis of tumor necrosis factor and interleukin‐1 by monocytes stimulated with pyrogenic exotoxin A and streptolysin O. J. Infect. Dis. 165, 879 – 885.
dc.identifier.citedreferenceHouldsworth, S., Andrew, P. W., Mitchell, T. J. ( 1994 ) Pneumolysin stimulates production of tumor necrosis factor α and interleukin‐1 β by human mononuclear phagocytes. Infect. Immun. 62, 1501 – 1503.
dc.identifier.citedreferenceArend, W. P., Palmer, G., Gabay, C. ( 2008 ) IL‐1, IL‐18, and IL‐33 families of cytokines. Immunol. Rev. 223, 20 – 38.
dc.identifier.citedreferenceFranchi, L., Eigenbrod, T., Munoz‐Planillo, R., Nunez, G. ( 2009 ) The inflammasome: a caspase‐1‐activation platform that regulates immune re‐sponses and disease pathogenesis. Nat. Immunol. 10, 241 – 247.
dc.identifier.citedreferenceMartinon, F., Mayor, A., Tschopp, J. ( 2009 ) The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229 – 265.
dc.identifier.citedreferencePedra, J. H., Cassel, S. L., Sutterwala, F. S. ( 2009 ) Sensing pathogens and danger signals by the inflammasome. Curr. Opin. Immunol. 21, 10 – 16.
dc.identifier.citedreferenceFerrari, D., Pizzirani, C., Adinolfi, E., Lemoli, R. M., Curti, A., Idzko, M., Panther, E., Di Virgilio, F. ( 2006 ) The P2X7 receptor: a key player in IL‐1 processing and release. J. Immunol. 176, 3877 – 3883.
dc.identifier.citedreferenceBrough, D., Le Feuvre, R. A., Wheeler, R. D., Solovyova, N., Hilfiker, S., Rothwell, N. J., Verkhratsky, A. ( 2003 ) Ca2+ stores and Ca2+ entry dif‐ferentially contribute to the release of IL‐1 β and IL‐1 α from murine macrophages. J. Immunol. 170, 3029 – 3036.
dc.identifier.citedreferenceAndrei, C., Margiocco, P., Poggi, A., Lotti, L. V., Torrisi, M. R., Rubartelli, A. ( 2004 ) Phospholipases C and A2 control lysosome‐mediated IL‐1 β secretion: implications for inflammatory processes. Proc. Natl. Acad. Sci. USA 101, 9745 – 9750.
dc.identifier.citedreferenceSutterwala, F. S., Ogura, Y., Szczepanik, M., Lara‐Tejero, M., Lichtenberger, G. S., Grant, E. P., Bertin, J., Coyle, A. J., Galan, J. E., Askenase, P. W., Flavell, R. A. ( 2006 ) Critical role for NALP3/CIAS1/cryopyrin in innate and adaptive immunity through its regulation of caspase‐1. Immunity 24, 317 – 327.
dc.identifier.citedreferenceLocovei, S., Scemes, E., Qiu, F., Spray, D. C., Dahl, G. ( 2007 ) Pannexin1 is part of the pore forming unit of the P2X7 receptor death complex. FEBS Lett. 581, 483 – 488.
dc.identifier.citedreferencePelegrin, P., Surprenant, A. ( 2006 ) Pannexin‐1 mediates large pore formation and interleukin‐1 β release by the ATP‐gated P2X7 receptor. EMBO J. 25, 5071 – 5082.
dc.identifier.citedreferenceKanneganti, T‐D., Lamkanfi, M., Kim, Y‐G., Chen, G., Park, J‐H., Franchi, L., Vandenabeele, P., Nunez, G. ( 2007 ) Pannexin‐1‐mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll‐like receptor signaling. Immunity 26, 433 – 443.
dc.identifier.citedreferenceMariathasan, S., Weiss, D. S., Newton, K., McBride, J., O’Rourke, K., Roose‐Girma, M., Lee, W. P., Weinrauch, Y., Monack, D. M., Dixit, V. M. ( 2006 ) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228 – 232.
dc.identifier.citedreferenceLe Feuvre, R. A., Brough, D., Iwakura, Y., Takeda, K., Rothwell, N. J. ( 2002 ) Priming of macrophages with lipopolysaccharide potentiates P2X7‐mediated cell death via a caspase‐1‐dependent mechanism, independently of cytokine production. J. Biol. Chem. 277, 3210 – 3218.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.