Show simple item record

Speciesâ specific SSR alleles for studies of hybrid cattails (Typha latifolia à T. angustifolia; Typhaceae) in North America

dc.contributor.authorSnow, Allison A.
dc.contributor.authorTravis, Steven E.
dc.contributor.authorWildová, Radka
dc.contributor.authorFér, Tomáš
dc.contributor.authorSweeney, Patricia M.
dc.contributor.authorMarburger, Joy E.
dc.contributor.authorWindels, Steven
dc.contributor.authorKubátová, Barbora
dc.contributor.authorGoldberg, Deborah E.
dc.contributor.authorMutegi, Evans
dc.date.accessioned2018-02-05T16:37:27Z
dc.date.available2018-02-05T16:37:27Z
dc.date.issued2010-12
dc.identifier.citationSnow, Allison A.; Travis, Steven E.; Wildová, Radka ; Fér, Tomáš ; Sweeney, Patricia M.; Marburger, Joy E.; Windels, Steven; Kubátová, Barbora ; Goldberg, Deborah E.; Mutegi, Evans (2010). "Speciesâ specific SSR alleles for studies of hybrid cattails (Typha latifolia à T. angustifolia; Typhaceae) in North America." American Journal of Botany 97(12): 2061-2067.
dc.identifier.issn0002-9122
dc.identifier.issn1537-2197
dc.identifier.urihttps://hdl.handle.net/2027.42/141617
dc.publisherBotanical Society of America
dc.publisherWiley Periodicals, Inc.
dc.subject.otherwetlands
dc.subject.othercattail
dc.subject.othergene flow
dc.subject.otherhybrid
dc.subject.otherintrogression
dc.subject.otherinvasive species
dc.subject.othermolecular markers
dc.subject.othermorphological traits
dc.subject.otherspeciesâ specific markers
dc.subject.otherSTRUCTURE
dc.subject.otherTypha
dc.titleSpeciesâ specific SSR alleles for studies of hybrid cattails (Typha latifolia à T. angustifolia; Typhaceae) in North America
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBotany
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109 USA
dc.contributor.affiliationotherFaculty of Agriculture, Biotechnological Centre, University of South Bohemia, Ä eské BudÄ jovice, CZâ 370 05 Czech Republic
dc.contributor.affiliationotherNational Park Service, Indiana Dunes National Lakeshore, Porter, Indiana 46304 USA
dc.contributor.affiliationotherDepartment of Biological Sciences, University of New England, Biddeford, Maine 04005 USA
dc.contributor.affiliationotherDepartment of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio 43210 USA
dc.contributor.affiliationotherInstitute of Botany, Academy of Sciences of the Czech Republic, CZâ 252 43 Průhonice, Czech Republic
dc.contributor.affiliationotherNational Park Service, Voyageurs National Park, International Falls, Minnesota 56649 USA
dc.contributor.affiliationotherDepartment of Botany, Faculty of Science, Charles University, Prague, CZâ 128 01, Czech Republic
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141617/1/ajb22061.pdf
dc.identifier.doi10.3732/ajb.1000187
dc.identifier.sourceAmerican Journal of Botany
dc.identifier.citedreferenceSelbo, S. M., and A. A. Snow. 2004. The potential for hybridization between Typha angustifolia and Typha latifolia in a constructed wetland. Aquatic Botany 78: 361 â 369.
dc.identifier.citedreferenceAngeloni, N. L., K. J. Jankowski, N. C. Tuchman, and J. J. Kelly. 2006. Effects of an invasive cattail species ( Typha à glauca ) on sediment nitrogen and microbial community composition in a freshwater wetland. Federation of European Microbiological Societies (FEMS), Microbiology Letters 263: 86 â 92.
dc.identifier.citedreferenceArnold, M. L. 1997. Oxford series in ecology and evolution: Natural hybridization and evolution. Oxford University Press, New York, New York, USA.
dc.identifier.citedreferenceBelkhir, K., P. Borsa, L. Chikhi, N. Raufast, and F. Bonhomme. 2004. GENETIX 405, logiciel sous Windows TM pour la génétique des populations [computer program]. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France.
dc.identifier.citedreferenceBoers, A. M., R. L. D. Veltman, and J. B. Zedler. 2007. Typha à glauca dominance and extended hydroperiod constrain restoration of wetland diversity. Ecological Engineering 29: 232 â 244.
dc.identifier.citedreferenceCampbell, L. G., A. A. Snow, and C. E. Ridley. 2006. Weed evolution after crop gene introgression: Greater survival and fecundity of hybrids in a new environment. Ecology Letters 9: 1198 â 1209.
dc.identifier.citedreferenceCarmichael, D. 1980. A record of environmental change during recent millenia in the Hackensack tidal marsh, New Jersey. Bulletin of the Torrey Botanical Club 107: 514 â 524.
dc.identifier.citedreferenceEllegren, H., C. R. Primmer, and B. C. Sheldon. 1995. Microsatellite evolution: Directionality or bias in locus selection. Nature Genetics 11: 360 â 362.
dc.identifier.citedreferenceEllstrand, N. C., and K. A. Schierenbeck. 2000. Hybridization as a stimulus for the evolution of invasiveness in plants? Proceedings of the National Academy of Sciences, USA 97: 7043 â 7050.
dc.identifier.citedreferenceEvanno, S., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology 14: 2611 â 2620.
dc.identifier.citedreferenceFarrer, E. C., and D. E. Goldberg. 2009. Litter drives ecosystem and plant community changes in cattail invasion. Ecological Applications 19: 398 â 412.
dc.identifier.citedreferenceGalatowitsch, S. M., N. O. Anderson, and P. D. Ascher. 1999. Invasiveness in wetland plants in temperate North America. Wetlands 19: 733 â 755.
dc.identifier.citedreferenceGrace, J. B., and J. S. Harrison. 1986. The biology of Canadian weeds. 73. Typha latifolia L., Typha angustifolia L. and Typha à glauca Godr. Canadian Journal of Plant Science 66: 361 â 379.
dc.identifier.citedreferenceHegde, S. G., J. D. Nason, J. M. Clegg, and N. C. Ellstrand. 2006. The evolution of California’s wild radish has resulted in the extinction of its progenitors. Evolution 60: 1187 â 1197.
dc.identifier.citedreferenceKuehn, M. M., J. E. Minor, and B. N. White. 1999. An examination of hybridization between the cattail species Typha latifolia and Typha angustifolia using random amplified polymorphic DNA and chloroplast DNA markers. Molecular Ecology 8: 1981 â 1990.
dc.identifier.citedreferenceKuehn, M. M., and B. N. White. 1999. Morphological analysis of genetically identified cattails Typha latifolia, Typha angustifolia, and Typha à glauca. Canadian Journal of Botany 77: 906 â 912.
dc.identifier.citedreferenceLavergne, S., and J. Molofsky. 2007. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proceedings of the National Academy of Sciences, USA 104: 3883 â 3888.
dc.identifier.citedreferenceLeps, J., and P. Smilauer. 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, UK.
dc.identifier.citedreferencePederson, D. C., D. M. Peteet, D. Kurdyla, and T. Guilderson. 2005. Medieval warming, little ice age, and European impact on the environment during the last millennium in the lower Hudson Valley, New York, USA. Quaternary Research 63: 238 â 249.
dc.identifier.citedreferencePetit, R. J., C. Bodenes, A. Ducousso, G. Roussel, and A. Kremer. 2004. Hybridization as a mechanism of invasion in oaks. New Phytologist 161: 151 â 164.
dc.identifier.citedreferencePritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945 â 959.
dc.identifier.citedreferenceRhymer, J. M., and D. S. Simberloff. 1996. Extinction by hybridization and introgression. Annual Review of Ecology and Systematics 27: 83 â 109.
dc.identifier.citedreferenceSelkoe, K. A., and R. J. Toonen. 2006. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecology Letters 9: 615 â 629.
dc.identifier.citedreferenceShih, J. G., and S. A. Finkelstein. 2008. Range dynamics and invasive tendencies in Typha latifolia and Typha angustifolia in eastern North America derived from herbarium and pollen records. Wetlands 28: 1 â 16.
dc.identifier.citedreferenceSmith, S. G. 1967. Experimental and natural hybrids in North American Typha (Typhaceae). American Midland Naturalist 78: 257 â 287.
dc.identifier.citedreferenceSmith, S. G. 2000. Typhaceae. In Flora of North America Editorial Committee [eds.], Flora of North America, vol. 22. Oxford University Press, New York, New York, USA.
dc.identifier.citedreferenceStuckey, R. L., and D. P. Salamon. 1987. Typha angustifolia in North America: Masquerading as a native. American Journal of Botany 74: 757 [abstract].
dc.identifier.citedreferenceTer Braak, C. J. F., and P. Smilauer. 1998. CANOCO reference manual and user’s guide to CANOCO for Windows: Software for canonical community ordination (version 4). Microcomputer Power, Ithaca, New York, USA.
dc.identifier.citedreferenceTravis, S. E., J. E. Marburger, S. Windels, and B. Kubátová. 2010. Hybridization dynamics of invasive cattail ( Typhaceae ) stands in the Western Great Lakes Region of North America: a molecular analysis. Journal of Ecology 98: 7 â 17.
dc.identifier.citedreferenceTsyusko, O. V., M. H. Smith, R. R. Sharitz, and T. C. Glenn. 2005. Genetic and clonal diversity of two cattail species, Typha latifolia and T. angustifolia (Typhaceae), from Ukraine. American Journal of Botany 92: 1161 â 1169.
dc.identifier.citedreferenceTsyuskoâ Omeltchenko, O. V., N. A. Schnable, M. H. Smith, and T. C. Glenn. 2003. Microsatellite loci isolated from narrowâ leaved cattail Typha angustifolia. Molecular Ecology Notes 3: 535 â 538.
dc.identifier.citedreferenceTuchman, N. C., D. J. Larkin, P. Geddes, R. Wildova, K. Jankowski, and D. Goldberg. 2009. Patterns of environmental change associated with Typha. glauca invasion in a Great Lakes coastal wetland. Wetlands 29: 964 â 975.
dc.identifier.citedreferenceVila, M., and C. M. D’Antonio. 1998. Hybrid vigor for clonal growth in Carpobrotus (Aizoaceae) in coastal California. Ecological Applications 8: 1196 â 1205.
dc.identifier.citedreferenceWeir, B. S., and C. C. Cockerham. 1984. Estimating F â statistics for the analysis of population structure. Evolution 38: 1358 â 1370.
dc.identifier.citedreferenceWoo, I., and J. B. Zedler. 2002. Can nutrients alone shift a sedge meadow towards dominance by the invasive Typha à glauca? Wetlands 22: 509 â 521.
dc.identifier.citedreferenceWright, S. 1951. The genetical structure of populations. Annals of Eugenics 15: 323 â 354.
dc.identifier.citedreferenceZhang, X., M. Tapia, J. B. Webb, Y. Huang, and S. Miao. 2008. Molecular signatures of two cattail species, Typha domingensis and Typha latifolia (Typhaceae), in South Florida. Molecular Phylogenetics and Evolution 49: 368 â 376.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.