Show simple item record

Formation of pH‐Resistant Monodispersed Polymer–Lipid Nanodiscs

dc.contributor.authorRavula, Thirupathi
dc.contributor.authorHardin, Nathaniel Z.
dc.contributor.authorRamadugu, Sudheer Kumar
dc.contributor.authorCox, Sarah J.
dc.contributor.authorRamamoorthy, Ayyalusamy
dc.date.accessioned2018-02-05T16:37:52Z
dc.date.available2019-03-01T21:00:18Zen
dc.date.issued2018-01-26
dc.identifier.citationRavula, Thirupathi; Hardin, Nathaniel Z.; Ramadugu, Sudheer Kumar; Cox, Sarah J.; Ramamoorthy, Ayyalusamy (2018). "Formation of pH‐Resistant Monodispersed Polymer–Lipid Nanodiscs." Angewandte Chemie International Edition 57(5): 1342-1345.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/141640
dc.description.abstractPolymer lipid nanodiscs are an invaluable system for structural and functional studies of membrane proteins in their near‐native environment. Despite the recent advances in the development and usage of polymer lipid nanodisc systems, lack of control over size and poor tolerance to pH and divalent metal ions are major limitations for further applications. A facile modification of a low‐molecular‐weight styrene maleic acid copolymer is demonstrated to form monodispersed lipid bilayer nanodiscs that show ultra‐stability towards divalent metal ion concentration over a pH range of 2.5 to 10. The macro‐nanodiscs (>20 nm diameter) show magnetic alignment properties that can be exploited for high‐resolution structural studies of membrane proteins and amyloid proteins using solid‐state NMR techniques. The new polymer, SMA‐QA, nanodisc is a robust membrane mimetic tool that offers significant advantages over currently reported nanodisc systems.All under control: A poor tolerance to pH and divalent metal ions and a lack of control over size are major limitations of polymer nanodiscs. A modified styrene maleimide based polymer is demonstrated to form monodispersed nanodiscs with ultrahigh stability towards divalent metal ions over a pH range of 2.5 to 10.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpolymer nanodiscs
dc.subject.othermagnetic alignment
dc.subject.otherlipid bilayers
dc.subject.otherstyrene maleimide
dc.subject.otherpH tolerance
dc.titleFormation of pH‐Resistant Monodispersed Polymer–Lipid Nanodiscs
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141640/1/anie201712017_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141640/2/anie201712017-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141640/3/anie201712017.pdf
dc.identifier.doi10.1002/anie.201712017
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceH. Qin, Y. Miao, T. A. Cross, R. Fu, J. Phys. Chem. B 2017, 121, 4799 – 4809.
dc.identifier.citedreferenceF. Hagn, M. Etzkorn, T. Raschle, G. Wagner, J. Am. Chem. Soc. 2013, 135, 1919 – 1925.
dc.identifier.citedreferenceF. Hagn, G. Wagner, J. Biomol. NMR 2015, 61, 249 – 260.
dc.identifier.citedreferenceT. H. Bayburt, S. G. Sligar, FEBS Lett. 2010, 584, 1721 – 1727.
dc.identifier.citedreferenceM. Zhang, R. Huang, R. Ackermann, S. C. Im, L. Waskell, A. Schwendeman, A. Ramamoorthy, Angew. Chem. Int. Ed. 2016, 55, 4497 – 4499; Angew. Chem. 2016, 128, 4573 – 4575.
dc.identifier.citedreferenceA. Oluwole, B. Danielczak, A. Meister, J. Babalola, C. Vargas, S. Keller, Angew. Chem. Int. Ed. 2017, 56, 1919 – 1924; Angew. Chem. 2017, 129, 1946 – 1951.
dc.identifier.citedreferenceM. C. Orwick, P. J. Judge, J. Procek, L. Lindholm, A. Graziadei, A. Engel, G. Gröbner, A. Watts, Angew. Chem. Int. Ed. 2012, 51, 4653 – 4657; Angew. Chem. 2012, 124, 4731 – 4735.
dc.identifier.citedreferenceT. Ravula, S. K. Ramadugu, G. Di Mauro, A. Ramamoorthy, Angew. Chem. Int. Ed. 2017, 56, 11466 – 11470; Angew. Chem. 2017, 129, 11624 – 11628.
dc.identifier.citedreferenceI. D. Sahu, R. Zhang, M. M. Dunagan, A. F. Craig, G. A. Lorigan, J. Phys. Chem. B 2017, 121, 5312 – 5321.
dc.identifier.citedreferenceS. C. Lee, T. J. Knowles, V. L. G. Postis, M. Jamshad, R. A. Parslow, Y.-p. Lin, A. Goldman, P. Sridhar, M. Overduin, S. P. Muench, T. R. Dafforn, Nat. Protoc. 2016, 11, 1149 – 1162.
dc.identifier.citedreferenceJ. M. Dörr, M. C. Koorengevel, M. Schafer, A. V. Prokofyev, S. Scheidelaar, E. A. van der Cruijsen, T. R. Dafforn, M. Baldus, J. A. Killian, Proc. Natl. Acad. Sci. USA 2014, 111, 18607 – 18612.
dc.identifier.citedreferenceV. S. K. Ramadugu, G. M. Di Mauro, T. Ravula, A. Ramamoorthy, Chem. Commun. 2017, 53, 10824 – 10826.
dc.identifier.citedreferenceS. V. Dvinskikh, K. Yamamoto, U. H. Durr, A. Ramamoorthy, J. Magn. Reson. 2007, 184, 228 – 235.
dc.identifier.citedreferenceT. Ravula, N. Z. Hardin, S. K. Ramadugu, A. Ramamoorthy, Langmuir 2017, 33, 10655 – 10662.
dc.identifier.citedreferenceS. H. Park, S. Berkamp, G. A. Cook, M. K. Chan, H. Viadiu, S. J. Opella, Biochemistry 2011, 50, 8983 – 8985.
dc.identifier.citedreferenceU. H. Dürr, M. Gildenberg, A. Ramamoorthy, Chem. Rev. 2012, 112, 6054 – 6074.
dc.identifier.citedreferenceE. S. Salnikov, C. Aisenbrey, F. Aussenac, O. Ouari, H. Sarrouj, C. Reiter, P. Tordo, F. Engelke, B. Bechinger, Sci. Rep. 2016, 6, 20895.
dc.identifier.citedreferenceV. Postis, S. Rawson, J. K. Mitchell, S. C. Lee, R. A. Parslow, T. R. Dafforn, S. A. Baldwin, S. P. Muench, Biochim. Biophys. Acta Biomembr. 2015, 1848, 496 – 501.
dc.identifier.citedreferenceL. S. Brown, V. Ladizhansky, Protein Sci. 2015, 24, 1333 – 1346.
dc.identifier.citedreferenceD. P. Staus, R. T. Strachan, A. Manglik, B. Pani, A. W. Kahsai, T. H. Kim, L. M. Wingler, S. Ahn, A. Chatterjee, A. Masoudi, A. C. Kruse, E. Pardon, J. Steyaert, W. I. Weis, R. S. Prosser, B. K. Kobilka, T. Costa, R. J. Lefkowitz, Nature 2016, 535, 448 – 452.
dc.identifier.citedreferenceY. Gao, E. Cao, D. Julius, Y. Cheng, Nature 2016, 534, 347 – 351.
dc.identifier.citedreferenceN. Das, D. T. Murray, T. A. Cross, Nat. Protoc. 2013, 8, 2256 – 2270.
dc.identifier.citedreferenceD. C. Rodriguez Camargo, K. J. Korshavn, A. Jussupow, K. Raltchev, D. Goricanec, M. Fleisch, R. Sarkar, K. Xue, M. Aichler, G. Mettenleiter, A. K. Walch, C. Camilloni, F. Hagn, B. Reif, A. Ramamoorthy, eLife 2017, 6, e 31226.
dc.identifier.citedreferenceR. Ahmed, B. VanSchouwen, N. Jafari, X. Ni, J. Ortega, G. Melacini, J. Am. Chem. Soc. 2017, 139, 13720 – 13734.
dc.identifier.citedreferenceG. Whitesides, J. Mathias, C. Seto, Science 1991, 254, 1312 – 1319.
dc.identifier.citedreferenceM. Sarikaya, C. Tamerler, A. K. Y. Jen, K. Schulten, F. Baneyx, Nat. Mater. 2003, 2, 577 – 585.
dc.identifier.citedreferenceI. G. Denisov, S. G. Sligar, Nat. Struct. Mol. Biol. 2016, 23, 481 – 486.
dc.identifier.citedreferenceI. G. Denisov, S. G. Sligar, Chem. Rev. 2017, 117, 4669 – 4713.
dc.identifier.citedreferenceS. C. Lee, N. L. Pollock, Biochem. Soc. Trans. 2016, 44, 1011 – 1018.
dc.identifier.citedreferenceT. H. Bayburt, Y. V. Grinkova, S. G. Sligar, Nano Lett. 2002, 2, 853 – 856.
dc.identifier.citedreferenceM. L. Nasr, D. Baptista, M. Strauss, Z. J. Sun, S. Grigoriu, S. Huser, A. Pluckthun, F. Hagn, T. Walz, J. M. Hogle, G. Wagner, Nat. Methods 2017, 14, 49 – 52.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.