Show simple item record

How to Select Replacement Grafts for Various Periodontal and Implant Indications

dc.contributor.authorHsu, Yung‐ting
dc.contributor.authorWang, Hom‐lay
dc.date.accessioned2018-02-05T16:35:18Z
dc.date.available2018-02-05T16:35:18Z
dc.date.issued2013-08
dc.identifier.citationHsu, Yung‐ting ; Wang, Hom‐lay (2013). "How to Select Replacement Grafts for Various Periodontal and Implant Indications." Clinical Advances in Periodontics 3(3): 167-179.
dc.identifier.issn2573-8046
dc.identifier.issn2163-0097
dc.identifier.urihttps://hdl.handle.net/2027.42/141520
dc.publisherAmerican Academy of Periodontology
dc.publisherWiley Periodicals, Inc.
dc.subject.othersinus augmentation therapy
dc.subject.otherbone substitutes
dc.subject.otherAlveolar ridge augmentation
dc.subject.othersocket graft
dc.subject.otherguided tissue regeneration
dc.subject.otherperiâ implantitis
dc.titleHow to Select Replacement Grafts for Various Periodontal and Implant Indications
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI.
dc.contributor.affiliationotherCollege of Dentistry, King Saud University, Riyadh, Saudi Arabia.
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141520/1/cap0167.pdf
dc.identifier.doi10.1902/cap.2012.120031
dc.identifier.sourceClinical Advances in Periodontics
dc.identifier.citedreferenceChaushu G, Mardinger O, Peleg M, Ghelfan O, Nissan J. Analysis of complications following augmentation with cancellous block allografts. J Periodontol 2010; 81: 1759 â 1764.
dc.identifier.citedreferenceProussaefs P, Lozada J, Kleinman A, Rohrer MD, McMillan PJ. The use of titanium mesh in conjunction with autogenous bone graft and inorganic bovine bone mineral (Bioâ oss) for localized alveolar ridge augmentation: A human study. Int J Periodontics Restorative Dent 2003; 23: 185 â 195.
dc.identifier.citedreferenceLee A, Brown D, Wang HL. Sandwich bone augmentation for predictable horizontal bone augmentation. Implant Dent 2009; 18: 282 â 290.
dc.identifier.citedreferencePark SH, Lee KW, Oh TJ, Misch CE, Shotwell J, Wang HL. Effect of absorbable membranes on sandwich bone augmentation. Clin Oral Implants Res 2008; 19: 32 â 41.
dc.identifier.citedreferenceUrban IA, Nagursky H, Lozada JL. Horizontal ridge augmentation with a resorbable membrane and particulated autogenous bone with or without anorganic bovine boneâ derived mineral: A prospective case series in 22 patients. Int J Oral Maxillofac Implants 2011; 26: 404 â 414.
dc.identifier.citedreferenceProussaefs P, Lozada J. The use of resorbable collagen membrane in conjunction with autogenous bone graft and inorganic bovine mineral for buccal/labial alveolar ridge augmentation: A pilot study. J Prosthet Dent 2003; 90: 530 â 538.
dc.identifier.citedreferenceRocchietta I, Fontana F, Simion M. Clinical outcomes of vertical bone augmentation to enable dental implant placement: A systematic review. J Clin Periodontol 2008; 35 ( Suppl. 8 ): 203 â 215.
dc.identifier.citedreferenceFritz ME, Eke PI, Malmquist J, Hardwick R. Clinical and microbiological observations of early polytetrafluoroethylene membrane exposure in guided bone regeneration. Case reports in primates. J Periodontol 1996; 67: 245 â 249.
dc.identifier.citedreferenceLindfors LT, Tervonen EA, Sándor GK, Ylikontiola LP. Guided bone regeneration using a titaniumâ reinforced ePTFE membrane and particulate autogenous bone: The effect of smoking and membrane exposure. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: 825 â 830.
dc.identifier.citedreferenceFelice P, Marchetti C, Iezzi G, et al. Vertical ridge augmentation of the atrophic posterior mandible with interpositional bloc grafts: Bone from the iliac crest vs. bovine anorganic bone. Clinical and histological results up to one year after loading from a randomizedâ controlled clinical trial. Clin Oral Implants Res 2009; 20: 1386 â 1393.
dc.identifier.citedreferenceRothamel D, Schwarz F, Herten M, et al. Vertical ridge augmentation using xenogenous bone blocks: A histomorphometric study in dogs. Int J Oral Maxillofac Implants 2009; 24: 243 â 250.
dc.identifier.citedreferenceLanger B, Langer L, Sullivan RM. Vertical ridge augmentation procedure using guided bone regeneration, demineralized freezeâ dried bone allograft, and miniscrews: 4â to 13â year observations on loaded implants. Int J Periodontics Restorative Dent 2010; 30: 227 â 235.
dc.identifier.citedreferenceUrban IA, Jovanovic SA, Lozada JL. Vertical ridge augmentation using guided bone regeneration (GBR) in three clinical scenarios prior to implant placement: A retrospective study of 35 patients 12 to 72 months after loading. Int J Oral Maxillofac Implants 2009; 24: 502 â 510.
dc.identifier.citedreferencePjetursson BE, Tan WC, Zwahlen M, Lang NP. A systematic review of the success of sinus floor elevation and survival of implants inserted in combination with sinus floor elevation. J Clin Periodontol 2008; 35 ( Suppl. 8 ): 216 â 240.
dc.identifier.citedreferenceLundgren S, Andersson S, Gualini F, Sennerby L. Bone reformation with sinus membrane elevation: A new surgical technique for maxillary sinus floor augmentation. Clin Implant Dent Relat Res 2004; 6: 165 â 173.
dc.identifier.citedreferenceXu H, Shimizu Y, Ooya K. Histomorphometric study of the stability of newly formed bone after elevation of the floor of the maxillary sinus. Br J Oral Maxillofac Surg 2005; 43: 493 â 499.
dc.identifier.citedreferenceKim HR, Choi BH, Xuan F, Jeong SM. The use of autologous venous blood for maxillary sinus floor augmentation in conjunction with sinus membrane elevation: An experimental study. Clin Oral Implants Res 2010; 21: 346 â 349.
dc.identifier.citedreferenceHatano N, Sennerby L, Lundgren S. Maxillary sinus augmentation using sinus membrane elevation and peripheral venous blood for implantâ supported rehabilitation of the atrophic posterior maxilla: Case series. Clin Implant Dent Relat Res 2007; 9: 150 â 155.
dc.identifier.citedreferenceCricchio G, Sennerby L, Lundgren S. Sinus bone formation and implant survival after sinus membrane elevation and implant placement: A 1â to 6â year followâ up study. Clin Oral Implants Res 2011; 22: 1200 â 1212.
dc.identifier.citedreferenceZijderveld SA, Schulten EA, Aartman IH, ten Bruggenkate CM. Longâ term changes in graft height after maxillary sinus floor elevation with different grafting materials: Radiographic evaluation with a minimum followâ up of 4.5 years. Clin Oral Implants Res 2009; 20: 691 â 700.
dc.identifier.citedreferenceMaiorana C, Sigurtà D, Mirandola A, Garlini G, Santoro F. Sinus elevation with alloplasts or xenogenic materials and implants: An upâ toâ 4â year clinical and radiologic followâ up. Int J Oral Maxillofac Implants 2006; 21: 426 â 432.
dc.identifier.citedreferenceCordaro L, Bosshardt DD, Palattella P, Rao W, Serino G, Chiapasco M. Maxillary sinus grafting with Bioâ Oss or Straumann Bone Ceramic: Histomorphometric results from a randomized controlled multicenter clinical trial. Clin Oral Implants Res 2008; 19: 796 â 803.
dc.identifier.citedreferenceNkenke E, Stelzle F. Clinical outcomes of sinus floor augmentation for implant placement using autogenous bone or bone substitutes: A systematic review. Clin Oral Implants Res 2009; 20 ( Suppl. 4 ): 124 â 133.
dc.identifier.citedreferenceLambert F, Léonard A, Drion P, Sourice S, Layrolle P, Rompen E. Influence of spaceâ filling materials in subantral bone augmentation: Blood clot vs. autogenous bone chips vs. bovine hydroxyapatite. Clin Oral Implants Res 2011; 22: 538 â 545.
dc.identifier.citedreferenceSchallhorn RG. Present status of osseous grafting procedures. J Periodontol 1977; 48: 570 â 576.
dc.identifier.citedreferenceBowers GM, Granet M, Stevens M, et al. Histologic evaluation of new attachment in humans. A preliminary report. J Periodontol 1985; 56: 381 â 396.
dc.identifier.citedreferenceBowers GM, Schallhorn RG, Mellonig JT. Histologic evaluation of new attachment in human intrabony defects. A literature review. J Periodontol 1982; 53: 509 â 514.
dc.identifier.citedreferenceBowers GM, Chadroff B, Carnevale R, et al. Histologic evaluation of new attachment apparatus formation in humans. Part III. J Periodontol 1989; 60: 683 â 693.
dc.identifier.citedreferenceBowers GM, Chadroff B, Carnevale R, et al. Histologic evaluation of new attachment apparatus formation in humans. Part II. J Periodontol 1989; 60: 675 â 682.
dc.identifier.citedreferenceBowers GM, Chadroff B, Carnevale R, et al. Histologic evaluation of new attachment apparatus formation in humans. Part I. J Periodontol 1989; 60: 664 â 674.
dc.identifier.citedreferenceCortellini P, Tonetti MS. Focus on intrabony defects: Guided tissue regeneration. Periodontol 2000 2000; 22: 104 â 132.
dc.identifier.citedreferenceSuaid FA, Macedo GO, Novaes AB, et al. The bone formation capabilities of the anorganic bone matrixâ synthetic cellâ binding peptide 15 grafts in an animal periodontal model: A histologic and histomorphometric study in dogs. J Periodontol 2010; 81: 594 â 603.
dc.identifier.citedreferenceWallowy P, Dorow A. Lateral augmentation of the maxilla and mandible using framework technique with allogeneic bone grafts. J Oral Implantol 2012; 38: 661 â 667.
dc.identifier.citedreferenceIasella JM, Greenwell H, Miller RL, et al. Ridge preservation with freezeâ dried bone allograft and a collagen membrane compared to extraction alone for implant site development: A clinical and histologic study in humans. J Periodontol 2003; 74: 990 â 999.
dc.identifier.citedreferenceMellonig JT, Griffiths G, Mathys E, Spitznagel J Jr. Treatment of the failing implant: Case reports. Int J Periodontics Restorative Dent 1995; 15: 384 â 395.
dc.identifier.citedreferenceFroum SJ, Wallace SS, Elian N, Cho SC, Tarnow DP. Comparison of mineralized cancellous bone allograft (Puros) and anorganic bovine bone matrix (Bioâ Oss) for sinus augmentation: Histomorphometry at 26 to 32 weeks after grafting. Int J Periodontics Restorative Dent 2006; 26: 543 â 551.
dc.identifier.citedreferenceReynolds MA, Aichelmannâ Reidy ME, Branchâ Mays GL. Regeneration of periodontal tissue: Bone replacement grafts. Dent Clin North Am 2010; 54: 55 â 71.
dc.identifier.citedreferenceRosenberg E, Rose LF. Biologic and clinical considerations for autografts and allografts in periodontal regeneration therapy. Dent Clin North Am 1998; 42: 467 â 490.
dc.identifier.citedreferenceNasr HF, Aichelmannâ Reidy ME, Yukna RA. Bone and bone substitutes. Periodontol 2000 1999; 19: 74 â 86.
dc.identifier.citedreferenceLindhe J, Lang NP, Karring T. Clinical Periodontology and Implant Dentistry. Oxford, UK: Blackwell Munksgaard 2008;2:v.
dc.identifier.citedreferenceCushing M. Autogenous red marrow grafts: Their potential for induction of osteogenesis. J Periodontol 1969; 40: 492 â 497.
dc.identifier.citedreferenceHalliday DG. The grafting of newly formed autogenous bone in the treatment of osseous defects. J Periodontol 1969; 40: 511 â 514.
dc.identifier.citedreferenceRosen PS, Reynolds MA, Bowers GM. The treatment of intrabony defects with bone grafts. Periodontol 2000 2000; 22: 88 â 103.
dc.identifier.citedreferenceBrunsvold MA, Mellonig JT. Bone grafts and periodontal regeneration. Periodontol 2000 1993; 1: 80 â 91.
dc.identifier.citedreferenceDragoo MR, Sullivan HC. A clinical and histological evaluation of autogenous iliac bone grafts in humans. II. External root resorption. J Periodontol 1973; 44: 614 â 625.
dc.identifier.citedreferenceSchallhorn RG. Postoperative problems associated with iliac transplants. J Periodontol 1972; 43: 3 â 9.
dc.identifier.citedreferenceSimonds RJ, Holmberg SD, Hurwitz RL, et al. Transmission of human immunodeficiency virus type 1 from a seronegative organ and tissue donor. N Engl J Med 1992; 326: 726 â 732.
dc.identifier.citedreferenceBuck BE, Resnick L, Shah SM, Malinin TI. Human immunodeficiency virus cultured from bone. Implications for transplantation. Clin Orthop Relat Res 1990; 251: 249 â 253.
dc.identifier.citedreferenceCostain DJ, Crawford RW. Freshâ frozen vs. irradiated allograft bone in orthopaedic reconstructive surgery. Injury 2009; 40: 1260 â 1264.
dc.identifier.citedreferenceUrist MR. Bone: Formation by autoinduction. Science 1965; 150: 893 â 899.
dc.identifier.citedreferenceUrist MR, Strates BS. Bone morphogenetic protein. J Dent Res 1971; 50: 1392 â 1406.
dc.identifier.citedreferenceSchwartz Z, Somers A, Mellonig JT, et al. Addition of human recombinant bone morphogenetic proteinâ 2 to inactive commercial human demineralized freezeâ dried bone allograft makes an effective composite bone inductive implant material. J Periodontol 1998; 69: 1337 â 1345.
dc.identifier.citedreferenceWang HL, Cooke J. Periodontal regeneration techniques for treatment of periodontal diseases. Dent Clin North Am 2005; 49: 637 â 659, vii.
dc.identifier.citedreferenceAbbott LC, Schottstaedt ER, Saunders JB, Bost FC. The evaluation of cortical and cancellous bone as grafting material; A clinical and experimental study. J Bone Joint Surg Am 1947; 29: 381 â 414.
dc.identifier.citedreferenceStevenson S, Emery SE, Goldberg VM. Factors affecting bone graft incorporation. Clin Orthop Relat Res 1996; 324: 66 â 74.
dc.identifier.citedreferenceTorricelli P, Fini M, Rocca M, Giavaresi G, Giardino R. Xenogenic demineralized bone matrix: Osteoinduction and influence of associated skeletal defects in heterotopic bone formation in rats. Int Orthop 1999; 23: 178 â 181.
dc.identifier.citedreferenceBelay ED, Schonberger LB. The public health impact of prion diseases. Annu Rev Public Health 2005; 26: 191 â 212.
dc.identifier.citedreferenceReynolds MA, Aichelmannâ Reidy ME, Branchâ Mays GL, Gunsolley JC. The efficacy of bone replacement grafts in the treatment of periodontal osseous defects. A systematic review. Ann Periodontol 2003; 8: 227 â 265.
dc.identifier.citedreferenceButz F, Bächle M, Ofer M, Marquardt K, Kohal RJ. Sinus augmentation with bovine hydroxyapatite/synthetic peptide in a sodium hyaluronate carrier (PepGen Pâ 15 Putty): A clinical investigation of different healing times. Int J Oral Maxillofac Implants 2011; 26: 1317 â 1323.
dc.identifier.citedreferenceChoo T, Marino V, Bartold PM. Effect of PDGFâ BB and betaâ tricalcium phosphate (βâ TCP) on bone formation around dental implants: A pilot study in sheep. Clin Oral Implants Res 2013; 24: 158 â 166.
dc.identifier.citedreferenceNevins M, Nevins ML, Karimbux N, Kim SW, Schupbach P, Kim DM. The combination of purified recombinant human plateletâ derived growth factorâ BB and equine particulate bone graft for periodontal regeneration. J Periodontol 2012; 83: 565 â 573.
dc.identifier.citedreferenceBashutski J, Oh TJ, Chan HL, Wang HL. Guided tissue regeneration: A decisionâ making model. J Int Acad Periodontol 2011; 13: 48 â 57.
dc.identifier.citedreferenceShirmohammadi A, Chitsazi MT, Lafzi A. A clinical comparison of autogenous bone graft with and without autogenous periodontal ligament graft in the treatment of periodontal intrabony defects. Clin Oral Investig 2009; 13: 279 â 286.
dc.identifier.citedreferenceCamelo MC, Nevins ML, Nevins M. Treatment of Class II furcations with autogenous bone grafts and eâ PTFE membranes. Int J Periodontics Restorative Dent 2000; 20: 233 â 243.
dc.identifier.citedreferenceMarkou N, Pepelassi E, Vavouraki H, et al. Treatment of periodontal endosseous defects with plateletâ rich plasma alone or in combination with demineralized freezeâ dried bone allograft: A comparative clinical trial. J Periodontol 2009; 80: 1911 â 1919.
dc.identifier.citedreferenceGurinsky BS, Mills MP, Mellonig JT. Clinical evaluation of demineralized freezeâ dried bone allograft and enamel matrix derivative versus enamel matrix derivative alone for the treatment of periodontal osseous defects in humans. J Periodontol 2004; 75: 1309 â 1318.
dc.identifier.citedreferenceNevins M, Camelo M, Nevins ML, Schenk RK, Lynch SE. Periodontal regeneration in humans using recombinant human plateletâ derived growth factorâ BB (rhPDGFâ BB) and allogenic bone. J Periodontol 2003; 74: 1282 â 1292.
dc.identifier.citedreferenceTrejo PM, Weltman R, Caffesse R. Treatment of intraosseous defects with bioabsorbable barriers alone or in combination with decalcified freezeâ dried bone allograft: A randomized clinical trial. J Periodontol 2000; 71: 1852 â 1861.
dc.identifier.citedreferenceTsao YP, Neiva R, Alâ Shammari K, Oh TJ, Wang HL. Effects of a mineralized human cancellous bone allograft in regeneration of mandibular Class II furcation defects. J Periodontol 2006; 77: 416 â 425.
dc.identifier.citedreferenceDe Leonardis D, Garg AK, Pedrazzoli V, Pecora GE. Clinical evaluation of the treatment of Class II furcation involvements with bioabsorbable barriers alone or associated with demineralized freezeâ dried bone allografts. J Periodontol 1999; 70: 8 â 12.
dc.identifier.citedreferenceVastardis S, Yukna RA, Mayer ET, Atkinson BL. Periodontal regeneration with peptideâ enhanced anorganic bone matrix in particulate and putty form in dogs. J Periodontol 2005; 76: 1690 â 1696.
dc.identifier.citedreferenceDöri F, Kovács V, Arweiler NB, et al. Effect of plateletâ rich plasma on the healing of intrabony defects treated with an anorganic bovine bone mineral: A pilot study. J Periodontol 2009; 80: 1599 â 1605.
dc.identifier.citedreferenceSallum EA, Pimentel SP, Saldanha JB, et al. Enamel matrix derivative and guided tissue regeneration in the treatment of dehiscenceâ type defects: A histomorphometric study in dogs. J Periodontol 2004; 75: 1357 â 1363.
dc.identifier.citedreferenceDöri F, Huszár T, Nikolidakis D, Arweiler NB, Gera I, Sculean A. Effect of plateletâ rich plasma on the healing of intrabony defects treated with an anorganic bovine bone mineral and expanded polytetrafluoroethylene membranes. J Periodontol 2007; 78: 983 â 990.
dc.identifier.citedreferenceHanna R, Trejo PM, Weltman RL. Treatment of intrabony defects with bovineâ derived xenograft alone and in combination with plateletâ rich plasma: A randomized clinical trial. J Periodontol 2004; 75: 1668 â 1677.
dc.identifier.citedreferenceKaigler D, Avila G, Wisnerâ Lynch L, et al. Plateletâ derived growth factor applications in periodontal and periâ implant bone regeneration. Expert Opin Biol Ther 2011; 11: 375 â 385.
dc.identifier.citedreferencePietruska M, Pietruski J, Nagy K, Brecx M, Arweiler NB, Sculean A. Fourâ year results following treatment of intrabony periodontal defects with an enamel matrix derivative alone or combined with a biphasic calcium phosphate. Clin Oral Investig 2012; 16: 1191 â 1197.
dc.identifier.citedreferenceBrown GD, Mealey BL, Nummikoski PV, Bifano SL, Waldrop TC. Hydroxyapatite cement implant for regeneration of periodontal osseous defects in humans. J Periodontol 1998; 69: 146 â 157.
dc.identifier.citedreferenceKothiwale SV, Anuroopa P, Gajiwala AL. A clinical and radiological evaluation of DFDBA with amniotic membrane versus bovine derived xenograft with amniotic membrane in human periodontal grade II furcation defects. Cell Tissue Bank 2009; 10: 317 â 326.
dc.identifier.citedreferenceHarris RJ. A clinical evaluation of an allograft combined with a bioabsorbable membrane versus an alloplast/allograft composite graft combined with a bioabsorbable membrane. 100 consecutively treated cases. J Periodontol 1998; 69: 536 â 546.
dc.identifier.citedreferenceHall EE, Meffert RM, Hermann JS, Mellonig JT, Cochran DL. Comparison of bioactive glass to demineralized freezeâ dried bone allograft in the treatment of intrabony defects around implants in the canine mandible. J Periodontol 1999; 70: 526 â 535.
dc.identifier.citedreferenceMellonig JT, Triplett RG. Guided tissue regeneration and endosseous dental implants. Int J Periodontics Restorative Dent 1993; 13: 108 â 119.
dc.identifier.citedreferenceRoosâ JansÃ¥ker AM, Renvert H, Lindahl C, Renvert S. Surgical treatment of periâ implantitis using a bone substitute with or without a resorbable membrane: A prospective cohort study. J Clin Periodontol 2007; 34: 625 â 632.
dc.identifier.citedreferenceAljateeli M, Fu JH, Wang HL. Managing periâ implant bone loss: Current understanding. Clin Implant Dent Relat Res 2012; 14 ( Suppl. 1 ): e109 â e118.
dc.identifier.citedreferenceSchwarz F, Herten M, Sager M, Bieling K, Sculean A, Becker J. Comparison of naturally occurring and ligatureâ induced periâ implantitis bone defects in humans and dogs. Clin Oral Implants Res 2007; 18: 161 â 170.
dc.identifier.citedreferenceKhoury F, Buchmann R. Surgical therapy of periâ implant disease: A 3â year followâ up study of cases treated with 3 different techniques of bone regeneration. J Periodontol 2001; 72: 1498 â 1508.
dc.identifier.citedreferenceRomanos GE, Nentwig GH. Regenerative therapy of deep periâ implant infrabony defects after CO2 laser implant surface decontamination. Int J Periodontics Restorative Dent 2008; 28: 245 â 255.
dc.identifier.citedreferenceTawil G, Elâ Ghoule G, Mawla M. Clinical evaluation of a bilayered collagen membrane (Bioâ Gide) supported by autografts in the treatment of bone defects around implants. Int J Oral Maxillofac Implants 2001; 16: 857 â 863.
dc.identifier.citedreferenceSchwarz F, Sculean A, Bieling K, Ferrari D, Rothamel D, Becker J. Twoâ year clinical results following treatment of periâ implantitis lesions using a nanocrystalline hydroxyapatite or a natural bone mineral in combination with a collagen membrane. J Clin Periodontol 2008; 35: 80 â 87.
dc.identifier.citedreferenceSchwarz F, Sahm N, Schwarz K, Becker J. Impact of defect configuration on the clinical outcome following surgical regenerative therapy of periâ implantitis. J Clin Periodontol 2010; 37: 449 â 455.
dc.identifier.citedreferenceLu SY, Huang CC. Resolution of an active periâ implantitis in a chronic steroid user by bone augmentation with PepGen Pâ 15 and a barrier membrane. J Oral Implantol 2007; 33: 280 â 287.
dc.identifier.citedreferenceTözüm TF, Keçeli HG. Treatment of periâ implant defect with modified sandwich bone augmentation. Case report and followâ up. N Y State Dent J 2008; 74: 52 â 57.
dc.identifier.citedreferenceDeppe H, Horch HH, Neff A. Conventional versus CO2 laserâ assisted treatment of periâ implant defects with the concomitant use of pureâ phase betaâ tricalcium phosphate: A 5â year clinical report. Int J Oral Maxillofac Implants 2007; 22: 79 â 86.
dc.identifier.citedreferenceSahrmann P, Attin T, Schmidlin PR. Regenerative treatment of periâ implantitis using bone substitutes and membrane: A systematic review. Clin Implant Dent Relat Res 2011; 13: 46 â 57.
dc.identifier.citedreferenceKim YK, Yun PY, Lee HJ, Ahn JY, Kim SG. Ridge preservation of the molar extraction socket using collagen sponge and xenogeneic bone grafts. Implant Dent 2011; 20: 267 â 272.
dc.identifier.citedreferenceBarone A, Aldini NN, Fini M, Giardino R, Calvo Guirado JL, Covani U. Xenograft versus extraction alone for ridge preservation after tooth removal: A clinical and histomorphometric study. J Periodontol 2008; 79: 1370 â 1377.
dc.identifier.citedreferenceSisti A, Canullo L, Mottola MP, Covani U, Barone A, Botticelli D. Clinical evaluation of a ridge augmentation procedure for the severely resorbed alveolar socket: Multicenter randomized controlled trial, preliminary results. Clin Oral Implants Res 2012; 23: 526 â 535
dc.identifier.citedreferenceMisch CE, Suzuki JB. Tooth extraction, socket grafting, and barrier membrane bone regeneration. In: Misch CE, ed. Contemporary Implant Dentistry, 3rd ed. St. Louis: Mosby; 2008: 870 â 904.
dc.identifier.citedreferenceAraújo MG, Lindhe J. Socket grafting with the use of autologous bone: An experimental study in the dog. Clin Oral Implants Res 2011; 22: 9 â 13.
dc.identifier.citedreferenceAraújo MG, Lindhe J. Ridge preservation with the use of Bioâ Oss collagen: A 6â month study in the dog. Clin Oral Implants Res 2009; 20: 433 â 440.
dc.identifier.citedreferenceArtzi Z, Weinreb M, Givol N, et al. Biomaterial resorption rate and healing site morphology of inorganic bovine bone and betaâ tricalcium phosphate in the canine: A 24â month longitudinal histologic study and morphometric analysis. Int J Oral Maxillofac Implants 2004; 19: 357 â 368.
dc.identifier.citedreferenceWang HL, Tsao YP. Histologic evaluation of socket augmentation with mineralized human allograft. Int J Periodontics Restorative Dent 2008; 28: 231 â 237.
dc.identifier.citedreferenceVance GS, Greenwell H, Miller RL, Hill M, Johnston H, Scheetz JP. Comparison of an allograft in an experimental putty carrier and a bovineâ derived xenograft used in ridge preservation: A clinical and histologic study in humans. Int J Oral Maxillofac Implants 2004; 19: 491 â 497.
dc.identifier.citedreferenceBashara H, Wohlfahrt JC, Polyzois I, Lyngstadaas SP, Renvert S, Claffey N. The effect of permanent grafting materials on the preservation of the buccal bone plate after tooth extraction: An experimental study in the dog. Clin Oral Implants Res 2012; 23: 911 â 917.
dc.identifier.citedreferenceMardas N, Chadha V, Donos N. Alveolar ridge preservation with guided bone regeneration and a synthetic bone substitute or a bovineâ derived xenograft: A randomized, controlled clinical trial. Clin Oral Implants Res 2010; 21: 688 â 698.
dc.identifier.citedreferenceFu JH, Wang HL. Horizontal bone augmentation: The decision tree. Int J Periodontics Restorative Dent 2011; 31: 429 â 436.
dc.identifier.citedreferenceBarone A, Varanini P, Orlando B, Tonelli P, Covani U. Deepâ frozen allogeneic onlay bone grafts for reconstruction of atrophic maxillary alveolar ridges: A preliminary study. J Oral Maxillofac Surg 2009; 67: 1300 â 1306.
dc.identifier.citedreferenceSchwarz F, Ferrari D, Balic E, Buser D, Becker J, Sager M. Lateral ridge augmentation using equineâ and bovineâ derived cancellous bone blocks: A feasibility study in dogs. Clin Oral Implants Res 2010; 21: 904 â 912.
dc.identifier.citedreferenceGreenberg JA, Wiltz MJ, Kraut RA. Augmentation of the anterior maxilla with intraoral onlay grafts for implant placement. Implant Dent 2012; 21: 21 â 24.
dc.identifier.citedreferenceCordaro L, Amadé DS, Cordaro M. Clinical results of alveolar ridge augmentation with mandibular block bone grafts in partially edentulous patients prior to implant placement. Clin Oral Implants Res 2002; 13: 103 â 111.
dc.identifier.citedreferenceSpinâ Neto R, Stavropoulos A, Dias Pereira LA, Marcantonio E Jr., Wenzel A. Fate of autologous and freshâ frozen allogeneic block bone grafts used for ridge augmentation. A CBCTâ based analysis. Clin Oral Implants Res 2013; 24: 167 â 173.
dc.identifier.citedreferenceDemarosi F, Leghissa GC, Sardella A, Lodi G, Carrassi A. Localised maxillary ridge expansion with simultaneous implant placement: A case series. Br J Oral Maxillofac Surg 2009; 47: 535 â 540.
dc.identifier.citedreferenceSethi A, Kaus T. Maxillary ridge expansion with simultaneous implant placement: 5â year results of an ongoing clinical study. Int J Oral Maxillofac Implants 2000; 15: 491 â 499.
dc.identifier.citedreferenceChiapasco M, Casentini P, Zaniboni M. Bone augmentation procedures in implant dentistry. Int J Oral Maxillofac Implants 2009; 24 ( Suppl ): 237 â 259.
dc.identifier.citedreferenceEsposito M, Grusovin MG, Felice P, Karatzopoulos G, Worthington HV, Coulthard P. The efficacy of horizontal and vertical bone augmentation procedures for dental implants: A Cochrane systematic review. Eur J Oral Implantology 2009; 2: 167 â 184.
dc.identifier.citedreferencePieri F, Corinaldesi G, Fini M, Aldini NN, Giardino R, Marchetti C. Alveolar ridge augmentation with titanium mesh and a combination of autogenous bone and anorganic bovine bone: A 2â year prospective study. J Periodontol 2008; 79: 2093 â 2103.
dc.identifier.citedreferenceBarboza EP, Stutz B, Ferreira VF, Carvalho W. Guided bone regeneration using nonexpanded polytetrafluoroethylene membranes in preparation for dental implant placements â A report of 420 cases. Implant Dent 2010; 19: 2 â 7.
dc.identifier.citedreferenceFiorellini JP, Kim DM, Nakajima Y, Weber HP. Osseointegration of titanium implants following guided bone regeneration using expanded polytetrafluoroethylene membrane and various bone fillers. Int J Periodontics Restorative Dent 2007; 27: 287 â 294.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.