Show simple item record

Two‐step continuous production of monodisperse colloidal ellipsoids at rates of one gram per day

dc.contributor.authorFerrar, Joseph A.
dc.contributor.authorPavlovsky, Leonid
dc.contributor.authorViges, Eric
dc.contributor.authorLiu, Yanliang
dc.contributor.authorSolomon, Michael J.
dc.date.accessioned2018-02-05T16:36:30Z
dc.date.available2019-04-01T15:01:10Zen
dc.date.issued2018-02
dc.identifier.citationFerrar, Joseph A.; Pavlovsky, Leonid; Viges, Eric; Liu, Yanliang; Solomon, Michael J. (2018). "Two‐step continuous production of monodisperse colloidal ellipsoids at rates of one gram per day." AIChE Journal 64(2): 697-707.
dc.identifier.issn0001-1541
dc.identifier.issn1547-5905
dc.identifier.urihttps://hdl.handle.net/2027.42/141576
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.othercomplex fluids
dc.subject.othermaterials
dc.subject.otherpolymer processing
dc.subject.othercolloids
dc.titleTwo‐step continuous production of monodisperse colloidal ellipsoids at rates of one gram per day
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141576/1/aic16009_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141576/2/aic16009.pdf
dc.identifier.doi10.1002/aic.16009
dc.identifier.sourceAIChE Journal
dc.identifier.citedreferenceShah AA, Schultz B, Zhang W, Glotzer SC, Solomon MJ. Actuation of shape‐memory colloidal fibres of Janus ellipsoids. Nat Mater. 2014; 14 ( 1 ): 117 – 124.
dc.identifier.citedreferenceSacanna S, Irvine WTM, Rossi L, Pine DJ. Lock and key colloids through polymerization‐induced buckling of monodisperse silicon oil droplets. Soft Matter. 2011; 7 ( 5 ): 1631 – 1634.
dc.identifier.citedreferencevan Carlos MK, Johnson PM, van Jan EAM, den M, van Alfons B. Synthesis of monodisperse high‐aspect‐ratio colloidal silicon and silica rods. Langmuir. 2004; 20 ( 25 ): 11201 – 11207.
dc.identifier.citedreferenceRolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, DeSimone JM. Direct fabrication and harvesting of monodisperse, shape‐specific nanobiomaterials. J Am Chem Soc. 2005; 127 ( 28 ): 10096 – 10100.
dc.identifier.citedreferenceJoselevich E, Dai H, Liu J, Hata K, H, Alan W. Carbon nanotube synthesis and organization. In: Jorio A, Dresselhaus G, Dresselhaus MS, editors. Carbon Nanotubes, Topics in Applied Physics, vol 111. Berlin, Heidelberg: Springer, 2008: 101 – 165.
dc.identifier.citedreferenceShehzad K, Hussain T, Shah AT, Mujahid A, Ahmad MN, Sagar R. U R, Anwar T, Nasir S, Ali A. Effect of the carbon nanotube size dispersity on the electrical properties and pressure sensing of the polymer composites. J Mater Sci. 2016; 51 ( 24 ): 11014 – 11020.
dc.identifier.citedreferenceDonev A, Stillinger FH, Chaikin PM, Torquato S. Unusually dense crystal packings of ellipsoids. Phys Rev Lett. 2004; 92 ( 25 Pt 1 ): 255506
dc.identifier.citedreferenceFrenkel D, Mulder BM. The hard ellipsoid‐of‐revolution fluid. Mol Phys. 1985; 55 ( 5 ): 1171 – 1192.
dc.identifier.citedreferenceKuijk A, van AB, Imhof A. Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio. J Am Chem Soc. 2011; 133 ( 8 ): 2346 – 2349.
dc.identifier.citedreferenceLele PP, Furst EM. Assemble‐and‐stretch method for creating two‐ and three‐dimensional structures of anisotropic particles. Langmuir. 2009; 25 ( 16 ): 8875 – 8878.
dc.identifier.citedreferenceZhang Z, Pfleiderer P, Schofield AB, Clasen C, Vermant J. Synthesis and directed self‐assembly of patterned anisometric polymeric particles. J Am Chem Soc. 2011; 133 ( 3 ): 392 – 395.
dc.identifier.citedreferenceHo CC, Keller A, Odell JA, Ottewill RH. Preparation of monodisperse ellipsoidal polystyrene particles. Colloid Polym Sci. 1993; 271 ( 5 ): 469 – 479.
dc.identifier.citedreferenceMohraz A, Solomon MJ. Direct visualization of colloidal rod assembly by confocal microscopy. Langmuir. 2005; 21 ( 12 ): 5298 – 5306.
dc.identifier.citedreferenceKeville KM, Caruthers JM, Franses EI. Characterization of dimensions of ellipsoidal microparticles via electron microscopy. J Microsc. 1986; 142: 327 – 340.
dc.identifier.citedreferenceCrassous JJ, Mihut AM, Wernersson E, Pfleiderer P, Vermant J, Linse P, Schurtenberger P. Field‐induced assembly of colloidal ellipsoids into well‐defined microtubules. Nat Commun. 2014; 5: 5516
dc.identifier.citedreferenceMadivala B, Vandebril S, Fransaer J, Vermant J. Exploiting particle shape in solid stabilized emulsions. Soft Matter. 2009; 5 ( 8 ): 1717 – 1727.
dc.identifier.citedreferenceMadivala B, Fransaer J, Vermant J. Self‐assembly and rheology of ellipsoidal particles at interfaces. Langmuir. 2009; 25 ( 5 ): 2718 – 2728.
dc.identifier.citedreferencePalangetic L, Feldman K, Schaller R, Kalt R, Caseri WR, Vermant J. From near hard spheres to colloidal surfboards. Faraday Discuss. 2016; 191: 325 – 349.
dc.identifier.citedreferenceShah AA, Kang H, Kohlstedt KL, Ahn KH, Glotzer SC, Monroe CW, Solomon MJ. Liquid crystal order in colloidal suspensions of spheroidal particles by direct current electric field assembly. Small. 2012; 8 ( 10 ): 1551 – 1562.
dc.identifier.citedreferenceSiemann U. Solvent cast technology – a versatile tool for thin film production. In: Stribeck N, Smarsly B, editors. Scattering Methods and the Properties of Polymer Materials. Progress in Colloid and Polymer Science, vol. 130. Berlin, Heidelberg: Springer, 2005: 1 – 14.
dc.identifier.citedreferencePenwell RC, Chow TS. Minimizing curl induced upon drying layered solvent coated films. Polym Eng Sci. 1985; 25 ( 6 ): 367 – 373.
dc.identifier.citedreferenceMacosko CW. Rheology: Principles, Measurements, and Applications, 1st ed. New York: Wiley‐VCH, 1994.
dc.identifier.citedreferenceDelaby I, Ernst B, Froelich D, Muller R. Droplet deformation in immiscible polymer blends during transient uniaxial elongational flow. Polym Eng Sci. 1996; 36 ( 12 ): 1627 – 1635.
dc.identifier.citedreferenceCheng Z, Chaikin PM, Russel WB, Meyer WV, Zhu J, Rogers RB, Ottewill RH. Phase diagram of hard spheres. Mater Design. 2001; 22 ( 7 ): 529 – 534.
dc.identifier.citedreferenceSolomon MJ, Spicer PT. Microstructural regimes of colloidal rod suspensions, gels, and glasses. Soft Matter. 2010; 6 ( 7 ): 1391 – 1400.
dc.identifier.citedreferenceMarlow F, Sharifi P, Brinkmann R, Mendive C. Opals: status and Prospects. Angew Chemie Int Ed. 2009; 48 ( 34 ): 6212 – 6233.
dc.identifier.citedreferenceManley S, Cipelletti L, Trappe V, Bailey AE, Christianson RJ, Gasser U, Prasad V, Segre PN, Doherty MP, Sankaran S, Jankovsky AL, Shiley B, Bowen J, Eggers J, Kurta C, Lorik T, Weitz DA. Limits to gelation in colloidal aggregation. Phys Rev Lett. 2004; 93 ( 10 ): 108302
dc.identifier.citedreferenceMohraz A, Solomon MJ. Gelation and internal dynamics of colloidal rod aggregates. J Colloid Interface Sci. 2006; 300 ( 1 ): 155 – 162.
dc.identifier.citedreferenceWilkins GMH, Spicer PT, Solomon MJ. Colloidal system to explore structural and dynamical transitions in rod networks, gels, and glasses. Langmuir. 2009; 25 ( 16 ): 8951 – 8959.
dc.identifier.citedreferencePfleiderer P, Schilling T. Simple monoclinic crystal phase in suspensions of hard ellipsoids. Phys Rev E. 2007; 75 ( 2 ): 20402
dc.identifier.citedreferenceVacha R, Frenkel D. Relation between molecular shape and the morphology of self‐assembling aggregates: a simulation study. Biophys J. 2011; 101 ( 6 ): 1432 – 1439.
dc.identifier.citedreferencePusey PN, van WM. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature. 1986; 320 ( 6060 ): 340 – 342.
dc.identifier.citedreferencePusey PN, Zaccarelli E, Valeriani C, Sanz E, Poon WCK, Cates ME. Hard spheres: crystallization and glass formation. Philos Trans R Soc London A. 2009; 367 ( 1909 ): 4993 – 5011.
dc.identifier.citedreferenceShah AA, Ganesan M, Jocz J, Solomon MJ. Direct current electric field assembly of colloidal crystals displaying reversible structural color. ACS Nano. 2014; 8 ( 8 ): 8095 – 8103.
dc.identifier.citedreferenceGlotzer SC, Solomon MJ. Anisotropy of building blocks and their assembly into complex structures. Nat Mater. 2007; 6 ( 8 ): 557 – 562.
dc.identifier.citedreferenceMock EB, Zukoski CF. Emulsion polymerization routes to chemically anisotropic particles. Langmuir. 2010; 26 ( 17 ): 13747 – 13750.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.