Show simple item record

Efficacy of Using PDGF and Xenograft With or Without Collagen Membrane for Bone Regeneration Around Immediate Implants With Induced Dehiscenceâ Type Defects: A Microcomputed Tomographic Study in Dogs

dc.contributor.authorAl‐hazmi, Bann Ahmad
dc.contributor.authorAl‐hamdan, Khalid Saleh
dc.contributor.authorAl‐rasheed, Abdulaziz
dc.contributor.authorBabay, Nadir
dc.contributor.authorWang, Hom‐lay
dc.contributor.authorAl‐hezaimi, Khalid
dc.date.accessioned2018-02-05T16:38:31Z
dc.date.available2018-02-05T16:38:31Z
dc.date.issued2013-03
dc.identifier.citationAl‐hazmi, Bann Ahmad ; Al‐hamdan, Khalid Saleh ; Al‐rasheed, Abdulaziz ; Babay, Nadir; Wang, Hom‐lay ; Al‐hezaimi, Khalid (2013). "Efficacy of Using PDGF and Xenograft With or Without Collagen Membrane for Bone Regeneration Around Immediate Implants With Induced Dehiscenceâ Type Defects: A Microcomputed Tomographic Study in Dogs." Journal of Periodontology 84(3): 371-378.
dc.identifier.issn0022-3492
dc.identifier.issn1943-3670
dc.identifier.urihttps://hdl.handle.net/2027.42/141676
dc.publisherAmerican Academy of Periodontology
dc.publisherWiley Periodicals, Inc.
dc.subject.otherBone regeneration
dc.subject.othermembranes
dc.subject.otherplateletâ derived growth factor
dc.subject.otherxâ ray microtomography
dc.subject.otherdental implants
dc.titleEfficacy of Using PDGF and Xenograft With or Without Collagen Membrane for Bone Regeneration Around Immediate Implants With Induced Dehiscenceâ Type Defects: A Microcomputed Tomographic Study in Dogs
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDivision of Periodontics, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI.
dc.contributor.affiliationotherEngineer Abdullah Bugshan Research Chair for Growth Factors and Bone Regeneration, College of Dentistry & Applied Biomedical Sciences, King Saud University, Riyadh, Saudi Arabia.
dc.contributor.affiliationotherDepartment of Periodontics and Community Dentistry, King Saud University.
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141676/1/jper0371.pdf
dc.identifier.doi10.1902/jop.2012.120146
dc.identifier.sourceJournal of Periodontology
dc.identifier.citedreferenceSimion M, Nevins M, Rocchietta I, et al. Vertical ridge augmentation using an equine block infused with recombinant human plateletâ derived growth factorâ BB: A histologic study in a canine model. Int J Periodontics Restorative Dent 2009; 29: 245 â 255.
dc.identifier.citedreferenceCovani U, Cornelini R, Calvo JL, Tonelli P, Barone A. Bone remodeling around implants placed in fresh extraction sockets. Int J Periodontics Restorative Dent 2010; 30: 601 â 607.
dc.identifier.citedreferenceAraújo MG, Sukekava F, Wennström JL, Lindhe J. Ridge alterations following implant placement in fresh extraction sockets: An experimental study in the dog. J Clin Periodontol 2005; 32: 645 â 652.
dc.identifier.citedreferenceBecker W, Becker BE. Guided tissue regeneration for implants placed into extraction sockets and for implant dehiscences: Surgical techniques and case report. Int J Periodontics Restorative Dent 1990; 10: 376 â 391.
dc.identifier.citedreferenceBecker W, Becker BE, Caffesse R. A comparison of demineralized freezeâ dried bone and autologous bone to induce bone formation in human extraction sockets. J Periodontol 1994; 65: 1128 â 1133.
dc.identifier.citedreferenceNemcovsky CE, Artzi Z, Moses O, Gelernter I. Healing of dehiscence defects at delayedâ immediate implant sites primarily closed by a rotated palatal flap following extraction. Int J Oral Maxillofac Implants 2000; 15: 550 â 558.
dc.identifier.citedreferenceGoldstein M, Boyan BD, Schwartz Z. The palatal advanced flap: A pedicle flap for primary coverage of immediately placed implants. Clin Oral Implants Res 2002; 13: 644 â 650.
dc.identifier.citedreferenceSimion M, Rocchietta I, Kim D, Nevins M, Fiorellini J. Vertical ridge augmentation by means of deproteinized bovine bone block and recombinant human plateletâ derived growth factorâ BB: A histologic study in a dog model. Int J Periodontics Restorative Dent 2006; 26: 415 â 423.
dc.identifier.citedreferenceBecker W, Lynch SE, Lekholm U, et al. A comparison of ePTFE membranes alone or in combination with plateletâ derived growth factors and insulinâ like growth factorâ I or demineralized freezeâ dried bone in promoting bone formation around immediate extraction socket implants. J Periodontol 1992; 63: 929 â 940.
dc.identifier.citedreferenceNevins M, Al Hezaimi K, Schupbach P, Karimbux N, Kim DM. Vertical ridge augmentation using an equine bone and collagen block infused with recombinant human platelet derived growth factorâ BB: A randomized singleâ masked histologic study in nonâ human primates. J Periodontol 2012; 83: 878 â 884.
dc.identifier.citedreferenceWang HL, Pappert TD, Castelli WA, Chiego DJ Jr, Shyr Y, Smith BA. The effect of plateletâ derived growth factor on the cellular response of the periodontium: An autoradiographic study on dogs. J Periodontol 1994; 65: 429 â 436.
dc.identifier.citedreferenceWang HL, Miyauchi M, Takata T. Initial attachment of osteoblasts to various guided bone regeneration membranes: An in vitro study. J Periodontal Res 2002; 37: 340 â 344.
dc.identifier.citedreferenceNevins ML, Camelo M, Schupbach P, Kim DM, Camelo JM, Nevins M. Human histologic evaluation of mineralized collagen bone substitute and recombinant plateletâ derived growth factorâ BB to create bone for implant placement in extraction socket defects at 4 and 6 months: A case series. Int J Periodontics Restorative Dent 2009; 29: 129 â 139.
dc.identifier.citedreferenceNevins ML, Reynolds MA. Tissue engineering with recombinant human plateletâ derived growth factor BB for implant site development. Compend Contin Educ Dent 2011; 32: 18, 20â 27; quiz 28, 40.
dc.identifier.citedreferenceSimion M, Rocchietta I, Dellavia C. Threeâ dimensional ridge augmentation with xenograft and recombinant human plateletâ derived growth factorâ BB in humans: Report of two cases. Int J Periodontics Restorative Dent 2007; 27: 109 â 115.
dc.identifier.citedreferenceShiratori LN, Marotti J, Yamanouchi J, Chilvarquer I, Contin I, Tortamanoâ Neto P. Measurement of buccal bone volume of dental implants by means of coneâ beam computed tomography. Clin Oral Implants Res 2012; 23: 797 â 804.
dc.identifier.citedreferenceSanchezâ Fernandez MA, Gallois A, Riedl T, Jurdic P, Hoflack B. Osteoclasts control osteoblast chemotaxis via PDGFâ BB/PDGF receptor beta signaling. PLoS One 2008; 3: e3537.
dc.identifier.citedreferenceSculean A, Schwarz F, Miliauskaite A, et al. Treatment of intrabony defects with an enamel matrix protein derivative or bioabsorbable membrane: An 8â year followâ up splitâ mouth study. J Periodontol 2006; 77: 1879 â 1886.
dc.identifier.citedreferenceKoop R, Merheb J, Quirynen M. Periodontal regeneration with enamel matrix derivative (EMD) in reconstructive periodontal therapy. A systematic review. J Periodontol 2012; 83: 707 â 720.
dc.identifier.citedreferenceBoyan BD, Weesner TC, Lohmann CH, et al. Porcine fetal enamel matrix derivative enhances bone formation induced by demineralized freeze dried bone allograft in vivo. J Periodontol 2000; 71: 1278 â 1286.
dc.identifier.citedreferenceYukna RA, Mellonig JT. Histologic evaluation of periodontal healing in humans following regenerative therapy with enamel matrix derivative. A 10â case series. J Periodontol 2000; 71: 752 â 759.
dc.identifier.citedreferenceMellonig JT. Enamel matrix derivative for periodontal reconstructive surgery: Technique and clinical and histologic case report. Int J Periodontics Restorative Dent 1999; 19: 8 â 19.
dc.identifier.citedreferenceKanou M, Ueno T, Kagawa T, et al. Osteogenic potential of primed periosteum graft in the rat calvarial model. Ann Plast Surg 2005; 54: 71 â 78.
dc.identifier.citedreferenceMott DA, Mailhot J, Cuenin MF, Sharawy M, Borke J. Enhancement of osteoblast proliferation in vitro by selective enrichment of demineralized freezeâ dried bone allograft with specific growth factors. J Oral Implantol 2002; 28: 57 â 66.
dc.identifier.citedreferencePark YJ, Lee YM, Lee JY, Seol YJ, Chung CP, Lee SJ. Controlled release of plateletâ derived growth factorâ BB from chondroitin sulfateâ chitosan sponge for guided bone regeneration. J Control Release 2000; 67: 385 â 394.
dc.identifier.citedreferenceHowes R, Bowness JM, Grotendorst GR, Martin GR, Reddi AH. Plateletâ derived growth factor enhances demineralized bone matrixâ induced cartilage and bone formation. Calcif Tissue Int 1988; 42: 34 â 38.
dc.identifier.citedreferencevon Arx T, Broggini N, Jensen SS, Bornstein MM, Schenk RK, Buser D. Membrane durability and tissue response of different bioresorbable barrier membranes: A histologic study in the rabbit calvarium. Int J Oral Maxillofac Implants 2005; 20: 843 â 853.
dc.identifier.citedreferenceAraújo MG, Lindhe J. Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J Clin Periodontol 2005; 32: 212 â 218.
dc.identifier.citedreferenceAlâ Askar M, O’Neill R, Stark PC, Griffin T, Javed F, Alâ Hezaimi K. Effect of single and contiguous teeth extractions on alveolar bone remodeling: A study in dogs [published online ahead of print December 15, 2011]. Clin Implant Dent Relat Res. doi: 10.1111/j.1708â 8208.2011.00403.x.
dc.identifier.citedreferenceCasati MZ, Sallum EA, Nociti FH Jr, Caffesse RG, Sallum AW. Enamel matrix derivative and bone healing after guided bone regeneration in dehiscenceâ type defects around implants. A histomorphometric study in dogs. J Periodontol 2002; 73: 789 â 796.
dc.identifier.citedreferenceAlâ Shabeeb MS, Alâ Askar M, Alâ Rasheed A, et al. Alveolar bone remodeling around immediate implants placed in accordance with the extraction socket classification: A threeâ dimensional microâ computed tomography analysis. J Periodontol 2012; 83: 981 â 987.
dc.identifier.citedreferenceAlâ Hezaimi K, Levi P, Rudy R, Alâ Jandan B, Alâ Rasheed A. An extraction socket classification developed using analysis of bone type and blood supply to the buccal bone in monkeys. Int J Periodontics Restorative Dent 2011; 31: 421 â 427.
dc.identifier.citedreferenceCardaropoli G, Araújo MG, Lindhe J. Dynamics of bone tissue formation in tooth extraction sites. An experimental study in dogs. J Clin Periodontol 2003; 30: 809 â 818.
dc.identifier.citedreferenceCovani U, Cornelini R, Barone A. Buccoâ lingual bone remodeling around implants placed into immediate extraction sockets: A case series. J Periodontol 2003; 74: 268 â 273.
dc.identifier.citedreferenceSchropp L, Wenzel A, Kostopoulos L. Impact of conventional tomography on prediction of the appropriate implant size. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001; 92: 458 â 463.
dc.identifier.citedreferenceSchropp L, Wenzel A, Kostopoulos L, Karring T. Bone healing and soft tissue contour changes following singleâ tooth extraction: A clinical and radiographic 12â month prospective study. Int J Periodontics Restorative Dent 2003; 23: 313 â 323.
dc.identifier.citedreferenceNevins M, Camelo M, De Paoli S, et al. A study of the fate of the buccal wall of extraction sockets of teeth with prominent roots. Int J Periodontics Restorative Dent 2006; 26: 19 â 29.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.