Show simple item record

Are spurred cyathia a key innovation? Molecular systematics and trait evolution in the slipper spurges (Pedilanthus clade: Euphorbia, Euphorbiaceae)

dc.contributor.authorCacho, N. Ivalú
dc.contributor.authorBerry, Paul E.
dc.contributor.authorOlson, Mark E.
dc.contributor.authorSteinmann, Victor W.
dc.contributor.authorBaum, David A.
dc.date.accessioned2018-02-05T16:38:15Z
dc.date.available2018-02-05T16:38:15Z
dc.date.issued2010-03
dc.identifier.citationCacho, N. Ivalú ; Berry, Paul E.; Olson, Mark E.; Steinmann, Victor W.; Baum, David A. (2010). "Are spurred cyathia a key innovation? Molecular systematics and trait evolution in the slipper spurges (Pedilanthus clade: Euphorbia, Euphorbiaceae)." American Journal of Botany 97(3): 493-510.
dc.identifier.issn0002-9122
dc.identifier.issn1537-2197
dc.identifier.urihttps://hdl.handle.net/2027.42/141662
dc.publisherWiley Periodicals, Inc.
dc.publisherBotanical Society of America
dc.subject.otherphylogeny
dc.subject.otherdiversification rate
dc.subject.otherEuphorbiaceae
dc.subject.otherG3pdh
dc.subject.otherkey innovation
dc.subject.othermatK
dc.subject.othernectar spur
dc.subject.otherPedilanthus
dc.subject.otherEuphorbia
dc.subject.othercyathium
dc.titleAre spurred cyathia a key innovation? Molecular systematics and trait evolution in the slipper spurges (Pedilanthus clade: Euphorbia, Euphorbiaceae)
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbsecondlevelBotany
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, 830 N. University, Ann Arbor, Michigan 48109 USA
dc.contributor.affiliationotherInstituto de Biología, Universidad Nacional Autónoma de México, Departamento de Botánica, Tercer Circuito s/n, Ciudad Universitaria, Copilco, Coyoacán A.P. 70‐367, México, Distrito Federal, C.P. 04510 México
dc.contributor.affiliationotherInstituto de Ecología, A.C., Centro Regional del Bajío, Av. Lázaro Cárdenas 253, A.P. 386 61600 Pátzcuaro, Michoacán, México
dc.contributor.affiliationotherDepartment of Botany, University of Wisconsin‐Madison, 430 Lincoln Drive, Madison, Wisconsin 53706 USA
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141662/1/ajb20493.pdf
dc.identifier.doi10.3732/ajb.0900090
dc.identifier.sourceAmerican Journal of Botany
dc.identifier.citedreferenceSanderson, M. J. and M. J. Donoghue. 1994. Shifts in diversification rate with the origin of Angiosperms. Science 264: 1590 – 1593.
dc.identifier.citedreferenceLarson, A. 1994. The comparison of morphological and molecular data in phylogenetic systematics. In Schierwater B., Streit B., Wagner G. P., DeSalle R. [eds.], Molecular ecology and evolution: Applications and approaches, 371 – 390. Birkhauser Verlag, Basel, Switzerland.
dc.identifier.citedreferenceLomelí‐Sención, J. and E. Sahagún‐Godínez. 2002. Rediscovery of Pedilanthus coalcomanensis (Euphorbiaceae), a threatened endemic Mexican species. American Journal of Botany 89: 1485 – 1490.
dc.identifier.citedreferenceMaddison, D. R. and W. P. Maddison. 2002. MacClade 4.05: Analysis of phylogeny and character evolution. Sinauer, Sunderland, Massachusetts, USA.
dc.identifier.citedreferenceMaddison, W. P., P. E. Midford and S. P. Otto. 2007. Estimating a binary character’s effect on speciation and extinction. Systematic Biology 56: 701 – 710.
dc.identifier.citedreferenceMaddison, W. P. and D. R. Maddison. 2009 onward. Mesquite: A modular system for evolutionary analysis, version 2.6. Computer program and documentation, website http://mesquiteproject.org.
dc.identifier.citedreferenceMau, B., M. A. Newton and B. Larget. 1999. Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics 55: 1 – 12.
dc.identifier.citedreferenceMiller, M. A., M. T. Holder, R. Vos, P. E. Midford, T. Liebowitz, L. Chan, P. Hoover and T. Warnow. 2009. CIPRES [Cyberinfrasructure for Phylogenetic Research]. Website http://www.phylo.org/sub_sections/portal; archived at http://www.webcitation.org/5imQlJeQa.
dc.identifier.citedreferenceMinin, V., Z. Abdo, P. Joyce and J. Sullivan. 2003. Performance‐based selection of likelihood models for phylogeny estimation. Systematic Biology 52: 674 – 683.
dc.identifier.citedreferenceNeilson, W. A., T. A. Knott and D. W. Carhart [eds]. 1950. Webster’s new international dictionary of the English language, 2nd ed., unabridged. Merriam G. & C., Springfield, Massachusetts, USA.
dc.identifier.citedreferenceNyffeler, R., C. Bayer, W. S. Alverson, A. Yen, B. A. Whitlock, M. W. Chase and D. A. Baum. 2005. Phylogenetic analysis of the Malvadendrina clade (Malvaceae s.l.) based on plastid DNA sequences. Organisms, Diversity & Evolution 5: 109 – 123.
dc.identifier.citedreferenceOlson, M., J. A. Lomelí and N. I. Cacho. 2005. Extinction threat in the Pedilanthus clade ( Euphorbia, Euphorbiaceae) with special reference to the recently rediscovered E conzattii ( P. pulchellus ). American Journal of Botany 92: 634 – 641.
dc.identifier.citedreferencePrenner, G., S. D. Hopper and P. J. Rudall. 2008. Pseudanthium development in Calycopeplus paucifolius, with particular reference to the evolution of the cyathium in Euphorbieae (Euphorbiaceae–Malpighiales). Australian Systematic Botany 21: 153 – 161.
dc.identifier.citedreferencePrenner, G. and P. J. Rudall. 2007. Comparative ontogeny of the cyathium in Euphorbia (Euphorbiaceae) and its allies: Exploring the organ‐flower‐inflorescence boundary. American Journal of Botany 94: 1612 – 1629.
dc.identifier.citedreferenceRee, R. 2005. Detecting the historical signature of key innovations using stochastic models of character evolution and cladogenesis. Evolution 59: 257 – 265.
dc.identifier.citedreferenceRonquist, F. and J. P. Huelsenbeck. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572 – 1574.
dc.identifier.citedreferenceSahagún‐Godínez, E. and J. A. Lomelí‐Sención. 1997. Pedilanthus diazlunanus (Euphorbiaceae): Pollination by hymenopterans in a bird‐pollinated genus. American Journal of Botany 84: 1584 – 1587.
dc.identifier.citedreferenceSanderson, M. J. 2003. r8s: Inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19: 301 – 302.
dc.identifier.citedreferenceSanderson, M. J. and M. J. Donoghue. 1996. Reconstructing shifts in diversification rates on phylogenetic trees. Trends in Ecology & Evolution 11: 15 – 20.
dc.identifier.citedreferenceScherson, R. A., R. Vidal and M. J. Sanderson. 2008. Phylogeny, biogeography, and rates of diversification of New World Astragalus (Leguminosae) with an emphasis on South American radiations. American Journal of Botany 95: 1030 – 1039.
dc.identifier.citedreferenceSimpson, G. G. 1953. The major features of evolution. Columbia University Press, New York, New York, USA.
dc.identifier.citedreferenceSlowinski, J. B. and C. Guyer. 1993. Testing whether certain traits have caused amplified diversification: An improved method based on a model of random speciation and extinction. American Naturalist 142: 1019 – 1024.
dc.identifier.citedreferenceStamatakis, A., P. Hoover and J. Rougemont. 2008. A fast bootstrapping algorithm for the RAxML Web servers. Systematic Biology 57: 758 – 771.
dc.identifier.citedreferenceSteinmann, V. W. 2003. The submersion of Pedilanthus into Euphorbia (Euphorbiaceae). Acta Botanica Mexicana 65: 45 – 50.
dc.identifier.citedreferenceSteinmann, V. W. and J. M. Porter. 2002. Phylogenetic relationships in Euphorbieae (Euphorbiaceae) based on its and ndh F sequence data. Annals of the Missouri Botanical Garden 89: 453 – 490.
dc.identifier.citedreferenceSteinmann, V. W., B. Van Ee, P. E. Berry and J. Gutierrez. 2007. The systematic position of Cubanthus and other shrubby endemic species of Euphorbia (Euphorbiaceae) in Cuba. Anales del Jardín Botánico de Madrid 64: 123 – 133.
dc.identifier.citedreferenceStrand, A. E., J. Leebens‐Mack and B. B. Milligan. 1997. Nuclear DNA‐based markers for plant evolutionary biology. Molecular Ecology 6: 113 – 118.
dc.identifier.citedreferenceSwofford, D. L. 2002. PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer, Sunderland, Massachusetts, USA.
dc.identifier.citedreferenceTempleton, A. R. 1983. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the humans and apes. Evolution 37: 221 – 244.
dc.identifier.citedreferenceWhite, T. J., T. Bruns, S. Lee and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. [eds.], PCR protocols: A guide to methods and applications, 315 — 322. Academic Press, New York, New York, USA.
dc.identifier.citedreferenceWhittall, J. B. and S. A. Hodges. 2007. Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447: 706 – 707.
dc.identifier.citedreferenceWurdack, K. J., P. Hoffman and M. W. Chase. 2005. Molecular phylogenetic analysis of uniovulate Euphorbiaceae (Euphorbiaceae sensu stricto) using plastid rbcL and trnL‐F DNA sequences. American Journal of Botany 92: 1397 – 1420.
dc.identifier.citedreferenceZwickl, D. J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence data sets under the maximum likelihood criterion. Ph.D. dissertation, University of Texas, Austin, Texas, USA.
dc.identifier.citedreferenceBaum, D. A., S. D. Smith, A. Yen, W. S. Alverson, R. Nyffeler, B. A. Whitlock and R. L. Oldham. 2004. Phylogenetic relationships of Malvatheca (Bombacoideae and Malvoideae; Malvaceae sensu lato) as inferred from plastid DNA sequences. American Journal of Botany 91: 1863 – 1871.
dc.identifier.citedreferenceBruyns, P. V., R. J. Mapaya and T. Hedderson. 2006. A new subgeneric classification for Euphorbia (Euphorbiaceae) in southern Africa based on ITS and psbA‐trnH sequence data. Taxon 55: 397 – 420.
dc.identifier.citedreferenceCacho, N. I. 2003. Correlaciones en forma de vida y ecología con características de elementos de vaso en Pedilanthus (Euphorbiaceae), con comentarios sobre su estado de conservación actual basados en trabajo de campo reciente. Senior thesis (Biology), Universidad Nacional Autónoma de México, México D.F., México.
dc.identifier.citedreferenceCarlquist, S. 1975. Ecological strategies of xylem evolution. University of California Press, Berkeley, California, USA.
dc.identifier.citedreferenceCarlquist, S. 2001. Comparative wood anatomy: Systematic, ecological and evolutionary aspects of dicotyledon wood, 2nd ed. Springer, New York, New York, USA.
dc.identifier.citedreferenceChase, M. W. and H. H. Hillis. 1991. Silica gel: An ideal material for field preservation of leaf samples for DNA studies. Taxon 40: 215 – 220.
dc.identifier.citedreferenceDoyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochemical Bulletin 19: 11 – 15.
dc.identifier.citedreferenceDressler, R. L. 1957. The genus Pedilanthus (Euphorbiaceae). Contributions from the Gray Herbarium of Harvard University, vol 182, 1 – 188. Harvard University Press, Cambridge, Massachusetts, USA.
dc.identifier.citedreferenceDressler, R. L. and C. M. Sacamano. 1992. Pedilanthus connatus (Euphorbiaceae), especie nueva y llamativa de Jalisco. Acta Botanica Mexicana 18: 21 – 24.
dc.identifier.citedreferenceFarris, J. S., M. Källersjö, A. G. Kluge and C. Bult. 1994. Testing significance of incongruence. Cladistics 10: 315 – 319.
dc.identifier.citedreferenceGalis, F. 2001. Key innovations and radiations. In Wagner G. P. [ed.], The character concept in evolutionary biology, 583 – 607. Academic Press, San Diego, California, USA.
dc.identifier.citedreferenceHarris, J. G. and M. W. Harris. 2001. Plant identification terminology: An illustrated glossary, 2nd ed. Spring Lake Publishing, Spring Lake, Utah, USA.
dc.identifier.citedreferenceHodges, S. 1997. Floral nectar spurs and diversification. International Journal of Plant Sciences 158: S81 – S88.
dc.identifier.citedreferenceHodges, S. and M. Arnold. 1995. Spurring plant diversification: Are floral nectar spurs a key innovation? Proceedings of the Royal Society of London, B, Biological Sciences 262: 343 – 348.
dc.identifier.citedreferenceHuelsenbeck, J. P. and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754 – 755.
dc.identifier.citedreferenceHunter, J. P. 1998. Key innovations and the ecology of macroevolution. Trends in Ecology & Evolution 13: 31 – 36.
dc.identifier.citedreferenceJohnson, L. A. and D. E. Soltis. 1994. matK DNA‐sequences and phylogenetic reconstruction in Saxifragaceae s.st. Systematic Botany 19: 143 – 156.
dc.identifier.citedreferenceKay, K. M., C. Voelckel, J. Y. Yang, K. M. Hufford, D. D. Kaska and S. A. Hodges. 2006. Floral characters and species diversification. In Harder L. D., Barrett S. C. H. [eds.], Ecology and evolution of flowers, 311 – 325. Oxford University Press, New York, New York, USA.
dc.identifier.citedreferenceLarget, B. and D. L. Simon. 1999. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16: 750 – 759.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.